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Abstract

Using solar wind observation near PSP perihelions as constraints, we have investigated the parameters in various
PFSS model methods. It is found that the interplanetary magnetic field extrapolation with source surface height
RSS= 2 Rs is better than that with RSS= 2.5 Rs. HMI and GONG magnetograms show similar performances in the
simulation of magnetic field variation, but the former appears to have a slight advantage in reconstruction of
intensity while the latter is more adaptable to sparser grids. The finite-difference method of constructing eigenvalue
problems for potential fields can achieve similar accuracy as the analytic method and greatly improve the
computational efficiency. MHD modeling performs relatively less well in magnetic field prediction, but it is able to
provide rich information about solar-terrestrial space.

Key words: magnetohydrodynamics (MHD) – (Sun:) solar—terrestrial relations – (Sun:) solar wind – magnetic
fields

1. Introduction

Solar magnetic fields are closely related to various structures
and activities in solar-terrestrial space, and also an important
factor affecting space weather. The dynamically changing
magnetic field is the source of nearly all solar activity affecting
Earth and human technological systems. Yet due to the limited
observational techniques, at present, only in situ magnetic field
measurement of spacecraft and radial magnetic field measure-
ment of photosphere are relatively accurate. The observed
chromospheric magnetic field has been continuously improved,
while the direct measurement of the coronal magnetic field is
still a difficult problem in solar physics (Yang et al. 2020a,
2020b).

Some latest research has obtained the coronal magnetic field
intensity distribution through indirect ways (Yang et al. 2020a),
but the commonly used method is still by extrapolation based on
the measured photospheric magnetic field (Wiegelmann &
Sakurai 2021). For certain coronal region where plasma β= 1,
under the assumption of force-free field model, the Lorentz
force is 0, that is,

´ = ( )j B 0, 1

a ´ = ( )B B. 2

Utilizing Maxwell’s equations, that can be further simplified to
a form containing only the magnetic field B. If α is constant
among that spatial range, B will be a linear force-free field, and
particularly, a potential field where is no current with α= 0; if α
varies in space, a nonlinear force-free field will be obtained.
When the premise β= 1 does not hold, a more comprehensive

model is needed to calculate the coronal magnetic field, such as
the magnetohydrostatic model (Ruan et al. 2008), the stationary
magnetohydrodynamic model (Wiegelmann et al. 2020),
magnetohydrodynamic (MHD) model (Mikić et al. 2018), etc.
For interplanetary space farther from the Sun, the magnetic

field can often be thought of as coupled to the plasma. As the
solar wind spreads radially outward, a spiral structure is formed.
That helical structure is also commonly referred to as “Parker
spiral” due to Parker’s seminal work on interplanetary magnetic
field (Parker 1958). Then at a larger distance from the
heliocentric (r? Rs), Br∝ 1/r2, and Bf∝ 1/r.
Magnetometers are usually used to obtain the three-

component magnetic field. We track the measurements at the
satellite location to acquire the structure of local magnetic field.
Before the launch of the Parker Solar Probe (PSP) in 2018, the
interplanetary magnetic field was mainly observed near 1 au.
PSP is able to reach the corona at about 9.5 solar radii from the
Sun and conduct direct measurements of the velocity of protons
within 0.5 au as well as the coronal and interplanetary magnetic
field along its orbit, which provides more accurate solar wind
speed input and new effective reference for optimizing the
models.
In this work we mainly analyze the coronal and

interplanetary magnetic field with the Potential Field Source
Surface (PFSS) model and MHD model. Section 2 introduces
the observational data used in this paper. Section 3 describes
several algorithms for the PFSS model and MHD model in
detail. Section 4 is about the magnetic field simulation results
and the comparison with in situ observation. The adjustment of
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parameters and the selection of magnetograms are discussed.
Section 5 integrates the main conclusion and issues that still
need further research.

2. Data

The PSP mission (Fox et al. 2016) tracks how energy and heat
are transported in solar corona, and explores what drives the
acceleration of solar wind and solar energetic particles. We
focus on two groups of instruments here. FIELDS (the
electromagnetic fields investigation) captures the magnitude
and direction of electric and magnetic fields in the solar
atmosphere, and measures waves and turbulence in the inner
heliosphere with high temporal resolution to understand the
magnetic fields associated with waves, shock waves and
magnetic reconnection, as well as electric fields in a wide
frequency range measured directly or from a long distance (Bale
et al. 2016). SWEAP (the Solar Wind Electrons Alphas and
Protons investigation) counts the richest particles (electrons,
protons and helium ions) in the solar wind and measures
properties such as velocity, density and temperature to improve
our understanding of solar wind and coronal plasma (Kasper
et al. 2016). The radial component of proton velocity from
SWEAP was used in this study as the observed data of solar
wind velocity, while some simulation results were compared
with the in situ magnetic field measurements from FIELDS.

