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Abstract

To address the problem of the low accuracy of transverse velocity field measurements for small targets in high-
resolution solar images, we proposed a novel velocity field measurement method for high-resolution solar images
based on PWCNet. This method transforms the transverse velocity field measurements into an optical flow field
prediction problem. We evaluated the performance of the proposed method using the Hα and TiO data sets
obtained from New Vacuum Solar Telescope observations. The experimental results show that our method
effectively predicts the optical flow of small targets in images compared with several typical machine- and deep-
learning methods. On the Hα data set, the proposed method improves the image structure similarity from 0.9182 to
0.9587 and reduces the mean of residuals from 24.9931 to 15.2818; on the TiO data set, the proposed method
improves the image structure similarity from 0.9289 to 0.9628 and reduces the mean of residuals from 25.9908 to
17.0194. The optical flow predicted using the proposed method can provide accurate data for the atmospheric
motion information of solar images. The code implementing the proposed method is available on https://github.
com/lygmsy123/transverse-velocity-field-measurement.
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1. Introduction

The advent of high-resolution solar images captured by
multi-band telescopes has revolutionized the study of the solar
atmosphere, affording researchers an unprecedented level of
detail and insight into the physical properties of the solar
magnetic field. This wealth of data is the result of advanced
imaging processing technology and equipment, which has
enabled the study of the solar atmosphere to enter a new era of
high temporal and spatial resolution. The measurement of the
transverse velocity field of these high-resolution images has
become a widely utilized method for analyzing the dynamics of
the photosphere and chromosphere. For example, Schlichen-
maier & Schmidt (2000) combined transverse and line-of-sight
velocities to reconstruct the magnitude and orientation of the
penumbral flow field in the deep photosphere, which is a
significant step toward an understanding of the mass balance of
the Evershed flow. Ruan et al. (2014) modeled the rotational
motion of sunspots and the helical motion of solar filaments by
transverse velocities, demonstrating that the rotation of the
sunspots plays an important role in twisting, energizing and
destabilizing the coronal filament-flux rope system during the
solar eruption event. Yan et al. (2015) used the transverse
velocity field to analyze the horizontal motion of the solar
surface and found that the shearing motion of the opposite

magnetic polarities and the rotation of the sunspots play an
important role in the formation of filaments in the active region.
High spatial and temporal resolution images place higher
demands on the accuracy and efficiency of image transverse
velocity field measurements.
The methods used to measure the transverse velocity field

can be divided into traditional methods and machine-learning-
based methods. Traditional methods have undergone signifi-
cant development in the field of solar image processing.
Traditional methods, such as local correlation tracking (LCT)
(November & Simon 1988) and Fourier LCT (Fisher &
Welsch 2008), use correlation functions to determine the
maximum correlation position in the local region. Differential
affine velocity estimation (Schuck 2005) is another method that
uses an equation that can be directly solved by standard or total
least-squares equations to calculate the velocity field. While
these methods can measure large displacements and differences
in images, they are not well suited for high-resolution solar
images, which are characterized by strong self-similarity and
many small motions, leading to inaccurate measurements of the
velocity field.
Some traditional methods transform the computation of the

transverse velocity fields to that of an optical flow field
calculation. Optical flow refers to the instantaneous velocity of
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pixel motion in the imaging plane of a time-series image and is
therefore considered a two-dimensional immediate velocity
field composed of all pixel points in the image. Traditional
optical flow methods follow the principles of the pioneering
work of Horn & Schunck (1981) and calculated the optical flow
based on various assumptions. Some studies have used a
coarse-to-fine framework that relies on energy minimization
methods to estimate the optical flow (Brox et al. 2004; Brox &
Malik 2010). Some studies have introduced descriptor-match-
ing techniques (Steinbrücker et al. 2009; Liu et al. 2010), to
obtain correspondence by computing the correlation between
descriptors. However, the coarse-to-fine framework leads to the
loss of small targets and prevents the accurate prediction of
optical flow. Moreover, descriptor-matching methods fail to
deal with the mismatching problem when facing dense optical
flow prediction, resulting in accuracy loss.

