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Abstract

In radio astronomy, the challenge of reconstructing a sky map from time ordered data is known as an inverse
problem. Standard map-making techniques and gridding algorithms are commonly employed to address this
problem, each offering its own benefits such as producing minimum-variance maps. However, these approaches
also carry limitations such as computational inefficiency and numerical instability in map-making and the inability
to remove beam effects in grid-based methods. To overcome these challenges, this study proposes a novel solution
through the use of the conditional invertible neural network (cINN) for efficient sky map reconstruction. With the
aid of forward modeling, where the simulated time-ordered data (TODs) are generated from a given sky model
with a specific observation, the trained neural network can produce accurate reconstructed sky maps. Using the
Five-hundred-meter Aperture Spherical radio Telescope as an example, cINN demonstrates remarkable
performance in map reconstruction from simulated TODs, achieving a mean squared error of
2.29± 2.14× 10−4 K2, a structural similarity index of 0.968± 0.002, and a peak signal-to-noise ratio of
26.13± 5.22 at the 1σ level. Furthermore, by sampling in the latent space of cINN, the reconstruction errors for
each pixel can be accurately quantified.
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1. Introduction

Map-making is a critical step in radio astronomy. Before any
scientific analysis, it is important to first produce pixelized
maps of the observed radio sky from time-ordered data (TOD),
with as much accuracy as possible. Mathematically, the
reconstruction of sky map from TOD is an ill-posed inverse
problem because of observational effects such as scan
strategies, noise, complex geometry of the field and data
excision due to RFI flagging, etc. There are several map-
making methods, with the most common being maximum-
likelihood (Tegmark 1997) that provides the optimal and linear
solution. Usually, for solving linear systems in map-making,
one use direct methods or iterative methods to achieve the
solution. Direct methods are based on brute-force matrix
inversion, which requires constructing and inverting the full
dense matrix, and is computationally impractical for current
computational power when the number of pixels of sky map is
more than millions. If the system of equations is singular, then
the matrix cannot be inverted, making the situation even worse.
In contrast, iterative optimization methods, such as the
commonly used method of preconditioned conjugate gradients,
only require a small memory footprint. However, the number of
iterations required to converge to solution could become

extremely large and thus the iteration methods can suffer from
poor convergence rate. Meanwhile, for ill-posed problems, the
derived solution may depend on the choice of the stop criterion
of iterations. Additionally, fast gridding methods, such as
Cygrid (Winkel et al. 2016) and HCGrid (Wang et al. 2021)
with utilizing multiple CPU cores or CPU-GPU hybrid
platforms, provide an alternative way for map-making.
Although these methods tried to make the most of the
hardware, it can not give a map reconstruction uncertainty
estimate.
Over recent years, machine learning algorithms, especially

those based on deep neural networks, have been widely used in
cosmological and astronomical studies and have achieved great
success in overcoming many tasks that were previously
difficult to accomplish with traditional methods such as
Lochner et al. (2016), Ravanbakhsh et al. (2017), Schmelzle
et al. (2017), La Plante & Ntampaka (2018), Modi et al. (2018),
Caldeira et al. (2019), Dreissigacker et al. (2019), He et al.
(2019), Mehta et al. (2019), Pfeffer et al. (2019), Tröster et al.
(2019), Zhang et al. (2019), Mao et al. (2020), Makinen et al.
(2021), Ni et al. (2021), Villaescusa-Navarro et al. (2021), Wu
et al. (2021), Zhao et al. (2022a), Zhao et al. (2022b), Jeffrey
et al. (2022), Shallue & Eisenstein (2023), Wu et al. (2023).
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Various neural network methods have been proposed to
analyze inverse problems Ksoll et al. (2020), Bister et al.
(2022), Haldemann et al. (2023), Kang et al. (2022), and these
new data-driven methods demonstrate impressive results. In
this study, we will use the multiscale conditional invertible
neural network (cINN) (Ardizzone et al. 2019) to solve the ill-
posed inverse problem of map-making. Using a Five-hundred-
meter Aperture Spherical radio Telescope (FAST)-like
observation (Nan et al. 2011; Li et al. 2013; Li & Pan 2016; Li
et al. 2018), we validate the effectiveness of cINN in map-
making and demonstrate that such a network provides
alternative way to reconstruct the sky map from TOD with
high-fidelity.

The invertible neural network (INN) was first proposed by
Ardizzone et al. (2018), and then was soon improved, which is
called the cINN (Ardizzone et al. 2019). In order to maintain
the unique characteristics of INN, the architecture prohibits the
use of some standard components of neural networks, such as
batch normalization and pooling layers. Avoiding some
fundamental limitations of INN, the cINN combines the INN
model with an unconstrained feed-forward network, efficiently
preprocessing the conditioning image into the most informative
features. Also, cINN allows for the joint optimization of all its
parameters using a stable training procedure based on
maximum likelihood. This is a new class of neural networks
suitable for solving inverse problems.

cINN originally focus on learning the well-posed forward
process (e.g., mapping the true radio sky to TODs), and use
additional latent output variables to describe the information
lost in the forward process. Due to the invertibility of cINN, the
corresponding inverse process is implicitly learned for free
through the model. In the specific map-making problem, given
a specific observation and the distribution of the latent variables
(usually assumed to be Gaussian), the inverse pass of the cINN
provides a full posterior distribution over parameter space.