GONG (the Global Oscillation Network Group) aims to use
helioseismology to conduct detailed research on the internal
structure and dynamics of the Sun. It relies on a network of six
stations around the Earth to achieve near-continuous observa-
tion. The synoptic map generated by GONG’s zero-point
corrected magnetogram is used in the simulations in this paper,
which corrects the zero-point uncertainty caused by hetero-
geneity and small imperfections in the magnetogram modulator
on the basis of the standard magnetogram. Also, the polar field
correction was carried out according to the lower-latitude
observed magnetic field by a cubic polynomial surface fit (Li
et al. 2021).

HMI (Helioseismic and Magnetic Imager) is one of the three
instruments of SDO (Solar Dynamics Observatory), the main
goal is to study the origin of solar changes and understand the
internal structure of the Sun as well as the various components
of magnetic activity. HMI observes the motion of photosphere
to study solar oscillation, studies the three components of the
photospheric magnetic field according to the polarization of
specific spectral lines, and makes high-resolution measurements
of the vector magnetic field on the entire visible Sun surface
(SDO, HMI). Only synoptic maps for different Carrington
Rotations (CRs) are used here, which are made of magneto-
grams near the central meridian with a resolution of
3600 × 1440.

K-COR (COSMO K-CORONAGRAPH) is one of the
constituent instruments of the COSMO (The COronal Solar

Magnetism Observatory) facility suite, dedicated to the study of
the formation and dynamics of coronal mass ejections and the
evolution of inner coronal density structure, which records the
polarization brightness of light emitted by photosphere and
scattered by free electrons in the corona. This paper uses
K-COR observations as reference to verify the simulation of
coronal magnetic field structure. The high-contrast K-COR
white light image can clearly show the positions of various
coronal structures.
We also evaluated some models with OMNI data set, which is

primarily a 1963-to-current compilation of hourly averaged,
near-Earth solar wind magnetic field and plasma parameter data
from several spacecraft in geocentric or L1 (Lagrange point)
orbits.

3. Physical Models and Calculation Methods of
Coronal and Interplanetary Magnetic Field

3.1. PFSS Model and Parker Spiral Field

The PFSS model (Schatten et al. 1969) is widely used for
magnetic field extrapolation from solar photosphere to corona
and interplanetary space. Usually, the potential field solution
within the designated source surface is obtained from the
synoptic map by spherical harmonic function or finite difference
method, and the magnetic field is extrapolated to interplanetary
space considering the consistency between trajectory of solar
wind and magnetic field structure.
With the in situ solar wind velocity measured by PSP, this

helical magnetic connectivity can be expressed as

f f= -
W

-( ) ( )r
V

r r ,0
SW

0

where f(r), r are the longitude of a point at interplanetary
space and its distance to solar center, Ω is solar rotation
rate. f0, r0, VSW are the longitude, heliocentric radius, the
radial solar wind speed observation of PSP respectively
(Badman et al. 2020). Then for each point at PSP trajectory,
we can find the corresponding points at source surface or
further interplanetary space along the magnetic flux tube it is
located, with extrapolating the solar wind speed around those
positions.
From source surface to interplanetary space, we use Parker

spiral to describe the magnetic field (Parker 1958). Source
surface is assumed to have only Br components, while Bθ and Bf

components are zero. Since the magnetic field is coupled to
plasma, the interplanetary magnetic field is actually governed
by velocity field. Components of the velocity field can be
expressed by following equations:

q f =( ) ( )v r V, , , 3r SW

q f =q ( ) ( )v r, , 0, 4
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q f q= W -f( ) ( ) ( )v r r R, , sin . 5ss

The corresponding components of magnetic field are:

q f q f=( ) ( )( ) ( )B r B R R r, , , , , 6r r SS SS0
2

q f =q ( ) ( )B r, , 0, 7

q f q f q= W -f( ) ( )( )( ) ( )B r B r V r R, , , , sin . 8r SSSW

Magnetic field within the spherical shell region from
photosphere to source surface can be solved by the following
properties and boundary conditions:

 ´ = ( )B 0, 9

 =· ( )B 0, 10

q f==∣ ( ) ( )B M , , 11r r 1

= =q f= =∣ ∣ ( )B B 0, 12r R r RSS SS

where M(θ, f) represents the photospheric magnetic field
measurement.

3.1.1. Analytical Solution of Potential Field in the form of
Spherical Harmonics (Wiegelmann 2007)

According to the irrotational property Equation (9), the scalar
potential of B can be constructed so that

= FB ,

At this time, Equation (9) has been automatically satisfied, and it
is only necessary to solve Equation (10) under boundary
conditions, namely

DF = 0.