The Demons algorithm is used in this work to create optical
flow data sets (see Section 2). The major principles of the
algorithm are provided below for the sake of completeness.
Demons (Thirion 1998) treats the optical flow field as forces
that drive pixel movements. It uses the pixel differences I1− I2
between two consecutive frames as the external forces and the
gradient information of the image ∇I as the internal forces. The
dense optical flow is generated by iteratively calculating the
displacement of each pixel as follows:
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where α is the normalization factor, which controls the
magnitude of the driving force. However, the pixels in I1 can
move freely, which may cause pixels with the same intensity
value to be mapped to the same pixel point in I2, resulting in
incorrect matching. To address this issue, Liu et al. (2018)
utilized gradient mutual information to further improve the
Demons method enabling image pixels to move in the correct
direction. The improved Demons algorithm is formulated as
follows:
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where [ ( )]vImax nMI represents the gradient mutual information
of the two images, β is a positive constant indicating the weight
of this item, and Gσ denotes Gaussian operation. The formula
indicates the processing steps of the iterative calculation, and vn
is the optical flow field calculated by the nth iteration.
However, the accuracy of the algorithm can still be improved
when dealing with the non-rigid deformation in Hα images.

With the remarkable success of the neural network AlexNet
(Krizhevsky et al. 2017) in image-classification tasks, deep
learning has been studied and applied in many fields, thereby
demonstrating its powerful performance. Some approaches use
fully convolutional neural networks to predict optical flow.
Dosovitskiy et al. (2015) proposed FlowNet, which pioneered
the use of a U-Net encoder–decoder structure to predict the
optical flow of two images. Ranjan & Black (2017) proposed
SpyNet, which uses an image warping technique at each layer
of the network by introducing an image pyramid structure to
reduce the difference between two images frames to construct a
lightweight optical flow-prediction network. However, Flow-
Net and SpyNet still face challenges in accurately predicting
optical flow for small targets.
Several studies have contributed to the improvement of

SpyNet prediction accuracy for optical flows. Sun et al. (2018)
proposed PWCNet, which utilized local matching costs, feature
warping, and cascade processing to obtain the residual flow.
Hui et al. (2018) proposed LiteFlowNet, which used feature
warping and introduced flow field regularization into the
network. However, PWCNet and LiteFlowNet primarily deal
with large-displacement optical flow-prediction problems, and
the optical flow field predicted at the edges of moving objects is
too smooth to predict the optical flow of small targets, resulting
in a loss of accuracy.
Teed & Deng (2020) proposed the Recurrent All-Pairs Field

Transforms (RAFT), which introduces the idea of recurrent
neural network on convolutional neural networks (CNNs).
RAFT iteratively refines the optical flow using a gate recurrent
unit. However, the cost volume can only be constructed at a
low resolution, causing a loss of feature information for tiny
structures. The process of upsampling from low-resolution
optical flow to full resolution also increases errors and
decreases the accuracy of small target optical flow predictions.
Typical transverse-motion velocity values of the solar

photosphere and chromosphere range from a few kilometers
to tens of kilometers per second. This implies that we must
accurately measure the displacement between two frames at a
subpixel level in a sequence of high-resolution solar images.
The high-resolution solar images exhibit strong self-similarity
and contain numerous tiny structures, which existing deep
learning-based optical flow methods struggle to predict
accurately. In response to this, we propose a novel optical
flow prediction method based on PWCNet to address the issue
of low accuracy for small target predictions in high-resolution
solar images.
The remainder of this paper is organized as follows.

Section 2 describes the data used in this study. In Section 3,
we describe the proposed network. The experimental environ-
ment, results, and analysis of the proposed method are
presented in Section 4. Finally, the conclusions are presented in
Section 5.
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2. Data

The New Vacuum Solar Telescope (NVST) is the largest
solar telescope in China and one of the three largest high-
resolution imaging solar telescopes worldwide. Their excellent
observational performance and high-quality images have been
confirmed in many respects. The data used in this study were
obtained from the NVST at the Fuxian Solar Observatory of the
Yunnan Astronomical Observatory, CAS. Two representative
data sets of NVST observations were selected for this study,
including photospheric and chromospheric images. The
corresponding velocity field was obtained by calculating the
optical flow field between the two image frames.