This study presents a new solution for efficiently recon-
structing sky maps by using a cINN. By generating simulated
TODs from a given sky model through forward modeling,
which involves drift-scan observations using the FAST
configuration, including 19 beams and a frequency range of
1100–1120 MHz. The trained neural network can accurately
produce reconstructed sky maps, showing good performance in
reconstructing maps from simulated TODs. Moreover, the
reconstruction errors for each pixel can be precisely quantified
by sampling in the latent space of cINN.

In Section 2 we briefly introduce the map-making equations
and describe existing methods of map reconstruction and we
give a detailed description of cINN. In Section 3, we give a
description of the simulation and our training data. In
Section 4, we present our results for cINN and demonstrate
its good performance in map reconstruction. Finally, we list our
conclusions in Section 5.

2. Methods

2.1. Map-making for Single-dish Radio Telescopes

Map-making is a crucial step in radio observations, bridging
the gap between the collected TOD and scientific analysis. For
a single-dish radio telescope with a single beam, the map-
making input is a series of calibrated TODs, represented by a
single time-domain vector d of size Nt containing all antenna
measurements. Each measurement at time t, dt, is a sum of the
sky signal in pixel p, xp, and measurement noise, nt, with the
beam convolution already applied to the sky signal. The
pointing matrix, a sparse and tall (Nt× Np) matrix, encodes
how TOD at each time t responds to each pixel p in the sky
map. The TOD is modeled as:

å= + ( )y A x n , 1t
p

tp p t

or in the matrix-vector form as,

= + ( )y Ax n, 2

where x represents the sky map to be reconstructed. The
structure of the pointing matrix A reflects the specific scanning
strategy used in the observation.
For observations that involve multiple beams and frequen-

cies, the aforementioned basic model can be expanded as

ån n n= +( ) ( ) ( ) ( )y A x n , 3t
i

p
tp
i

p t
i

where ν represents the frequency being observed and the
superscript i represents the index of the beam being used. In the
same form as Equation (2), we can also write the matrix form of
the above equation, except that here the matrix and vectors are
redefined as A= [A1, A2, L ], y= [y1, y2, L ], n= [n1, n2, L ].
Solving Equation (2) is equivalent to solving a system of

linear equations with a large number of parameters, which is a
typical linear inverse problem. Tegmark (1997) has proposed a
variety of map-making methods, each with its own desired
properties. The most common one is the optimal, linear
solution, = -ˆ ( )x A WA A WdT T1 , which is an unbiased estimator
for a positive defined weighting matrix W. In particular,
assuming a Gaussian distributed noise with zero mean and
variance of N in the time domain, and choosing the weighting
as W=N−1, the estimator then becomes the standard general-
ized least-square solution for the map with minimum variance,

= º º- - -ˆ ( )x H b H A N A b A N d, with , and , 4T T1 1 1

where the noise covariance matrix of the map is
= - -( )A N AT 1 1 . Since -( )A N AT 1 is generally a dense matrix,

a direct brute-force inversion typically costs ( )Np
3 flops, which

is computationally intractable if Np∼ 106 and makes the map-
making problem particularly challenging. For noise, since N is
sparse in the frequency domain, we need to perform each
matrix multiplication on a matrix sparse basis, transforming
between the frequency and time domains by using the fast
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Fourier transform. Furthermore, in practice, the exact matrix
inversion may not exist if a matrix is sufficient large or if the
matrix is illness or rank-deficient, not sufficient large, leading
to solutions that are numerically unstable. So, one has to use
the Moore-Penrose pseudoinverse or some regularization-based
methods (Cheng & Hofmann 2011) to approximate the inverse
of non-invertible matrices.

More practically, iterative methods have offered an efficient
alternative to solve the linear system of map-making, where the
class of Krylov methods is involved, such as using precondi-
tioned conjugate gradient algorithm. Explicit inversion of the
linear system matrix is avoided by iteratively obtaining
successively improved solutions. The computational complex-
ity of such methods is at most ( )Np

2 .
However, a large condition number of the system matrix (the

ratio of the largest to the smallest eigenvalue of a matrix) can
significantly decrease the convergence rate of iterative solvers,
leading to unacceptable time requirements for solutions with
required accuracy. Thus one has to carefully choose a
preconditioner matrix to the linear system so that the condition
number of the preconditioned system becomes much smaller. In
practice, the matrix is usually positive semi-defined, which is
because the incomplete coverage of pixels in an observed sky
area. This incompleteness generally originates from the choice
of scanning strategy and the RFI subtraction in data preproces-
sing. Therefore, there is a null space such that Hx= 0, leading to
a degeneracy in the estimated sky map x̂ (e.g., Cantalupo et al.
2010; Puglisi et al. 2018 and references therein). When applying
the iterative methods to a semi-defined linear system, the
iterative results will start converging toward the optimal
solution, and then be hindered to start deviating from the
correct solution, because of these degeneracy modes. Therefore,
the choice of when to stop iterating is crucial to the successfully
solve for such ill-posed map-making problem. Therefore, in
order to avoid the aforementioned non-trivial problem, we will
propose below a novel deep learning-based approach.