It has an analytical solution in spherical coordinate (r, θ, f):

å åq f q fF = +
=

¥

=-

- +( ) [ ] ( )( )r A r b r Y, , , ,
l m l

l

lm
l

lm
l

lm
0

1

where Ylm is spherical harmonic function, and Alm and Blm are
coefficients obtained according to boundary conditions. Then
the three components of magnetic field can be expressed as
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Given the photospheric magnetic field M(θ, f), its spherical
harmonic expansion can be written as

ò ò

å åq f q f

q f q f q q f

=

=
p p

=

¥

=-

*

( ) ( )

( ) ( ) ( ) ( )

M C Y
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0
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0

where = - -* ( )Y Y1lm
m

l m, . Based on the von Neumann condition

q f = ¶F
¶

( )B r , ,r r0 on photosphere we get

- + =- - +( )( ) ( )A lr B l r C1 .lm
l

lm
l

lm0
1

0
2

Then according to the magnetic field turns radial at source
surface r= r1, that is, Bθ= Bf= 0, we have

+ =- +( )A r b r 0.lm
l

lm
l 1

So coefficients in the analytical solution of potential field will be

=
+ +

+

+ + +( )
A

C r

r l r r
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l
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But infinite series cannot be calculated directly in practical
application, only a limited number of l can be intercepted for
summation and the result is still an approximate solution.

3.1.2. Finite Difference Iterative Potential-field Solver (FDIPS)
(Tóth et al. 2011)

Finite Difference Iterative Potential-field Solver (FDIPS)
also transforms the problem into the solution of Laplace
equation under boundary conditions by constructing a scalar
potential. Under spherical coordinates (r, θ, f), q fr, cos , are
evenly divided into Nr, Nθ, Nf units respectively. The magnetic
field is discretized to cell faces and the scalar potential is
discretized at cell centers, with an additional layer of ghost
cells to represent the boundary conditions. Set cell centers as
(ri, θj, fk), the magnetic field can be expressed in discrete
gradient form as

=
F - F

D
+

+ ( )B
r

, 17r i j k
i j k i j k

, 1 2, ,
1, , , ,

q
q

=
F - F

D
q +

+ +( )
( )B

r

sin

cos
, 18i j k

j i j k i j k

i
, , 1 2,

1 2 , 1, , ,

q f
=

F - F

D
f +

+ ( )B
r sin

. 19i j k
i j k i j k

i j
, , , 1 2

, , 1 , ,

Then the divergence of magnetic field ∇2Φ can be
approximated as

q q
q

q f

=  F =
-

D

+
-

D

+
-

D

q q

f f

+ + - -

+ + - -
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i
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i
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2
, ,

1 2
2

, 1 2, , 1 2
2

, 1 2, ,

2

1 2 , , 1 2, 1 2 , , 1 2,

, , , 1 2 , , , 1 2

Next we need to find Φi,j,k that satisfies the discrete Laplace
equation Equation (20) and boundary conditions. If it is
substituted into Φ= 0, a non-zero residual Ri,j,k will be
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generated due to the non-uniformity of inner boundary
condition. Construct a new boundary value problem

 F =( ) R ,i j k i j k
2

, , , ,

F = F ,j k j k0, , 1, ,

and solve it by iterative method, then the solution and the initial
boundary conditions happen to constitute the required potential
field solution.

3.1.3. pfsspy Algorithm and Construction of Eigenvalue
Problem in Finite Difference form (Yeates 2020)

For spherical coordinates (r, θ, f), note r = ( )rln , q=s cos .
The algorithm uses a grid composed of equidistantly divided ρ,
s, f for calculation, and the Lamé coefficient of the orthogonal
curvilinear coordinate system |dr/ dρ|, |dr/ds|, |dr/df| are
respectively

q

q

= = = =
-

= = -

r
r

r

f
r

h r h
r

s

h r s

e ,
sin

e

1
,

sin e 1 .

s
2

2

The general strategy for calculating the magnetic field here is to
construct its vector potential according to the passive property,
i.e., to assume

y=  ´ ¢ ¢ =  ´ ¢ r( )B A A, e ,

then in curvilinear coordinates

y y y= -D ¢ + ¶ ¶ ¢ + ¶ ¶ ¢r
f

f
r

r f
r
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⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠
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B
h h h h

e
1 1

e
1 1

e .

21
s

s s

From the irrotational property, B can be expressed as gradient of
a scalar. Considering Equation (21), it can be first noted as

y r=  ¶ ¢ + ¢
r
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⎛

⎝
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h
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,

where r¢( )f is a unary function of ρ. Let

òy y r r= ¢ + ¢r ( )h f d , A=∇× (ψ eρ), then

y=  ¶
r

r⎜ ⎟
⎛

⎝

⎞

⎠
( )B

h

1
. 22

It is easy to verify that there is also
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Then by Equations (22) and (23),
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Next we only need to solve ψ according to Equation (24) and
then calculate A and B. Note the grid point as (ρ k, s j, f i) and
define the edge lengths r