Data set 1 contains Level 1+ reconstructed images of the
chromospheric observed by NVST in the Hα band from
07:26:20 on 2014 October 3 (UT) to 09:06:04 on 2014 October
3 (UT), with a time interval of 12 s for a total of 492 images.
The field of view was 550× 600 pixels, with an image
resolution of 0 13. The transverse velocity of 5 km s−1 on the
chromosphere brings about a displacement of 0.6 pixels, while
there is a filament eruption in this image sequence, and the
overall optical flow field includes subpixel and superpixel
displacements.

Data set 2 consisted of Level 1+ reconstructed images of the
photosphere observed by NVST in the TiO band from 01:28:04
(UT) to 04:32:07 (UT) on 2022 May 29, with a time interval of
36 s and a total of 301 images. The field of view was 404× 468
pixels, with an image resolution of 0 052. A typical transverse
velocity of 1 km s−1 on the photosphere would bring about a
displacement of 0.9 pixels, and the overall optical flow field
includes subpixel and superpixel displacements.

Figure 1 illustrates a sample of the solar images used in this
study. Figure 1(a) shows a local region of the solar Hα image
with a strong self-similarity in the feature structure covering the
filaments and fibers. Figure 1(b) shows the local active region

of the solar TiO image, and the characteristic structure covers
the umbra and penumbra of the sunspots and granules.
In this study, the optical flow field corresponding to each

group of images was calculated using the Demons method (Liu
et al. 2018), and predicted images were generated according to
the calculated optical flow field. The original image sequence,
corresponding predicted image sequence, and predicted optical
flow field were used as the training and testing data sets to form
a proxy data set that guided the training of the network. To
guarantee that the training and testing data sets have diverse
image distributions, Data set 1 was split into a 9:1 ratio for
training and testing based on time order, with 442 image pairs
for training and 49 image pairs for testing. We used 300 pairs
of images from Data set 2 as the test set to measure the
generalization performance of our method. It is emphasized
that to measure the proposed method’s generalization perfor-
mance, the optical flow field of Data set 2 is calculated without
retraining the model but directly using the trained model of
Data set 1.

3. Method

Sun et al. (2018) proposed PWCNet, which has a pyramid
structure and uses an encoder-decoder architecture, local
matching cost, and feature warping techniques to estimate
optical flow. The overall network architecture of PWCNet is
illustrated in Figure 2. The input to the model is two
consecutive frames, I1 and I2, of size H×W× 1, where H
and W are the height and width of the image, respectively; and
the output is a predicted optical flow of size h×w× 2, where
h=H/4 and w=W/4. In the encoding stage, PWCNet
performs plain and stride convolutions to extract a six-layer
feature pyramid with different resolutions. The decoder
upsamples the predicted optical flow from the previous layer,
warps the feature pyramid, and estimates the residual optical

Figure 1. Second frame of Data set 1 (a) and the second frame of Data set 2 (b).
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Figure 2. Structure diagram of PWCNet.

Figure 3. Structure diagram of improved network.
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flow by comparing the warped feature pyramid from the first
frame with which obtained from the second frame. Although
PWC-Net outperforms the previous optical flow prediction
model FlowNet, it still lacks the ability to capture low-level
details such as edges and structural information, causing coarse
and inaccurate predictions.

In this study, PWCNet was modified to solve the optical flow
field prediction problem for small targets. The structure of the
improved PWCNet is illustrated in Figure 3. In the feature
encoder module, we modified the number of feature pyramid
layers of the original network to four,

Î Î{ } { }F i n, 1, 2, 3, 4 , 1, 2n
i , where n represents the frame

number and i denotes the pyramid layer number, corresponding
to full, 1/2, 1/4, and 1/8 resolutions. The use of full-resolution
features enable the network to capture small-target information
and improve the capability of the network in small-target
optical flow predictions. Subsequently, we replaced the plain
convolution block with a residual convolution block, which
reduced the model parameters, decreased the optimization
difficulty, and made the model more lightweight. To learn
small-target information, we constructed context feature
pyramid C i

2 based on the feature encoder to enhance the ability
of the network to predict small-target optical flow. In the
decoder module, we concatenated the matching information
with contextual features and subsequently calculated the
convolution. Multi-output module with a dilation convolution
structure was connected and followed the context network to
enhance the stability of the network. The model eventually
produced four scales of predicted flows with different assigned
weights. In contrast to PWCNet, we assigned large weights to
high-resolution optical flows and small weights to low-
resolution optical flows. This weight-assignment scheme
enables the network to learn coarse-scale optical flows early
in training without affecting the subsequent learning of finer
optical flows.