2.2. Application of Neural Network to Map-making

The inverse problem of map-making can be studied under a
Bayesian framework. For a given data y, the inverse problem of
map-making is essentially to derive the posterior distribution, p
(x|y), for the true sky map x. In the context of mathematics, a
forward mapping from any physical parameters x to the
associated observed variables y, f (x)→ y, is subject to a
potential loss of information, which causes degeneracies since
y no longer captures all the variance of x entirely. To preserve all
information about x, the dedicated cINN encodes all variances
of x to the latent variables z (unobservable) by learning a
mapping from x to z, which is conditioned on y. Due to the
invertible architecture of this network, cINN can provide a
solution for the inverse mapping f−1(z, y)→ x after learning this
forward mapping, which is the key point of the cINNs to solve

the inverse problem. Thus, such inverse mapping provides an
estimate of the posterior distribution p(x|y) by sampling the
latent variables z. In principle, the distribution of z can be chosen
arbitrarily, but for simplicity, we further assume that z follows a
Gaussian distribution, enforced during the training process.
Figure 1 sketches the concept of the cINN methodology.
In our case, this means that the reconstructed sky map can be

automatically retrieved by sampling the Gaussian-distributed z
in the latent space via the inverted network ( f−1),

= ~ =-( ∣ ) ( ) ( ) ( ) ( )p x y f z y z p z G z I, with , 0, , 5z n
1

where In is the n× n unity matrix with choosing
= =( ) ( )n dim z dim x .

2.3. Neural Network Setup

We will describe our new approach for map-making from
TODs in this section. Our method employs a neural network
architecture based on the cINN introduced by Ardizzone et al.
(2018). The INNs can be constructed easily using the
framework for easily invertible architectures (FrEIA) based
on pytorch, which is a set of INNs available at Ardizzone et al.
(2018–2022), without any prior knowledge of normalizing

Figure 1. Schematic overview of the conditioned invertible neural network
(cINN) for solving the inverse problem of map-making. In the training process,
cINN will learn how to transform the pairs [x, y] to latent variables z, by
optimizing the forward mapping f (x, y) = z, where the sky maps x and
observational data y (defined as the condition in cINN) are provided by
simulations with a known forward modeling as defined in Equation (2), and
serve as inputs to the network. The distribution of the latent variables p(z) is
enforced to be Gaussian during the training for simplicity, although p(z) can be
arbitrarily assumed. Due to the invertibility of cINN, the trained network thus
provides a solution for the inverse process f−1 for free. When making a
prediction with a new observation y, cINN then transforms p(z) to the posterior
distribution p(x|y) via the backward mapping f−1(z, y) = x. This means the sky
map will be reconstructed by sampling the latent variables z drawn from p(z).
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flow. To provide context for the cINN, we will first provide a
brief introduction for the INN, upon which the cINN is based.

2.3.1. INN Architecture

The INNs, discussed in (Ardizzone et al. 2018), are a type of
generative model belonging to the normalizing flow family. This
family of models is named normalizing flow because it
commonly maps input data from the original distribution to a
more standard distribution, usually the normal distribution.
Depending on the loss function used, the output distribution
can vary. Normalizing flow models encompass a large group of
models, but INNs specifically employ affine coupling layers such
as RealNVP (Dinh et al. 2016) and GLOW (Kingma &
Dhariwal 2018). Compared with other flow models, INNs have
three main advantages: (1) INNs are bijective; (2) the forward and
backward mappings in INNs are efficient to compute; and (3) the
Jacobian for the forward mapping in INNs is easy to calculate.
The architecture of the INN is based on a series of reversible
blocks, following the design proposed by Dinh et al. (2016).

The input vector, u, is divided into two halves, u1 and u2, and
these blocks subsequently execute two complementary affine
transformations.

= +
= +

( ( )) ( )
( ( )) ( ) ( )

v u s u t u
v u s v t v

exp
exp . 6

1 1 2 2 2 2

2 2 1 1 1 1




Here, the use of the element-wise multiplication operator e and
addition + is employed, where the arbitrarily complex
mappings si and ti of u2 and v1, respectively, are represented
as any neural networks. These mappings are not mandated to
possess inverse functions, as they are evaluated in a solely
forward direction. The inversion of these affine transformations
is easily accomplished by following,

= - -
= - -

( ( )) ( ( ))
( ( )) ( ( )) ( )

u v t v s v
u v t u s u

exp
exp . 7

2 2 1 1 1 1

1 1 2 2 2 2




By introducing the cINN as an extension to their original INN
method (Ardizzone et al. 2019), the affine coupling block
architecture is modified to include additional conditioning
inputs c. As the mappings si and ti are only evaluated in the
forward direction, even when inverting the network, concate-
nating the conditioning inputs with the regular inputs of the
sub-networks can be done without compromising the invert-
ibility of INNs, e.g., replacing s2(u2) with s2(u2, c) in
Equations (6) and (7). These transformations are illustrated in
Figure 2.