+Lk j i1 2, , , +Ls
k j i, 1 2, , f

+L k j i, , 1 2 then
Equation (24) can be discretized as
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Boundary conditions in pfsspy algorithm are also set by a
layer of ghost cells. Next it is only necessary to solve the
nρnsnf× nρnsnf order linear equations composed of
Equation (25). Suppose there are eigenfunctions of the form

y = p+ + + f ( )f Q e . 26k j i k
lm
j Imi n, 1 2, 1 2 1 2 2

where k in f k represents a power, I is imaginary unit, and Q is a
set of standard orthogonal functions about l. Substituting
Equation (26) into (25) gets the tridiagonal eigenvalue problem

l

- + + +
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thus f can be obtained from λlm by solving the quadratic
equation
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For each l, m, the two solutions can be expressed as + -f f,lm lm. The
potential field ψ can be written as a linear combination of these
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two sets of radial eigenfunctions:

å åy =

´ + p
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1
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1 2 2

s

where coefficients clm and dlm are determined by boundary
conditions. In fact, with the improvement of grid density,

+Qlm
j 1 2 as a function of θ should converge to the corresponding

associated Legendre polynomial q( )P cosl
m in the sense of

normalization.

3.2. Alfvén Wave Solar Model (van der Holst et al. 2014)

We use Alfvén Wave Solar Model (AWSoM) based on
fundamental equations of magnetohydrodynamics as a
reference that considers as many physical processes and
different particle motion properties in solar-terrestrial space as
possible. This is a global model from upper chromosphere to
heliosphere, dealing with coronal heating and solar wind
acceleration with Alfvén wave turbulence, making Poynting
flux proportional to magnetic field by injecting Alfvén wave
energy at the inner boundary. The model also uses photo-
spheric measurements to simulate the 3D magnetic field
topology, but does not impose a boundary between open and
closed field lines.

Figure 1 shows the deduced density and magnetic field
distribution on the solar equatorial plane in CR2215. Figure 2
depicts the solar wind velocity calculated by this MHD model

against corresponding PSP observations during CR2215, where
their mean values are 373.2 km s−1 and 322.7 km s−1

respectively, with a root mean square error of 79.1 km s−1.

4. Evaluation of Coronal and Interplanetary Magnetic
Field Modeling

In Section 4.1, we calculated the magnetic field results of
different models based on the observation of CR2210 which is
around the first perihelion of PSP (2018 November 5), and
studied the influence of relevant parameters and synoptic maps.
The performance of some models at 1au is briefly discussed in
Section 4.2. Section 4.3 analyzes the importance of PSP’s near-
solar detection. Then in Section 4.4 we made some attempts to

Figure 1. Density and magnetic field distribution on solar equatorial plane
deduced by AWSoM.

Figure 2. Radial solar wind speed measured by PSP (black) and deduced by
AWSoM (orange).

Figure 3. The trajectory of PSP (green) and Earth (purple) from 2018 Oct. 1 to
Nov. 30.
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improve the PFSS model and applied the method to CR2215
around the second perihelion of PSP (2019 April 4). PSP had
similar paths in the two periods of interest, with their closest
approaches to the Sun around 0.167 au. Figure 3 shows the
trajectory of PSP and Earth in Carrington system around the
first one.

Regarding the data selection of GONG, Figure 4 compares
the magnetic polarity distribution of source surface when the
potential field is calculated using the standard magnetogram and
the zero-point corrected magnetogram in the same period. It can
be seen that it is necessary to correct the zero-point uncertainty.
Therefore all subsequent simulations will use the zero-corrected
version when inputting the GONG photosphere magnetogram.

The simulated interplanetary magnetic field is usually found
to be underestimated when compared with in situ observation,
i.e., “open flux problem” (Linker et al. 2017). Because the
magnetic flux originating from solar polar region may have a
non-negligible contribution to the interplanetary magnetic field,
but due to the limitation of observation conditions, this part of
data is often missing or inaccurate, which may lead to a low
result when using the photosphere magnetic map for
extrapolation. This problem exists in many models and has
not been solved, but the effect can be partially corrected either
by adding a polar field to the model or by multiplying the
simulation results by an appropriate coefficient (Linker et al.
2017; Riley et al. 2019). For convenience of comparison,

simulation curves in this paper are scaled up to have the same
average absolute value of Br as PSP observed data.

4.1. Modeling and Parameter Analysis Based on the First
Perihelion Observation of PSP

In this section we use four algorithms introduced in Section 3
to calculate the coronal and interplanetary magnetic fields, and
compare them with in situ observation of PSP. The time range
of CR2210 is from 2018 October 26 20:53:35 to November 23
04:13:09.
As shown in Figure 5, the Bθ component of interplanetary

magnetic field obtained by PFSS model is always zero, which
has an RMSE (root mean square error) of about 10.1777 nT
compared with the observed data of PSP in CR2210. For brevity
we will avoid displaying it repeatedly in this part.

