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Abstract

We examine the possibility of applying the baryonic acoustic oscillation reconstruction method to improve the
neutrino mass Σmν constraint. Thanks to the Gaussianization of the process, we demonstrate that the reconstruction
algorithm could improve the measurement accuracy by roughly a factor of two. On the other hand, the
reconstruction process itself becomes a source of systematic error. While the algorithm is supposed to produce the
displacement field from a density distribution, various approximations cause the reconstructed output to deviate on
intermediate scales. Nevertheless, it is still possible to benefit from this Gaussianized field, given that we can
carefully calibrate the “transfer function” between the reconstruction output and theoretical displacement
divergence from simulations. The limitation of this approach is then set by the numerical stability of this transfer
function. With an ensemble of simulations, we show that such systematic error could become comparable to
statistical uncertainties for a DESI-like survey and be safely neglected for other less ambitious surveys.
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1. Introduction

The large-scale structure (LSS) contains valuable informa-
tion about the evolution of our universe, extractable from the
statistical measurement of galaxy surveys. Increasingly precise
LSS studies have the potential to discover new physical results
such as dark energy (Tegmark et al. 2006; Alam et al. 2017),
cosmic neutrinos (Lesgourgues & Pastor 2006; Riemer-
Sørensen et al. 2013; Palanque-Delabrouille et al. 2020) or
modified gravity (Giannantonio et al. 2010; Li & Zhao 2019).
For example, in the two-point statistics, these effects
manifested either as distinctive features or broadband shape
change. Due to its robust constraining power, the baryonic
acoustic oscillation (BAO) (Peebles & Yu 1970; Sunyaev &
Zeldovich 1970; Bond & Efstathiou 1987; Hu &
Sugiyama 1996; Eisenstein 2002; Blake & Glazebrook 2003;
Hu & Haiman 2003; Seo & Eisenstein 2003) is probably one of
the most significant feature in LSS measurement. Other
examples include some possible primordial features from
different scenarios of inflation models (Chen et al. 2016). On
the other hand, the broadband full shape of the power spectrum
is affected by more complicated physics, including nonlinear
clustering bias (Desjacques et al. 2018), baryonic feedback
(Jing et al. 2006; Rudd et al. 2008), massive neutrinos

(Lesgourgues & Pastor 2006) and alternative gravity theories
(Clifton et al. 2012). Consequently, statistical constraints with
full-shape two-point statistics usually plateau at quasi-linear
scales as the modeling becomes complicated due to the
nonlinear structure formation and information leakage into
higher-order statistics (Rimes & Hamilton 2005, 2006).
Unsurprisingly, various techniques have been developed to

maximize information content diminished by the nonlinear
structure formation. For example, Eisenstein et al. (2007)
introduced a reconstruction algorithm that partially reverses the
BAO broadening and improves the accuracy of dark energy
measurement. Along this direction, recent developments in
iterative reconstruction have further sharpened the BAO peak
and recovered the linear BAO signature, including the isobaric
reconstruction (Pan et al. 2017; Wang et al. 2017; Yu
et al. 2017; Zhu et al. 2017, 2018) and other similar techniques
as well (Schmittfull et al. 2017; Hada & Eisenstein 2018; Shi
et al. 2018). Meanwhile, forward modeling reconstruction has
also been successfully implemented and achieved a similar
level of improvement (Kitaura & Enßlin 2008; Seljak
et al. 2017; Schmidt et al. 2019). Particularly for the backward
reconstruction, their accomplishment relies on two main
changes brought to the density field. The first is the recovery
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of the primordial signal itself (see Li et al. (2021) for the
reconstruction of other inflationary signatures), which is
achieved by solving the continuity equation for the displace-
ment field. Moreover, the reconstructed field is also more
Gaussian so that most information is encoded in the two-point
statistics (Pan et al. 2016). Hence, even though these
reconstruction algorithms were initially developed for BAO
purposes, they should also be beneficial to physical effects that
affect the broadband shape of the power spectrum, e.g.,
neutrino and modified gravity. As a concrete example, we
consider whether reconstruction can improve measurements of
the neutrino mass. Neutrinos are a form of hot dark matter, and
their large thermal motions lead to a scale-dependent suppres-
sion in the matter power spectrum which can be used to
constrain their masses (Lesgourgues & Pastor 2006; Ivanov
et al. 2020).