2.3.2. cINN Architecture

After the pre-processing stage, the inputs, which are image-
like data, are passed through a convolutional network in order
to extract features and reduce the computational demands on
the INN. The cINN architecture employed for map reconstruc-
tion, as depicted in Figure 3, is similar to that described by
Ardizzone et al. (2019). The details of the specific conditioning
network (corresponding to the five polygonal components) are
provided in Figure 4. In line with Ardizzone et al. (2019), the
conditional coupling blocks used in this study are from Kingma
& Dhariwal (2018), which is called GLOW. Each conditional
coupling block features a permutation layer that rearranges the
channels and facilitates the mixing of information after the
affine transformation layer has been applied. The permutation
order is fixed after initialization and, as a result, the layer is
invertible. Normally, the permutation order remains fixed after
initialization. However, GLOW introduces an invertible 1 × 1
convolution layer as a learning permutation layer.
In an ideal scenario, the map resolution remains constant

throughout the coupling layers. However, as high resolution
maps can be demanding in terms of graphics memory, different
resolution stages are employed. Prior to reducing the resolution
of the map data, a downsampling layer is employed to decrease
its size and increase the number of channels. The downsampling

Figure 2. The INN-part of the cINN is formed by stacking multiple coupling blocks, each of which possesses an invertible forward (left) and backward (right)
transform through a single conditional affine coupling block (CC). The configuration utilizes a single subnetwork to compute the outputs si() and ti() for each i. The left
panel illustrates how the data flows through the block in the forward direction (from x to z), while the right one displays the inverted case following the affine
transformations in Equations (6) and (7).
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technique utilized is the Haar downsampling, similar to that
employed in Ardizzone et al. (2019), which is derived from
wavelet transforms and is also invertible. The type of
downsampling has been found to have a significant impact on
training and loss, as noted by Ardizzone et al. (2019). A splitting
layer is utilized to reduce the dimensionality of the map while
increasing its features. Half of the output from each split is

concatenated to the latent variable z, while the remaining half
undergoes further processing through the next coupling block.
The choice of the distribution for z can vary, with various
distributions being permissible, such as the radial distribution
reported in Denker et al. (2021). Nevertheless, for the purposes
of convenience, the normal distribution is employed as the
default choice for z in this study. In the training process, a batch

Figure 3. Schematic overview of the entire cINN architecture, employed for the map reconstruction. It resembles the multi-scale cINN presented in Ardizzone et al.
(2019). There are 16 CC or FC at each level in my network. The conditional coupling block comprises an affine transform layer (shown in Figure 2) and a permutation
layer. The subnet, designated as s, t, employed in the affine transform layer is a convolutional network suited for mapping data. Meanwhile, the conditional coupling
block with fully connected layer (FC), utilizes an multilayer perceptron neura (MLP) as its subnet, which is suitable for processing vector data. The polygon located in
the lower left corner represents the conditional network, which can take the form of any convolutional neural network and serves as the conditional input for the cINN
at various levels. The orange and blue lines represent invertible and non-invertible components, respectively.

Figure 4. Details of the conditioning network for the five polygonal components illustrated in Figure 3, with using the Convolutional, Fully Connected, LeakyRelu
and Flatten layers. For all convolutional layers, a kernel size of 3 and padding of 1 are used. The stride size is set to 1 for the convolutional layer that preserves the
input size, while a stride size of 2 is used for the convolutional layer that changes the size of the input.
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size of 32 is used and the optimizer utilized is Adam with a
decay rate of 10−5.

2.4. Maximum Likelihood Loss of cINNs

For the training, an appropriate loss function is required and
we refer to Ardizzone et al. (2019) for further details on this
issue.

The goal is to train a network that establishes a mapping
between the distribution in the latent space and the true
posterior space of physics parameters. By specifying a
probability distribution of p(z), the cINN model f assigns a
probability to any input x, depending on the network
parameters θ and condition c, by means of the probability
conservation condition,

q =
¶
¶

⎛
⎝

⎞
⎠

( ∣ ) ( ) ( )p x c p z
z

x
, det , 8

where z= f (x|c, θ), and the Jacobian matrix ∂z/∂x in practice
is evaluated at some training sample xi, as º ¶ ¶( ∣ )J z xdeti xi .
Due to the specific structure of the network, the Jacobian is a
triangular matrix, which greatly simplifies the calculation of the
determinant and ensures its value is non-zero (see details in
Ardizzone et al. 2019). Using the Bayes’ theorem, p(θ|x, c)∝ p
(x|c, θ)p(θ), the optimal network parameters are thus derived by
minimizing the loss, which is averaged over m training data
sets:

å q q= - -
=

[ ( ( ∣ ))] ( ( )) ( )
m

p x c p
1

log , log . 9
i

m

i i
1



Inserting Equation (8) and adopting the standard normal
distribution for variables z for simplicity, i.e.,

= -( ) ( )p z zexp 22 , as well as a flat prior on θ, we obtain
the maximum likelihood loss as

å
q

= -
=

⎡
⎣⎢

⎤
⎦⎥

( ∣ ) ∣ ∣ ( )
m

f x c
J

1 ,

2
log . 10

i

m
i i

i
1

2
2 



We train the cINN models by minimizing such loss, yielding
an estimate of the maximum likelihood network parameters θ*.
Using this estimate and the inverted network f−1, we can then
obtain the posterior distribution p(x|c, θ*) for a given c, by
sampling z from the prescribed normal distribution p(z).