4.1.1. Spherical Harmonic Method Results

As for an analytical method of the potential field model, the
standard potential field solution tool in LINFF code developed
by Thomas Wiegelmann is used here. Since this algorithm
requires quite a lot of storage space, only some short truncations
could be analyzed. Figure 6 shows a comparison of these results
with observed magnetic field provided by PSP. Parameters are
shown in Table 1. The number of truncated terms and mesh
density have very slight effects on the results in the range of
values we selected. As we can see in Figure 6, the curves for
same magnetogram and same source surface position almost
overlap. HMI magnetogram with smaller scaling coefficients
seem to have better performance in the reconstruction of
magnetic field strength. Each simulation reliably reproduced
magnetic polarity, with the results at 2.5 Rs slightly better than
those at 2.0Rs but they were fairly close. Figure 7 shows field
lines of the 13th and 14th simulations against K-COR white
light images from several angles, where open field lines versus
coronal holes, closed field lines versus streamers are basically
corresponding. However, in the reconstruction of magnetic field
intensity and variation, the model performance is significantly
better when the source surface is set at 2.0 Rs than at 2.5 Rs.

Figure 4. The polarity distribution of the source surface magnetic field obtained from GONG standard magnetogram (left) and zero-point corrected magnetogram
(right).

Figure 5. The extrapolated Bθ in PFSS model (red) and PSP in situ data (black).
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4.1.2. Finite Difference Iterative Method Results

The results of FDIPS are shown in Figure 8. The iteration
accuracy is to relative error of 10−10 and other input
parameters are shown in Table 2. The influence of
magnetogram and source surface position setting on the model
is basically the same as that in LINFF algorithm, but it can be
inferred that this method is slightly deficient about reconstruc-
tion of magnetic field intensity, because the scaling coefficients
are relatively high and dwindling the relative error of iterative
calculation to 10−15 or increasing the number of radial grid
points to 1000 cannot further reduce them. Moreover, if the
mesh density in these four simulations is reduced by half, the

magnetic polarity changes will be completely unreliable.
Considering that grid density of model is limited by the
spatial resolution of the photosphere magnetic field measure-
ment, it is inevitable that direct difference method like this will
omit more details in observed data.

4.1.3. Finite Difference Eigenvalue Method Results

The results obtained by pfsspy algorithm are shown in
Figure 9 and Table 3 is for detailed input parameters. The effect
of source surface position and magnetogram setting is similar to
that in the previous two algorithms. This time, GONG
magnetogram still yielded usable results when extrapolating

Figure 6. The spherical harmonic function extrapolated magnetic field compared with PSP in situ data (black).

Table 1
LINFF Experiment Records

# l Nr Nθ Nf Rss Input Scale Pr Pf RMSE(Br) RMSE(Bf) RMSE(B)

1 24 50 90 180 2.0 HMI 3.25958 0.884146 0.762195 14.7592 12.7902 11.5167
2 24 75 90 180 2.5 HMI 8.76151 0.893293 0.771341 19.4168 13.1917 18.1216
3 24 150 180 360 2.5 HMI 8.75295 0.893293 0.771341 19.4094 13.1918 18.1122
4 24 100 180 360 2.0 HMI 3.25737 0.884146 0.762195 14.7597 12.7910 11.5179
5 12 100 180 360 2.0 HMI 3.25702 0.884146 0.762195 14.7598 12.7911 11.5177
6 12 150 180 360 2.5 HMI 8.75284 0.893293 0.771341 19.4090 13.1917 18.1117
7 12 75 90 180 2.5 HMI 8.76141 0.893293 0.771341 19.4165 13.1917 18.1212
8 12 50 90 180 2.0 HMI 3.25924 0.884146 0.762195 14.7592 12.7903 11.5165
9 12 50 90 180 2.0 GONG 3.68910 0.873476 0.754573 14.7237 12.7941 11.4225
10 12 75 90 180 2.5 GONG 10.8356 0.888719 0.772866 20.2375 13.2663 19.1685
11 12 150 180 360 2.5 GONG 10.8233 0.888719 0.772866 20.2267 13.2661 19.1552
12 12 100 180 360 2.0 GONG 3.68647 0.873476 0.754573 14.7244 12.7950 11.4239
13 24 100 180 360 2.0 GONG 3.68674 0.873476 0.754573 14.7239 12.7949 11.4236
14 24 150 180 360 2.5 GONG 10.8234 0.888719 0.772866 20.2269 13.2661 19.1554
15 24 75 90 180 2.5 GONG 10.8356 0.888719 0.772866 20.2377 13.2663 19.1688
16 24 50 90 180 2.0 GONG 3.68937 0.873476 0.754573 14.7233 12.7940 11.4222

Note. From left to right are successively the number of truncated terms, the number of grids in three directions, the position of source surface (referring to solar radius),
magnetogram, the scaling coefficient, the polarity coincidence rate of Br and Bf components with observed data, and the RMSE of scaled Br, Bf and B relative to
observed data.
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with a lower mesh density (the 5th and 6th in Table 3) while
HMI did not. It is also worth noting that pfsspy gives magnetic
field intensity higher thus also closer to observed data than
FDIPS does. The higher mesh density in the 7th simulation

further optimizes its performance in field strength reconstruc-
tion. It can be seen that a tactical separation of variables
according to the structure of analytical solution is very helpful to
improve the finite difference method.