3.1. Improvement of Feature Encoder

The feature encoder of PWCNet network used six convolu-
tion blocks with a stride of two to obtain a feature pyramid with
six layers of different resolutions. However, the direct
application of stride convolution to the input image for
downsampling causes the network to lose a large number of
low-level features, such as the structural information of edges.
We reduced the six layers of stride convolution to three layers
and added plain convolution before the first stride convolution
to obtain full-resolution features. The structure of the feature-
extraction block for each feature encoder layer is illustrated in
Figure 4. Each feature-extraction block contains three con-
volutional layers, except for the first layer of the feature
pyramid, where one layer has a kernel size of 2× 2 and a stride
of two to reduce the feature map size and transform the feature
dimension, whereas the other two layers are residual blocks

with a stride of one to obtain the residual information. Finally,
the feature encoder generates a four-layer feature pyramid
containing full, 1/2, 1/4, and 1/8 resolutions. High-resolution
features acquired by the feature encoder capture a large amount
of critical low-level feature information. By using this low-
level information, the network can process a large amount of
small-target motion information in high-resolution solar images
and accurately predict small-displacement optical flow, which
significantly improves the overall optical flow-prediction
accuracy. Performing a convolution calculation at high
resolution incurs a tremendous computational cost, and for
the balance of computational cost and accuracy, fewer
convolution blocks are used at the high-resolution layer.
The feature encoder of PWCNet was a stack of plain

convolutional blocks. When the network becomes deeper, the
gradients may disappear or explode, making parameter
optimization difficult. For this problem, we used a residual
convolution block to replace the plain convolution block and
obtained accuracy gains from the increase in depth (He et al.
2016). The structure of residual block is illustrated in Figure 5.
In this structure, a 3× 3 depthwise convolution layer is
designed as the first layer of the residual block, and
subsequently use two consecutive 1× 1 plain convolution
layers to fuse the channel features. This design further reduces
the computational cost and number of network parameters,

Figure 4. Structure diagram of feature encoder.
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simplifies the optimization, and enhances network performance
(Liu et al. 2022).

Furthermore, an context encoder was used to get the context
feature of I2 (Teed & Deng 2020), which allowed the network
to obtain more small-target features, thus improving the
accuracy of the optical flow prediction. The feature and context
encoders together form the feature-extraction part of the
framework.

3.2. Improvement of Optical Flow Estimator

The feed-forward connections in the optical flow estimation
module and the cascaded dilated convolutions in the context
module of PWCNet reduced the ability of the model to predict
the optical flow. Therefore, it is important to consider

enhancing the capability of the optical flow estimation module
of the network when improving the module.
To improve the expressive power of the network, there are

two common approaches: increasing the depth or width of the
network. The structure of the multi-output module is shown in
Figure 6. Multi-output module with different convolution
kernels is introduced in the optical flow estimation module to
obtain a larger receptive field and enhance the stability of the
network (Szegedy et al. 2015). In the implementation, we
applied a multi-output module with a convolutional kernel of
3× 3, whose structure is illustrated in Figure 6. One branch
utilizes a plain convolutional layer, and the other applies a
dilated convolution with a dilation constant of two to enlarge
the receptive field and enhance the expressive power of the
network (Hussain et al. 2022). A 1× 1 convolution was added
following a 3× 3 convolution to fuse the channel information
and reduce the number of channels. In each branch, we output
the corresponding residual optical flow. We assigned a large
weight factor (0.8) to the optical flow of the plain convolution
layer and a small weight factor (0.2) to that of the dilated
convolution layer, according to the distance between the
sampling point and the sampling location. Finally, we obtained
this layer’s residual optical flow ( )f i

res by summing the outputs
of multiple branches.