3. Experiments

In this section, the performance of map reconstruction is
assessed by utilizing simulated observations. The cINN model
is trained until convergence of the maximum likelihood loss is
achieved for each training set.

3.1. Simulated Data Sets

Here, we present the experimental setup that is implemented
to assess the performance of the cINN-based map-making

method. The evaluation is conducted using simulated data sets
that are modeled after a FAST-like experimental configuration.
In order to generate TODs by using the forward modeling as

described in Equation (2), we simulated a drift-scan survey
using the FAST array consisting of a 19-beam receiver,
spanning a period of 25 days, from May 4 to May 28. The
survey covers a sky area of over 300 square degrees within a
decl. (DEC) range of 23°–28° and a R.A. (RA) range of 120°–
180°. The sky coverage is present in Figure 5. The simulated
TODs have a frequency resolution of Δν= 1MHz, in the
frequency range of 1100–1120 MHz. With an integration time
of 1 s per beam and a total observation time of 14 400 s per day,
the total number of time samples for all 19 beams amounts to
25× 14400× 20× 19.
When evaluating the end-to-end performance of an experi-

ment, it is important to simulate correlated noise components,
but in this study we focus only on the performance of the cINN,
which depends on the mapping matrix A constructed by the
scanning strategy, the beam response and noise. We thus
assume that the TODs are well-calibrated, meaning that the
low-frequency 1/f noise in the time streams has been
completely filtered out and any other non-ideal instrumental
effects such as RFIs and standing waves are not considered in
our simulations. As a result, the noise in the TODs is comprised
of only white noise. The white noise level in the time streams is
proportional to the system temperature Tsys, and the standard
deviation of the noise can be calculated as follows for a given
bandwidth Δν and integration time τ,

s
nt

=
D

( )
T

. 11N
sys

To train our cINN model, we generate various TOD at
different noise levels by altering the value of Tsys randomly
from 0 to 25 K in 1200 realizations, with reference to the Fast-
like survey. By using the HEALPix pixelization scheme with
Nside= 512 for the simulation, the resulting noise levels
typically yield noise standard deviations ranging from 0 to 9
mK per pixel, with an angular resolution of 6 87. Based on the
FAST configuration, the TOD simulations are performed using
Equatorial coordinates for the maps convolved with a Gaussian
beam, where the full width at half maximum (FWHM) is
slightly frequency dependent, ranging from 4 506 to 4 584 in
the frequency interval of interest.
Moreover, the simulated true sky map x consists of several

Galactic diffuse components such as the synchrotron and free–
free emissions, and bright point sources, which are produced
from the GSM model (de Oliveira-Costa et al. 2008; Zheng
et al. 2017) and the NVSS catalog (Condon et al. 1998),
respectively.
Additionally, to produce sufficient data samples for training

the cINN model, we also employ data augmentation in pre-
processing through straightforward techniques, such as ran-
domly rotating sky patches and utilizing different noise
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realizations. Upon convergence of the maximum likelihood
loss during training, we assess the performance of the trained
cINN model on the training data.

3.2. Data Pre-possessing

In preparation for training the cINN for map reconstruction.
The input to the network is a 2D map of the observed sky area
(x), which is rearranged using a suitable pixelization scheme,
HEALPix. The condition (c) for the cINN is usually
represented by the observed TODs (y), but due to the TODs’
varying length and large data size, preprocessing is needed
before they can be fed into the network. A more convenient
alternative is to use a related quantity with the same length as
the sky map. For testing purposes, a gridding map (let c= ygrid)
is used, obtained by assigning TODs to their closest grid points
using the histogram2D function in numpy, which is
considered as a coarse, but simple and efficient gridding
method. For simplicity, the TODs are gridded onto 2D flat-sky
maps, with each map having an area of 4.3 × 4.3 square
degrees and a resolution of 128 × 128. Subsequently, the
resulting reconstructed maps also possess the same resolution.

We randomly select 240 observations from different position
and system temperature as our data set, each consisting of 20
frequency channels and five different realizations. Thus, there
are totally 240× 20× 5= 24, 000 pairs of samples, each
sample consisting of a pair of the true sky map and a resulting
gridding map from TODs, specifically, represented as

= =([ ])x x c y,i i i i
true grid for the i-th sample. For the purpose of

training the cINN, 20,000 samples are utilized, with 2,000
samples being reserved for validation and an additional 2000
for testing. The training of the cINN model is performed on a
GPU server.

4. Results and Discussion

4.1. Evaluation Metrics

In order to determine the performance of the cINN model in
map reconstruction, it is necessary to compare the recon-
structed map xrec with the actual map xtrue using suitable
metrics. In the following, we shall introduce several such
metrics. One such metric that is commonly used is the mean
square error (MSE), as defined by

å= -
=

( ) ( ) ( )x x
N

x xMSE ,
1

, 12
k

N
k k

true rec
1

true rec
2

which is calculated by averaging over all pixels of the maps
and provides a direct measurement for the mean of the squares
of reconstruction error.
Moreover, the Peak Signal-to-Noise Ratio (PSNR) is

adopted as a means of evaluating the reconstruction quality
(Horé & Ziou 2010). This metric, which is expressed as a log-
scaled MSE, can be represented as follows:

= ⎜ ⎟
⎛
⎝

⎞
⎠

( )
( )