To date, the broadband power change of these reconstruction
methods has yet to be thoroughly investigated. One crucial
challenge is the model accuracy of the reconstructed field.
Unlike the BAO signal, which is quite resilient against
deformation of the power spectrum, the shape itself could
easily be affected by any k-dependent effects and this is indeed
what happens to the isobaric reconstruction. Even though, in
principle, the algorithm should recover the displacement
divergence, a straightforward test shows a notable difference
at both the field and statistical levels. The underlying reason is
that the algorithm makes several assumptions for the mass
conservation equation to be solvable (Wang & Pen 2019). Still,
a Gaussianized field estimator is just too attractive to be
ignored. One possible workaround is carefully calibrating a
“transfer function” between the reconstructed field and the
actual displacement. As long as the calibration is stable, which
means it is not “randomly” affected by numerical or other
observational effects, we can persuade ourselves to trust the
result.

In this paper, we examine this type of systematic error
quantitatively. Of course, the list of possible random sources
will be lengthy. As the first step, we will only inspect the
reconstruction error caused by the random fields, i.e., random
seeds in simulations. The paper is organized in the following:
in Section 2, we discuss the Gaussianization aspect of the
isobaric reconstruction method; in Section 3, we then estimate
the numerical instability, i.e., the reconstruction systematics;
and finally, we discuss the consequences for future neutrino
constraints with LSS and conclude in Section 4.

2. Isobaric Reconstruction as a Gaussianization
Procedure

Gaussianization has historically been an active goal of many
LSS studies. For example, a logarithmic transformation or local
Gaussianization procedure seems to reverse the non-Gaussian
evolution (Weinberg 1992; Neyrinck 2011). However, these

methods only changed the one-point probability density
function (PDF), and did not reverse any structure formation
process. On the other hand, the isobaric reconstruction, and
other similar techniques, could also be viewed as a Gaussia-
nization procedure. This is achieved by solving the nonlinear
mass conservation equation
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Here q and x are Lagrangian and Eulerian coordinates of
particles respectively, and the displacement vector and
potential are defined as Ψ(q)= x− q=∇f(q), where dij

K is
the Kronecker delta. By solving Equation (1), the reconstruc-
tion algorithm eliminates this nonlinear coordinate transforma-
tion and produces the reconstructed frec field on a grid that is
close to the Lagrangian frame. Hereafter, we will denote the
reconstructed field as δrec=∇2frec and displacement diver-
gence as δdisp=∇ ·Ψ.
The frameshift from Euler to Lagrangian is the reason behind

the BAO sharpening in the correlation function, making it more
precise to identify the sound horizon scale at s≈ 100Mpc/h
via the peak location. Nevertheless, this is not the only
improvement the reconstruction algorithm has brought. As
shown in the upper panel of Figure 1, this reconstructed field is
very close to Gaussian compared to the log-normal distribution
of density ρ. In the lower panel, we also compare the
normalized covariance matrix of the power spectrum P(k)
(also in Pan et al. 2016; Wang et al. 2017). As shown, before
the BAO scale where k 0.5 h/Mpc, the covariance matrix is
very close to diagonal. This means that the reconstruction
method could serve as a Gaussianization process and reverse
the information leakage from the initial Gaussian field to
higher-order statistics.
Consequently, the reconstruction can indeed improve the

measurement accuracy of broadband physics like the neutrino
mass Σmν. To see this, we could examine the information gain
with the Fisher matrix, which is defined as
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where Cαβ is the covariance matrix. To start, we consider the
idealized case of a shot-noiseless survey, so that the diagonal
terms of the non-Gaussian covariance matrix were rescaled to
coincide with the Gaussian contribution. Without presenting
more details, which will be shown later in Section 4, we plot
the one-σ cosmological constraints on Mν=Σmν in Figure 2.
As demonstrated, for both fiducial masses (Mν= 3× 100 and
3× 50 meV), the final constraints improve by roughly a factor
of two. Here we assume a survey with volume V= 10 (Gpc/
h)3. This sets the most ideal baseline for potential improvement
using reconstruction.
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3. Systematics Analysis of the Broadband Shape