3.3. Improvement of Loss Function

PWCNet uses the endpoint error (EPE) as the loss function
to guide the training of the network, where the EPE is the

Figure 5. Structure diagram of residual block.

Figure 6. Structure diagram of multi-output module.
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difference between the predicted optical flow f i
pre and the

optical flow label Î ´ ´f i H W
gt

2 . The solar Hα and TiO
images exhibit strong self-similarity across structures, and the
pixel motions remain relatively consistent within structures and
vary widely between them. These characteristics made it
difficult to rely solely on the EPE to guide network training,
which could result in the network’s inability to learn the
association of neighboring pixels and increase the optimization
difficulty.

Because the data sets used in our study are proxy data sets
with some errors exist, additional loss functions are added to
improve the model. In this study, we used three types of losses:
EPE loss epe , data item loss data , and smoothness loss

smooth . The loss function i for layer i of the pyramid is
formulated as follows:

w w w= + + ( ), 3i
i i i

epe epe data data smooth smooth   

where epe , data and smooth are defined and explained in
Equations (4), (5) and (8), respectively, and ω denotes the
weight factor for each loss. In implementation, we set ωepe to 1,
ωdata to 0.05, and ωsmooth to 0.005. For the supervised network,

epe avoids the manual setting of learning content and makes
the model learn the essential correspondence of pixels;
therefore, ωepe should be set to a larger value. data enables
the predicted image Î1 and target image I2 to remain close in
appearance, and smooth restricts the adjacent pixel motion to
remain consistent. However, because of the existence of
intensity variations in the data and to prevent over-smoothing
of the optical flow at the edges of the structure, we assigned a
small value to ωdata and ωsmooth to reduce adverse effects.
Adding data and smooth to the loss function as supplementary
constraints improves the model’s ability to predict optical flow
in intensity-varying and texture-free regions, while also
reducing the optimization difficulty and the adverse effects of
erroneous optical flow.

epe was formulated as follows:

å= - ( ) 
HW

f f
1

, 4epe gt pre 1

where å
HW

1 refers to the average of all elements in the matrix

and · 1 denotes the L1 norm. Following the brightness
constancy and gradient invariance assumptions (Brox &
Malik 2010) data contains both photometric loss photo and
gradient loss gradient

w w= + ( ). 5data photo photo gradient gradient  

In the implementation, we set ωphoto and ωgradient to 1. photo
guides optical flow prediction and aligns blocks of images with
similar appearances by penalizing photometric dissimilarity,
which was defined as:

åy j= -( ( )) ( )
HW

I I f
1

, , 6photo 2 1 pre

where y = +( ) (∣ ∣ )x x q is a robust loss with ò= 0.01 and
q = 0.4 in the implementation (see Liu et al. 2019) and
j ( )I f,1 pre denotes that I1 is warped toward I2 using fpre. The
matching relationship cannot be accurately calculated by
relying on the photometric constancy assumption alone because
of intensity variations; therefore, data is supplemented by

gradient , which is defined as:

åy j= ¶ - ¶( ( )) ( )
HW

I I f
1

, , 7gradient 2 1 pre

where ∂I denotes the gradient matrix of I. For solar Hα or TiO
images captured by NVST, gradient alleviates the problem that
intensity values are not always reliable, making the method
robust against intensity variations (Brox et al. 2004).
The above loss function does not take into account the pixel-

to-pixel interactions. Therefore, smooth is introduced to
constrain the smoothness of the optical flow field, which is
formulated as follows:

å å= ¶ + ¶- ¶ - ¶( )
( )

∣ ∣ ∣ ∣   
HW

f e f e
1

.