( )x x
L

x x
PSNR , 10 log

MSE ,
. 13true rec 10

2

true rec

Figure 5. Sky coverage of a drift-scan survey in Equatorial coordinates, using the FAST array consisting of a 19-beam receiver over a 25 day period from May 4 to
May 28. Within the decl. (decl.) range of 23° to 28° and a R.A. (R.A.) range of 120°–180°, the survey covers more than 300 square degrees. A zoom-in view of the
observed sky is also shown.
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where L is a scalar chosen to reflect the dynamic range of the
ground truth map. In this study, L is defined as the difference
between the maximum and minimum values in the true map,
= -∣ ∣L x xmax min . Essentially, a higher PSNR value is

indicative of improved reconstruction accuracy.
Additionally, the structural similarity index measure

(SSIM) (Wang et al. 2004) is used to evaluate the overall
structural similarity between the true and reconstructed maps. It
aligns with human visual perception of similarity and the
values are in the range of [0, 1], with higher values indicating
better performance. The value of SSIM is calculated through

m m

m m s s
=

+ S +

+ + + +

( )
( )( )

( )( )
( )

x x
C C

C C

SSIM ,
2 2

, 14
i j ij

i j i j

true rec

1 2

2 2
1

2 2
2

where μ and σ represent the mean and variance of a map,
respectively, with i and j denoting the true and reconstructed
map. Σij refers to the covariance between the two maps. The
positive constants = ( )C k L1 1

2 and = ( )C k L2 2
2 are included to

prevent a null denominator and to stabilize the calculations,
with values of k1= 0.01, k2= 0.03.

4.2. Results of Map Reconstruction

The main advantage of the cINN framework lies in its ability
to efficiently estimate the full posterior of the reconstruction on
a pixel-by-pixel basis, enabling effectively capture the under-
lying probabilistic relationships between the observed data and
the reconstructed map. The large number of reconstructed maps
helps to account for the inherent uncertainty and variability in
the data, yielding a more robust and accurate representation of
the posterior distribution.

Based on our tests, we have found that generating 200 maps
via sampling z only takes less than 1 second using a typical
graphics card. This is a remarkable speed, considering that it
involves the estimation of a total of 16, 384 posteriors for each
map, given the map resolution of 128× 128.

In Figure 6, the changes in the loss function over training
steps are presented. It is well-known that using a low learning
rate results in a gradual decrease in loss due to slow parameter
updates, while a high learning rate may hinder the search for a
solution. Conversely, a high learning rate can prevent finding a
solution. Consequently, a learning rate of 0.001 is selected for
map reconstruction in this study.

We have used the initialization technique mentioned in
Ardizzone et al. (2019), where Xavier initialization (Glorot &
Bengio 2010) is used and the parameter values in the last
convolutional layer of sub-networks s and t are set to zero.
However, there is still a certain probability that the training is
unstable. In our experiment, we encountered a situation where
the loss quickly diverged at the beginning. We selected
different random seeds and recorded the random seed that
would not diverge at the beginning as the initial value. In this

way, the loss will have the same downward trend as shown in
Figure 6. As observed, the training loss (orange curve) and
validation loss (blue curve) are both minimized when using this
learning rate. However, after step 15,000, the validation loss
began to increase, even though the training loss continued to
decrease. Continuing to train the cINN model, even if the
training loss continues to decrease, may result in a significant
rise in validation loss. Therefore, we stop training at this step,
where the validation loss reaches its minimum.
To further investigate the effects of underfitting and

overfitting on the map reconstruction, we have chosen two
checkpoints above and two below the currently selected one,
say steps 4000 and 20,000. Our findings show that for the
underfitting case, MSE is about (3.9± 19.3)× 10−4 K2, SSIM
is 0.92± 0.004, and PSNR is 22.5± 2.4 for the test samples.
For the overfitting case, MSE is (4.2± 4.4)× 10−4 K2, SSIM is
0.96± 0.004, and PSNR is 24.4± 6.2. Both overfitting and
underfitting result in significantly high MSE values when
compared with the MSE values listed in Table 1. In particular,
the underfitting also dramatically increases the statistical
uncertainty in the MSE values. Furthermore, neither case
results in a substantial improvement in the SSIM and PSNR
values. Consequently, the MSE metric seems to be more
sensitive to the quality of the reconstruction, and the optimal

Figure 6. Loss function of map reconstruction as a function of training steps.
We stop training at step 15,000, where the validation loss reaches its minimum.

Table 1
Map Reconstruction Performance for the cINN Models we have Trained

Performance MSE (×10−4 K2) SSIM PSNR

2.29 ± 2.14 0.968 ± 0.002 26.13 ± 5.22

Note. The average values of MSE, SSIM and PSNR and associated 1σ
statistical errors are shown, respectively, calculated across all frequencies and
the entire test samples.
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results are achieved by the currently selected point. Addition-
ally, we have to mention that the checkpoints located near the
bottom of the loss require careful selection and evaluation,
based on the trends observed in the training and validation loss.