Of course, the conclusion above does not consider various
practical complications. Among everything else, the most
crucial caveat is that the algorithm does not produce the actual
displacement field. As discussed in Wang & Pen (2019), the
discrepancy between δrec and δdisp is caused by three
approximations made by the reconstruction algorithm: (1) no
shell-crossing; (2) Ψ contains no transverse component; and (3)
negligible initial fluctuation, i.e., δinit≈ 0. All of them break

down at some point, which means that while an accurate
theoretical model might still be possible, it will surely be very
challenging to get. Moreover, the clustering bias further
complicates the situation. From the density matching introduced
by Wang & Pen (2019), the bias could affect the reconstruction
in two significant ways. One is the coordinate shift Δξ9, and the
other is the modified kernel in the perturbative expansion of the

Figure 1. Isobaric reconstruction serves as a Gaussianization procedure. Left panel shows the one-point PDF of the reconstructed field (blue)∇2f and the logarithm of
matter density field (red). Right panel compares the normalized covariance matrices ( =ab ab aa bbC C C C¯ ) of the power spectrum P(kα) of density (upper triangle)
and reconstructed field (lower triangle) at redshift z = 0. This is a re-plot of Figure 1 from Pan et al. (2016). Around the quasi-linear scales, the off-diagonal elements
of the reconstructed field are significantly lower than those of density field.

Figure 2. One-σ constraints of an idealized shot-noiseless survey on Σmν as a function of maximum k, assuming survey volume V = 10 (Gpc/h)3. The square-solid-
line signifies the reconstructed field frec whereas circle-dashed-line is the constraints with matter density δ itself. Due to Gaussianization of the field, even though the
signal in P(k) decreases after the reconstruction, the final constraints still improve by roughly a factor of two.

9
Δξ = ξ − q, where ξ is the reconstructed isobaric frame and q is the

Lagrangian coordinates.
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displacement. The severity of the two effects is different, the
frameshift will cause additional smearing of BAO signal and the
modified kernel (with unknown bias parameters) will change the
shape of the power spectrum.

For BAO applications or other primordial features (Li
et al. 2021), these assumptions do not pose a serious challenge
as they are usually quite robust. On the other hand, however,
for the broadband feature like the neutrino mass, any k-
dependent modification could be crucial. In the first panel of
Figure 3, we plot the ratio of power spectrum between
reconstructed field and the real displacement as the black-solid
line

=f k
P

P
k . 3rec

rec

disp
( ) ( ) ( )

Besides the small-scale deviation, we can also identify a large-
scale bias of a few percent at low k. The reason behind this
deviation is beyond the scope of this paper, but recent
theoretical studies, e.g., Ota et al. (2021), also point out similar
differences for other reconstruction methods.

At first glance, such deviation does seem to discourage us
from using a reconstructed broadband power spectrum for any
cosmological measurement. It is noticeable that the recon-
structed ratio frec(k) is much further from unity than the cross
coefficient (black-dashed line),

= ´
r k

P

P P
, 4rec

rec disp

rec disp

( ) ( )

which characterizes the residual BAO peak smearing and is
very close to one until wavenumber k 0.5 h/Mpc. Here,
Prec×disp is the cross-correlation between reconstructed and
displacement divergence field. Nevertheless, as discussed in the
Introduction, as long as we can numerically calibrate the model
with simulation, it is hard to resist the potential accuracy
improvement shown in Figure 2.
To understand these curves in Figure 3, we can decompose

the reconstructed field as

d d d= +k k kT k . 5rec rec disp res( ) ( ) ( ) ( ) ( )