8

I I
smooth pre 1

2
pre 12

2
2

smooth constrains the interactions between neighboring pixels,
which enhances the similarity of optical flow in neighboring
regions, making the optical flow field more realistic and
producing more accurate optical flow in regions without
texture.
RAFT has revealed that by increasing the output of the

intermediate optical flow and incorporating these outputs into
the calculation of loss, the difficulty of optimizing a single
high-resolution output can be reduced and the accuracy can be
improved (Teed & Deng 2020). PWCNet uses multi-scale
outputs and assigns different weights to the outputs at different
scales when calculating the total loss. However, it uses small
weight factors for high-resolution prediction losses and larger
weight factors for low-resolution prediction losses. Brox &
Malik (2010) demonstrated that assigning decreasing weights
to secondary factors allows training to converge quickly in the
early stages without affecting the refinement in the later stages.
This idea can be applied to the training loss of multi-scale
output. We assigned small weight factors to the coarse-scale
prediction losses and large weight factors to the fine-scale
prediction losses, enabling the network to rapidly converge at
the coarse scale and provide good initialization for the
subsequent refinement of the optical flow. The above training
scheme accelerates the convergence speed of the network,
enhances the prediction ability of the network for fine-scale
optical flow, and achieves accurate prediction of small-target
optical flow.
For the entire prediction loss sequence { }, , ,1 2 3 4    , we

assign decreasing weights, and the total training loss  is
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formulated as follows:

å g=
=

- ( ), 9
i

i
i

1

4
1 

where γ i−1 is the weight factor. In the experiment, we set γ
to 0.5,

4. Experiments and Analysis

4.1. Experimental Environment

The hardware used in the experiment was an AMD EPYC
7543 32-Core Processor CPU @ 3.7 GHz with a NVIDIA RTX
A5000 graphics card, 30 GB of memory, Ubuntu20.04LTS
operating system, and PyCharm. Python was used as the
programming language, and the software environment was
based on CUDA11.0, Cudnn11.0, and Pytorch1.7.1 deep-
learning frameworks.

4.2. Evaluation Metrics

In this study, we evaluated the performance of the model by
using the average-endpoint error (AEPE) on the proxy data set,
which was generated from Data set 1 by applying Demons. The
AEPE measures the consistency of the model-estimated optical
flow with the proxy optical flow, with smaller values indicating
better performance

å å= ´ -
=

( ) 
N HW

f fAEPE
1 1

, 10
i

N

1
pre gt 2

where N denotes the number of input images.
For Data sets 1 and 2, since the true optical flow is not

available, we first used the predicted optical flow between two
consecutive frames to generate the predicted image Î1 through
the function j ( )I f,1 pre . Then, we employed the evaluation
metrics of structural similarity (SSIM, Wang et al. 2004),
correlation coefficient (CC), residual variance (RV), and
residual mean (RM) to assess the alignment quality of Î1 and
evaluate the accuracy of the predicted optical flow. The formula
for the CC calculation is as follows:

= å - -

å - å -

( )( )
( ) ( )

( )I I I I

I I I I
CC , 111 1 2 2

1 1
2

2 2
2

where I is the mean value of I.
The larger the values of SSIM and CC, the more similar the

two images are in structure and the more accurate the optical
flow. On the other hand, the smaller the values of RV and RM,
the closer the appearance of the two images, and the more
robust the model performance.

4.3. Experimental Results and Analysis

During the training process, the AdamW optimizer (Losh-
chilov & Hutter 2017) was utilized and the gradients were

clipped within the range -[ ]1, 1 . The maximum learning rate
was set to 0.001 and the learning rate weight decay was set to
0.0001. The batch size was set to 2 and the learning rate
adjustment scheme followed OneCycleLR (Smith &
Topin 2019). Data augmentation techniques followed that of
RAFT, including random flip, rotation, photometric augmenta-
tion, stretching, and other data augmentation methods. These
augmentation techniques were used to improve the model’s
generalization performance and increase its robustness to
illumination changes.
In this study, we performed a set of comparison and ablation

experiments to demonstrate that the proposed method effec-
tively solves the optical flow prediction issue for small targets
in high-resolution solar images. All comparison methods were
trained using the same proxy data set, and the training scheme
was consistent for all models to measure the performance of
each model. Tables 1 and 2 show the comparison of AEPE,
SSIM, CC, RV, and RM on Data sets 1 and 2, where the bold
values represent the optimal results of the evaluation metrics.
Our method outperforms all previous methods as shown in