As shown in Figure 7, each row of panels from left to right
represents the original, predicted, standard-deviation, and
residual maps, respectively. Here, for a given observation
(ygrid), the trained cINN model obtains the posterior distribution
p(x|y) for each pixel by generating 200 reconstructed maps
through drawing latent variables z from a prescribed normal
distribution. Thus, the predicted map and the standard-
deviation map are estimated from the mean and associated
1σ error of posteriors, indicating the average and the
uncertainty in the reconstruction. Moreover, the residual maps
demonstrate the deviation level between the mean estimate and
the truth in the reconstruction process. As seen, the cINN
reconstruction appears to be of good quality, as evidenced by
the standard deviation and residuals, which are typically around
0.01 K, the same level as about 1% of the true map.

The values of the three metrics, MSR, SSIM and PSNR, for
20 frequency bins are presented in Figure 8, where the mean

and 2σ uncertainty are estimated from the entire set of test
samples. We observe the values of SSIM consistently close to
0.968 across all frequencies, with little variations of approxi-
mately 0.001 (2σ uncertainty). This suggests that: (1) the
structural similarity remains relatively stable and does not
significantly change as the frequency varies; (2) the recon-
structed maps closely resemble the true ones in terms of
structural similarity, and the quality of the reconstructed maps
is high. Furthermore, the PSNR values indicate that the
reconstructed maps exhibit a relatively low MSE, with a range
of 17–35 dB. In comparison with the typical temperature of 1 K
for true maps, the MSE values range from approximately
1× 10−4

–7× 10−4 K2 across all frequencies, which also
demonstrates a high quality in map reconstruction.
The results of these metrics averaged over all frequencies

and test samples, reported in Table 1. Specifically, the mean
MSE value of 2.29× 10−4 K2 indicates that the reconstructed
maps have a low level of deviation from the truth in terms of
pixel-level accuracy. The mean SSIM value of 0.968 again
indicates a high level of structural similarity. Finally, the mean
PSNR value of 26.13 dB indicates that the reconstructed maps

Figure 7. Comparison of the predicted map from the trained cINN model with the original ground-truth map, in units of K, where three examples of randomly selected
observation samples ygrid (from top to bottom) are used as conditioning c inputs for cINN. To demonstrate the reconstruction quality, from left to right, we show the
true and predicted maps, the standard-deviation map which represents the uncertainty of the predicted map, and the residual map which shows the deviation between
the true map and the mean of predicted maps.
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do not deviate significantly from the true maps in terms of
image details. Overall, these metrics suggest that the
reconstructed maps highly agree with the true maps.

4.3. Posterior Distributions for the Map Reconstruction

In order to determine the accuracy of the predicted posterior
distributions for the map reconstruction at each pixel, we
calculate the median calibration error ecal

med given in (Ksoll et al.
2020) and (Ardizzone et al. 2019). The correct shape of the
posterior distribution is reflected by the calibration error, which
makes it a significant evaluation metric for the network. For a
given confidence interval q, the calibration error is computed
over a set of N observations as

= - ( )e q q. 15cal in

Here qin=Nin/N, the fraction of observations that fall within
the q-confidence interval of the corresponding predicted
posterior distribution by cINN. A negative value of ecal
indicates that the model is overconfident, meaning that it
predicts posterior distributions that are too narrow. Conversely,
a positive value of ecal suggests that the model is under-
confident, implying that predicts posterior distributions that are
too broad. We compute ecal

med as the median of the absolute
values of ecal across the confidence range of 0–1, in steps of
0.01. In addition, the other quantity for evaluation is a median
uncertainty interval at a 68% confidence level, u68, corresp-
onding to the ±1σ width of the posterior distribution for the
given confidence interval, where we determine the median
value over the entire test set.

Using the metrics of calibration error and the median
uncertainty interval at 68% confidence, the results are presented
in Table 2. One can find that the median calibration error falls
within the range of about 0%–6%, indicating that the model has
relatively high accuracy. In terms of u68, our cINN model
yields a typical error value of 0.03. Thus, this value is
comparable to MSE (∼0.01 K), implying a relatively
considerable degree of uncertainty in the parameter being

estimated. Despite this broadness, the typical error value is still
considered remarkably low and acceptable. Given the large
number of parameters involved, namely 128× 128 for each
frequency map, the achievement of this level of performance is
particularly remarkable. Thus, we conclude that the perfor-
mance of our cINN model is sufficient and meets the
requirements for our intend application.
Figure 9 displays the reconstruction results for randomly

selected rows of reconstructed maps. The mean values (black
dotted) and 95% confidence intervals (gray shaded) for
individual pixels are obtained by applying the trained cINN,
which transforms p(z) to the posterior distribution p(x|y)
through the backward mapping process and involves sampling
200 realizations of the latent variables z from the standard
normal distribution. As seen, the results show that the predicted
mean values are all within the 95% confidence level when

Figure 8. Reconstruction accuracy for different frequency bins measured using three different ways. The mean (solid black) and associated 2σ uncertainty (gray
shaded) are estimated from the entire set of test samples. SSIM (left) measures the overall structural difference between the two maps, better capturing the human
perceptual understanding of the difference between two maps. PSNR (middle) and MSE (right) evaluate the reconstruction quality using the signal-to-noise ratio and
the absolute difference in image pixels, respectively. Note that for SSIM and PSNR, larger values correspond to a better image reconstruction, while for MSE, the
opposite is true.