Figure 7. The coronal magnetic field structure at different time in CR2210 with a designated source surface at 2.0 Rs (upper two rows) and 2.5 Rs (lower two rows)
superimposed on K-COR white light images.
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Although it is possible to obtain better results by refining the
grid based on HMI synoptic maps with high spatial resolution,
this operation requires the support of huge computing
resources. Consistent with the complexity of the calculation
mechanism, LINFF, FDIPS and pfsspy consume about several
hours to more than ten hours, tens of minutes and tens of
seconds for a calculation respectively. Under the usual

conditions, slight attempt to refine the grid is only feasible in
the pfsspy algorithm.

4.1.4. MHD Results

The main input parameters we use in the AWSoMMHDmodel
are Poynting ratio = 0.7× 106 J/(m2sT), which is ratio of
Poynting flux to magnetic field strength at the photosphere level,

Figure 8. Comparison of FDIPS magnetic field simulation and PSP in situ data (black).

Figure 9. Comparison of pfsspy magnetic field simulation and PSP in situ data (black).

Table 2
FDIPS Experiment Records

# Nr Nθ Nf Rss Input Scale Pr Pf RMSE(Br) RMSE(Bf) RMSE(B)

1 150 180 360 2.5 GONG 14.9516 0.899390 0.771341 18.6481 13.1826 18.2914
2 100 180 360 2.0 GONG 5.84323 0.887195 0.759146 14.7839 12.8209 11.8553
3 150 180 360 2.5 HMI 13.3404 0.893293 0.771341 19.4599 13.2055 18.3009
4 150 180 360 2.0 HMI 5.19182 0.882622 0.760671 15.1098 12.8271 11.8508

Note. From left to right are successively the number of grids in three directions, the position of source surface (referring to solar radius), magnetogram, the scaling
coefficient, the polarity coincidence rate of Br and Bf components with observed data, and the RMSE of scaled Br, Bf and B relative to observed data.
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and Coronal Heating =1.5× 105 mT1/2, which is perpendicular
correlation length times the square root of local magnetic field
intensity. They are assumed to be constants in this model and
selected according to developers’ recommendation which is also
experienced almost the optimal selection. The inner boundary is at
1.1 Rs. Simulation results are shown in Figure 10 and Table 4. It is
clear that previous PFSS simulations using solar wind velocity
observation showmuch more accurate details. Although the MHD
model provides more information than PFSS about Bθ, which is
actually of the smallest magnitude, it seems difficult to give a
sufficiently reliable prediction.

4.2. Results at 1 au

The results of LINFF’s 3rd, 4th, 13th, and 14th simulations
and AWSoM were compared with near-Earth magnetic field

observation. The results are shown in Figure 11 and Table 5.
The scaling factors determined earlier from PSP radial magnetic
field measurement are still used here, and the solar wind
velocity in PFSS model is obtained by slightly smoothing the
PSP observation. It can be seen that PFSS model still has a
relatively better performance in polarity prediction.

4.3. The Role of PSP Near-Solar Observation Data

In order to find out how much role the solar wind velocity
measured by PSP plays in PFSS model, the potential field
solutions obtained by the 3rd, 4th, 13th and 14th simulations in
LINFF are extrapolated to interplanetary space with a constant
radial solar wind velocity of 400 km s−1 and compared with the
in situ magnetic field measurement of PSP. The results are
shown in Figure 12 and Table 6. As expected, the measured

Figure 10. Comparison of AWSoM simulation (orange) and PSP in situ data (black).

Table 3
pfsspy Experiment Records

# Nr Nθ Nf Rss Input Scale Pr Pf RMSE(Br) RMSE(Bf) RMSE(B)

1 150 180 360 2.5 HMI 8.39061 0.896341 0.771341 17.1127 12.9424 15.4212
2 100 180 360 2.0 HMI 3.55109 0.891768 0.763719 14.8055 12.7654 11.8749
3 100 180 360 2.0 GONG 3.99026 0.884146 0.765244 14.8394 12.7594 11.4648
4 150 180 360 2.5 GONG 9.66459 0.891768 0.772866 17.4822 12.9596 15.3989
5 75 90 180 2.5 GONG 9.53747 0.893293 0.771341 18.2963 13.0382 16.3696
6 50 90 180 2.0 GONG 3.90028 0.884146 0.765244 14.9576 12.7592 11.6256
7 100 360 720 2.0 HMI 3.44005 0.885671 0.763719 14.9135 12.7766 11.3967

Note. From left to right are successively the number of grids in three directions, the position of source surface (referring to solar radius), magnetogram, the scaling
coefficient, the polarity coincidence rate of Br and Bf components with observed data, and the RMSE of scaled Br, Bf and B relative to observed data.
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Figure 11. Comparison of MHD (orange curves in top two rows) and PFSS (colored curves in bottom two rows) results with near-Earth magnetic field observation
(black).