Table 1. We reduced the AEPE value from 1.13 of RAFT to
0.52, showing a 54% improvement. The SSIM also improved
by 4.4% from 0.9182 in Demons to 0.9587. Our method
achieved a CC of 0.9930, RV of 15.2818, and RM of 3.1508,
which are all better than the results from previous methods.
It can be observed from Figure 1 that there is a significant

difference in appearance between Data sets 1 and 2, and Data
set 2 is not involved in model training. Despite this, as seen in
Table 2, our method still shows efficacy in predicting optical
flow in Data set 2, indicating the network’s ability to extract
crucial features from solar images beyond just appearance. Our
method outperforms others in all metrics, especially SSIM, RV,
and RM, achieving 3.6%, 34.5% and 33.7% improvement
respectively compared to the suboptimal method (PWCNet).
These results demonstrate that our framework has strong
generalization and accurate prediction abilities for small-target
optical flows in solar images.
Notably, the AEPE of our method in Tables 1 and 2 are not

zero, while SSIM and other indexes are significantly better than
Demons, indicating that: (1) there are errors in the optical flow
predicted by Demons; (2) although the optical flow data
generated by Demons are used as the proxy data for training,
the accuracy of optical flow predictions is corrected because of
the use of multi-channel outputs and the unsupervised loss
strategy in the model.
Our proposed method improves upon PWCNet by making

the following improvements: (1) adjusting the number of
feature layers (NFL), (2) adding residual blocks (RB), (3) using
multi-output modules (MLO), and (4) improving loss functions
(ILF). To evaluate the impact of each improvement, we
conducted an ablation study on the test set of Data set 1.
Results are shown in Table 3, which highlights the contribution
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of each module and confirms the effectiveness of the proposed
method.

As can be seen in Table 3, using NFL significantly improved
the results of all metrics compared to PWCNet. The proxy data
set and Data set 1 are high-resolution Hα images of solar
radiation captured by NVST, containing many small targets.
Adding full-resolution features to the NFL improved the AEPE
value from 1.27 to 0.51 and the SSIM value from 0.8776 to
0.9469. The above results demonstrate that low-level features
in high-resolution features contribute to the optical flow
prediction of small targets, and the NFL module enhances the
accuracy of optical flow prediction.

Adding RB improved all metrics except for AEPE. The
shortcut connections in the RB helped to retain low-level
structural features and improved the model’s ability to predict
optical flow for small targets. However, the presence of
erroneous optical flow in the proxy data set caused some pixels
to be occluded, which increased the AEPE value. Despite this,
using RB reduced the number of network parameters and
accelerated the convergence of the model.

The use of MLO improved all metrics, reducing the RV
value from 16.9177 in the RB to 16.6356. The inception
structure in the MLO provided the model with multiple

matching relationships that contained different features. Dilated
convolution provided the network with sparse information
within a larger receptive field, and the network obtained
secondary matching relations far from the sampling point. The
results show that MLO reduced the error rate of the network in
predicting the optical flow with a slight increase in the
parameters.
Finally, ILF improved all metrics except for AEPE. On the

one hand, photo in ILF made the predicted image Î1 and target
image I2 as visually similar as possible, while smooth enhanced
the connection of adjacent optical flows, which conforms to
reality. By ILF, the method achieved an SSIM of 0.9587, RV
of 15.2818, and RM of 3.1508, all of which are better than
those obtained in the other configurations. The results
demonstrate that ILF reduces the negative impact of erroneous
optical flow in the proxy data set and improves the overall
performance of the model. This approach allows for training
the network with proxy optical flow labels, which are easier to
obtain than truth optical flow.
Figures 7–10 show visual comparisons of different methods

on Data set 1, including machine-learning methods such as
Demons, and deep-learning methods such as PWCNet and
RAFT. Figure 7 displays the predicted images generated by