Table 2
Performance of Our Trained cINN Model on Reconstruction at Nine Randomly

Selected Pixels

Pixel Index ecal
med u68

(32, 32) 0.057 0.029

(64, 32) 0.041 0.030

(96, 32) 0.016 0.032

(32, 64) 0.046 0.029

(64, 64) 0.043 0.030

(96, 64) 0.012 0.033

(32, 96) 0.054 0.029

(64, 96) 0.025 0.031

(96, 96) 0.001 0.033

Note. The results are presented in terms of the calibration error ecal and median
uncertainty at 68% confidence level u68 (i.e., the width of a 68% confidence
interval).
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compared with the true values (red solid) across all 128 pixels.
Furthermore, the 1σ of these predictions is approximately 0.01
K, indicating a low variance in the reconstructed maps. The
deviations between the reconstructed maps and the true values
are also typically of 0.02 K or less, which suggests a good
agreement between the inputs and the reconstructed maps.

4.4. Performance Against Noise Level

To thoroughly evaluate the performance of cINN, an
investigation is further conducted to determine its ability to

produce high-quality reconstructions in the presence of
increasing levels of noise present in the input TODs. To do
so, in the test set, we simulate new TODs with a maximum Tsys
that has been increased from 0 to 160 K. It is important to note
that, we did not expand the training samples, instead relying
solely on the pre-existing network that was trained with a
maximum temperature of Tsys= 25 K. The quality of the
reconstructions is evaluated using the PSNR, MSE, and SSIM
metrics, as illustrated in Figure 10.
As the noise level increases, the values of SSIM show a

slight decrease from 0.89 to 0.85 for Tsys ranging from 0–160

Figure 9. Comparison of the reconstructed maps for randomly selected rows and the true ones. Mean values (black dotted) and 95% confidence intervals (gray shaded)
for individual pixels are obtained using a trained cINN based on 200 realizations of the latent variables z. The predicted mean values are within the 95% C.L. of the
true values (red solid) for all 128 pixels of each map.
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K, whereas the MSE and PSNR remain roughly unchanged
with increasing noise levels. These observations suggest that
the performance of cINN is not significantly affected by white
noise levels and it has learned the statistical characteristics of
the noise during training, demonstrating a strong generalization
capability. Our findings support that our cINN model is robust
against noise.

4.5. Time Consumption

We conducted our model training on an NVIDIA Tesla P40
GPU. We have found that the training time of our cINN model
is primarily dependent on the number of iterations rather than
the number of epochs. When training our network for 104

iterations with a batch size of 32, the training process took
approximately 1.2 hr, and the GPU memory usage was
2595MB. For each training run, we executed about 104

iterations until the validation loss increased sharply.

5. Conclusion

In radio observations, the map-making problem–how to
reconstruct a plausible sky map from TODs and estimate the
signal uncertainty on each pixel–has always been intractable
and non-trivial. Unlike the traditional approaches, we propose
to tackle such problem by means of the cINN. One of the main
advantages of our method is that it avoids solving for the ill-
posed inverse problem. Moreover, once the network is trained,
the reconstruction of the sky map can be performed very fast.

The use of forward modeling allows for the effortless
mapping of the true sky map to TODs, which can incorporate
all observational effects, systematics, and data processing.
These simulated true sky maps and their associated TODs are
then used as a training set and fed into a neural network to train
a cINN. Our cINN model transforms true maps into a latent
space and learns the inverse mapping, both of which are
conditioned on observations. This joint modeling of the
distribution of all pixels provides a comprehensive under-
standing of the relationship between the true maps and the
observations. The trained cINN can then not only reconstruct

the true sky map based on a given TOD, but also provide a
pixel-by-pixel estimate of the uncertainty.
In order to show the performance of the network, we have

performed a simulation of drift-scan observations based on the
FAST configuration, which includes 19 beams and covers a
frequency range of 1100–1120 MHz. The goal of this study is
to initially validate our approach, so for simplicity, we only
include white noise and a Gaussian beam response in the
simulated TODs, while ignoring other non-ideal effects such as
1/f noise and RFIs.
Our method is validated by the test results, which

demonstrate high reconstruction accuracy and good agreement
between the reconstructed sky maps and the true maps. The test
data set achieves an MSE of (2.29± 2.14)× 10−4 K2, an SSIM
of 0.968± 0.002, and a PSNR of 26.13± 5.22 at the 1σ level.
Furthermore, we observe a slight decrease in the SSIM values
as the noise level for Tsys increases from 0 to 160 K, ranging
from 0.89 to 0.85. However, the MSE and PSNR values remain
relatively stable with increasing noise levels.
We have evaluated how underfitting and overfitting affect

map reconstruction by comparing checkpoint results above and
below our chosen optimal point. Our findings indicate that both
cases result in higher MSE values compared with the current
point, with underfitting leading to a large uncertainty. There-
fore, our current result is optimal. In addition, SSIM and PSNR
values do not show any significant deviations from the optimal
one, and then the MSE appears to be the most sensitive metric
in the map reconstruction.
As future work, we aim to validate the cINN approach by

incorporating non-ideal observational effects that more accu-
rately reflect real-world scenarios. Furthermore, this framework
has the potential to be applied to radio interferometric
observations, where imaging can be particularly challenging
due to sparse uv coverage.
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