Table 4
AWSoM Experiment Records

Scale Pr Pθ Pf RMSE(Br) RMSE(Bθ) RMSE(Bf) RMSE(B)

4.40752 0.867378 0.503049 0.643293 21.1803 13.8542 41.0425 26.3491

Note. From left to right are successively the scaling coefficient, the polarity coincidence rate of three components with observed data, and the RMSE of scaled Br, Bθ, Bf

and B relative to observed data.
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velocity improves the simulation of magnetic field strength and
variation considerably.

4.4. About the Near-Real-Time GONG Synoptic
Magnetograms

Considering the high temporal resolution of GONG synoptic
maps, it could be used to further optimize the PFSS model and
there has been some work done for it (Badman et al. 2020), so
we tried to update the magnetic map once a day in CR2210,
select the source surface at 2.0 solar radii, and recalculate the
results of FDIPS and pfsspy using a grid of 150× 180× 360,
with Figure 13 and Table 7 displaying the results. While

presenting the results of MHD model as reference in Figure 14,
the same approach is applied to CR2215 to obtain Figure 15and
their performances are evaluated in Table 8. AWSoM
parameters here are recommended values Poynting
ratio = 1.0× 106 J/(m2sT) and Coronal Heating = 1.5× 105

mT1/2.
The analysis shows that updating the input over time does

not seem to improve the overall performance of PFSS model as
expected. This may be because the zero-point corrected
magnetograms have been individually scaled to varying
degrees during generation and it may not be appropriate to
combine them directly in this way. However, we can speculate

Figure 12. Comparison of PFSS model results using constant solar wind velocity with PSP in situ observation (black).

Table 6
Evaluation of PFSS Model using Constant Solar Wind Velocity

PFSS Scale Pr Pf RMSE(Br) RMSE(Bf) RMSE(B)

HMI, 2.5Rs 10.1454 0.907012 0.769817 25.4906 14.2319 24.8593
HMI, 2.0Rs 3.54765 0.882622 0.766768 17.0102 12.9171 14.2442
GONG, 2.0Rs 3.99926 0.881098 0.762195 16.8224 12.8831 13.9287
GONG, 2.5Rs 12.5992 0.878049 0.762195 26.7738 14.4556 26.2948

Note. From left to right are successively the model setting (magnetogram and the position of source surface), the scaling coefficient, the polarity coincidence rate of Br

and Bf components with observed data, and the RMSE of scaled Br, Bf and B relative to observed data.

Table 5
Evaluation Based on 1au Observation to MHD and PFSS Model

Model Scale Pr Pθ Pf RMSE(Br) RMSE(Bθ) RMSE(Bf) RMSE(B)

MHD 4.40752 0.647866 0.548781 0.565549 3.23861 2.40222 3.56879 2.72186
PFSS (HMI, 2.5Rs) 8.75295 0.682927 — 0.772866 2.90104 1.77866 2.91423 2.54280
PFSS (HMI, 2.0Rs) 3.25737 0.696646 — 0.777439 2.33263 1.77866 2.52706 3.00398
PFSS (GONG, 2.0Rs) 3.68674 0.695122 — 0.778963 2.34179 1.77866 2.51460 2.97959
PFSS (GONG, 2.5Rs) 10.8234 0.689024 — 0.769817 3.18623 1.77866 3.11440 2.68109

Note. From left to right are successively the model, scaling coefficient, the polarity coincidence rate of three components with observed data, and the RMSE of scaled Br,
Bθ, Bf and B relative to observed data.
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that if GONG standard maps are used in model, the refinement
of time mesh will have a good effect. In addition, we assume
that the radial velocity of each flux tube remains constant over
a CR to use PSP solar wind velocity data, so it is theoretically
more appropriate to use a constant photosphere magneto-
gram here.

5. Conclusions and Discussion

In this paper, we used in situ measurements of solar wind
around the first and second perihelion of PSP to obtain coronal
and interplanetary magnetic fields. Combining the Potential
Field Source Surface (PFSS) coronal magnetic field model and

Figure 13.Magnetic field in CR2210 obtained by the PFSS model with time-varying synoptic maps as input. The upper and lower rows are calculated with FDIPS and
pfsspy respectively. Each colored curve is associated with an individual magnetogram while the black curve is spliced according to the principle of time proximity. The
black dots are still from PSP observation.