Table 1
Performance of Different Optical Flow Methods on Data Set 1

Method AEPE SSIM CC RV RM

Demons (Liu et al. 2018) L 0.9182 0.9870 24.9931 4.4918
FlowNet (Dosovitskiy et al. 2015) 1.99 0.8433 0.9666 53.6588 7.9483
PWCNet (Sun et al. 2018) 1.26 0.9042 0.9789 33.1684 6.2046
RAFT (Teed & Deng 2020) 1.13 0.8666 0.9716 47.3137 7.1653
Ours 0.52 0.9587 0.9930 15.2818 3.1508

Table 2
Performance of Different Optical Flow Methods on Data Set 2

Method AEPE SSIM CC RV RM

Demons (Liu et al. 2018) L 0.9084 0.9763 33.9556 6.0755
FlowNet (Dosovitskiy et al. 2015) 0.72 0.8815 0.9600 51.9735 8.3302
PWCNet (Sun et al. 2018) 0.57 0.9289 0.9781 25.9908 5.8943
RAFT (Teed & Deng 2020) 0.56 0.8896 0.9636 47.2199 7.9377
Ours 0.24 0.9628 0.9893 17.0194 3.9101

Table 3
Performance of Different Improvements on Data Set 1

NFL RB MLO ILF AEPE SSIM CC RV RM Params

1.27 0.8776 0.9735 42.0205 6.9835 5.4M
√ 0.51 0.9469 0.9901 18.8928 4.0131 9.8M
√ √ 0.54 0.9519 0.9914 16.9177 3.6996 4.2M
√ √ √ 0.51 0.9522 0.9915 16.6356 3.6873 5.1M
√ √ √ √ 0.52 0.9587 0.9930 15.2818 3.1508 5.1M
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each method for Data set 1. Figure 8 shows the residuals of the
target and predicted images in the red boxed area with a
200× 200 pixel size in Figure 7. Figure 8 shows that the
proposed method and Demons eliminate a large number of
fragmented grayscale differences, demonstrating the capability
of the proposed method in predicting tiny target optical flow
and outperforming PWCNet and RAFT. To further compare

the performance of the proposed method and Demons, Table 4
provides a quantitative comparison of the two methods for
optical flow estimation in the red box region of Figure 7. The
results in Table 4 show that our method outperformed Demons
in all metrics, indicating that our method is better at predicting
the optical flow of high-resolution solar images.

Figure 7. Predicted image for different methods.

Figure 8. Residual map for different methods.

Figure 9. Arrow map for different methods.
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Figure 9 shows a vector arrow plot of the estimated optical
flow for the blue boxed region in Figure 8, with the color of the
arrows indicating the magnitude of the optical flow. In the
region highlighted with red boxes in Figure 9, the optical flow
predicted by PWCNet and RAFT had no significant difference,
whereas the optical flow predicted by Demons and our method
had significantly different and smaller residuals. This suggests
that PWCNet and RAFT struggle to accurately capture the
motion of small, pixel-level structures and predict their optical
flow, while Demons and the proposed method perform better in
this regard. Figure 10 visualizes the optical flow for the blue
boxed region in Figure 8, with color indicating the magnitude
and direction of the flow. The green boxed region in Figure 10
shows that PWCNet and RAFT generate blurred optical flow
boundaries, whereas Demons and our method produce clearer
boundaries, further highlighting the superiority of our proposed
method in accurately predicting the optical flow of small
targets.

5. Conclusions

The measurement of the transverse velocity field of high-
resolution solar images plays a crucial role in understanding the
dynamic characteristics of the solar magnetic field and
atmosphere and predicting solar activity. To address the
problem of the low accuracy of optical flow prediction in
high-resolution solar images, we proposed an improved
PWCNet model based on CNN. Our method adopted NFL,
RB, MLO, and ILF to enhance the ability of the model to

predict the optical flow of small targets and improve the
accuracy of the algorithm.
Experimental results showed that our proposed method was

highly effective in predicting the optical flow of small targets
on solar Hα and TiO images captured by the NVST telescope.
The accuracy of our optical flow prediction outperformed that
of other main optical flow methods. Our proposed method has
potential applications for velocity field measurements of solar
images captured by other astronomical telescopes. However, it
is worth noting that the optical flow prediction accuracy in
textureless regions is not high and may be due to errors in the
proxy data set or limitations in our framework. Further research
is required to resolve these issues.
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