Table 7
Evaluation of Multi-magnetogram PFSS Model (CR2210)

Model Scale Pr Pf RMSE(Br) RMSE(Bf) RMSE(B)

PFSS (FDIPS) 6.95485 0.882622 0.757622 20.0187 13.1755 14.7814
PFSS (pfsspy) 5.35645 0.878049 0.762195 19.8198 12.9848 14.2208

Note. From left to right are successively the model, the scaling coefficient, the polarity coincidence rate of Br and Bf components with observed data, and the RMSE of
scaled Br, Bf and B relative to observed data.
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the Parker spiral interplanetary magnetic field model is a
common method to describe the solar-terrestrial space magnetic
structure. An initial method for solving the potential field is by
spherical harmonic functions, which provides the most accurate
results for the model but the calculation process consumes a lot
of time. Among those algorithms, compared with using the
standard analytical form truncation or directly performing
iterative difference calculation (such as FDIPS) on the Laplace
equation, separating variables according to the structure of the
analytical solution after constructing the difference scheme then
converting to an eigenvalue problem (such as pfsspy) or using
numerical methods to perform fast spherical harmonic
transformation (Suda & Takami 2002) in the analytical process
can often combining advantages of the previous two and
significantly improve computational efficiency. An important
parameter for the solution of spiral interplanetary magnetic field
is solar wind speed, and after the launch of PSP, the actual
measured data other than a constant can be used, which is of
great significance to the prediction of space weather. We can

also obtain coronal and interplanetary magnetic fields through
MHD methods (such as AWSoM).
By comparing the simulated results with interplanetary

magnetic field observed around PSP perihelions, we found that
the measured solar wind velocity significantly improved the
fitting effect of the PFSS model. The source surface setting at
2.0Rs and 2.5Rs gave similar magnetic polarity predictions, but
the former simulated magnetic field strength and variation better
than the latter. The optimal value of source surface may be
changing in different CRs and under the contrast with different
observational data, which needs further profound study. The
interplanetary magnetic field intensity obtained based on HMI
magnetogram is higher than that based on GONG’s and the
result is further improved with mesh density increasing.
However, the performance of GONG magnetogram is more
stable under sparse grids. GONG synoptic maps have a
temporal resolution of 1 hr or so, which makes it possible to
conduct more reliable magnetic field predictions by continu-
ously updating the input, but this method should prudently be

Figure 14. The comparison of MHD model magnetic field (orange) and PSP in situ data (black) in CR2215.

Table 8
Evaluation of MHD and Multi-magnetogram PFSS Model (CR2215)

Model Scale Pr Pθ Pf RMSE(Br) RMSE(Bθ) RMSE(Bf) RMSE(B)

MHD 2.45207 0.885496 0.496183 0.770992 25.7666 9.63254 13.9690 23.0783
PFSS (FDIPS) 9.72423 0.938931 L 0.787786 16.1711 9.40109 13.6049 13.6724
PFSS (pfssspy) 13.2842 0.940458 L 0.789313 17.1665 9.40109 13.3503 14.7113

Note. From left to right are successively the model, scaling coefficient, the polarity coincidence rate of three components with observed data, and the RMSE of scaled Br,
Bθ, Bf and B relative to observed data.
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applied to the zero-point corrected products and it is better
combined with the evolution of velocity field. Combining the
PSP’s velocity observation with those of other spacecraft might
be able to implement that, and if a larger range of velocity field
could be built, it could be used to optimize the simulation of
near-Earth magnetic field.

In the basic PFSS model, the Bθ component is always zero
outside the source surface. Although this may not seem
unreasonable because the measured magnetic field is relatively
weak, it can be further improved by certain methods. For
example, the source surface can be set to a non-spherical or non-
heliocentric shape. Potential field can also be combined with

Figure 15. Magnetic field in CR2215 obtained by the PFSS model with time-varying synoptic maps as input. The upper two and lower two rows are calculated with
FDIPS and pfsspy respectively. Each colored curve is associated with an individual magnetogram while the black curve is spliced according to the principle of time
proximity. The black dots are still from PSP observation.
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local magnetic field modeling such as heliospheric current
sheets, solar active regions, and coronal mass ejections. In-situ
observation of interplanetary space magnetic field can also
provide constraints for Parker spiral. MHD simulations, while
providing more information about the longitudinal magnetic
field, are not reliable enough to predict the direction and
magnitude, which can be similarly optimized. Moreover,
although measurement of the transverse magnetic field of solar
photosphere are not that accurate at present, it might be helpful
to include it as input data to the models as well.

The “open flux problem” is a long-standing but unsolved
problem in the coronal and interplanetary magnetic field
modeling, which yield magnetic field lower than in situ
observations. Scaling results with a fixed coefficient work well
for PFSS models, but may not suitable for MHD models. The
problem of underestimation may stem from the inaccuracy of
existing polar magnetic field measurements. We look forward to
more precise polar measurements by the Solar Orbiter mission,
enabling the construction of more frequent and accurate
synoptic maps for model input. On the other hand, we will
continue to optimize various magnetic field models, hoping that

through the improvement of both the model and observation, the
“open flux problem” can finally be solved.
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