Figure 3. Power spectrum comparison of reconstructed field and true displacement divergence, obtained from 20 simulations with V = 1(Gpc/h)3 and nparticle = 5123.
Here 〈L〉s denotes average among all simulations. Upper panel shows various ratios averaged with 20 simulations; the middle panel demonstrates the fluctuation
among these 20 simulations and finally the lower panel presents the standard deviation. In the lower panel, we can see that the variance is dominated by the
randomness of transfer function T2(k) at most of the scales. To verify the systematic nature of the variation, we divide our simulations into three subsets (set1, set2 and
set3) with a quarter, half and three-quarters of the total simulations.
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Here T(k) is a deterministic transfer function describing the
deviation from the real displacement field, which we assume to
be isotropic. d kres( ) is some random residual that does not
correlate with δdisp(k). To “predict” the power spectrum shape
of δrec(k), we are interested in the ratio between the power
spectrum of δrec(k) and that of the displacement field

= = +f k
P

P
T f , 6rec

rec

disp
rec
2

res( ) ( )

where =f P Pres res disp and Pres is the auto power spectrum
of dres.

To investigate the numerical stability of the reconstruction,
we ran 20 cold dark matter (CDM)-only simulations
(V= 1 (Gpc/h)3, nparticle= 5123) with different initial condi-
tions. In the upper panel of Figure 3, we show various ratios
just defined. Here 〈L〉s denotes the average among these
simulations. To understand the difference between frec (or
equivalently Trec) and rrec, we could express the cross-
coefficient rrec(k) with the decomposition (5), i.e.,

= = +´r k P P P T T frec rec disp rec disp rec rec
2

res( ) . More con-
veniently, we have
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-

T k r k
f

r1
. 7rec rec

res
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2
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Hence, only if the ratio -f r1res rec
2( ) equals one (i.e.,

f 0res ) would we have Trec= rrec. In reality, however, the
residual power fraction fres only has a small bump at high-k
(dotted-blue line of the upper panel in Figure 3), whereas
- r1 rec

2 approaches unity. Consequently, -f r1res rec
2( )

becomes less than unity around k 0.1. In other words, Trec
will always drop faster than rrec at high-k. For cosmological
measurements, we are mostly interested in the power spectrum
ratio frec (Equation (6)). As mentioned previously, even though
it is desirable to understand technical details behind these
curves, we do not need to achieve this with, e.g., the
perturbation theory. As long as we are able to accurately
calibrate Trec(k) from simulations, it could be applied to
cosmological constraints.

However, there is at least one more systematic we still need
to consider. Due to the numerical nature of the reconstruction
algorithm, the calibrated transfer function Trec also has
uncertainties, which serve as the systematic error limiting the
measurement. In the middle panel of Figure 3, we demonstrate
the fractional variations frec/〈frec〉s among our simulation set. In
the lower panel, we calculate the standard deviation of different
components from our limited simulation set. From the figure,
the one-sigma variation of frec is around a few times 10−3

(black-solid line). As systematic errors, this variation does not
diminish as the number of samples increase. To test, we divide
our simulations into three subsets (set1, set2 and set3) with a
quarter, half and three-quarters of the total simulations. As we
can see (dotted line), the variations of these samples are very

similar to each other, suggesting they are indeed systematic
errors. From Equation (6), the variation σ( frec) has two
contributions, s Trec

2( ) and s fres( ) respectively. From our
measurement, the transfer function dominates the variation
(red-solid line versus blue-dashed line) until k∼ 0.6 h/Mpc.

4. Consequences for Neutrino Mass Measurement

After quantifying the intrinsic variance induced by the
reconstruction algorithm, we are ready to investigate its
consequences and compare it with statistical uncertainties. To
start, we need to determine how the reconstruction algorithm
performs in the presence of cosmic neutrinos. We run cosmo-
logical N-body simulations evolving both CDM and neutrinos,
using the CUBEP3M code (Harnois-Déraps et al. 2013) mod-
ified to include the neutrinos as a separate particle species
(Inman et al. 2015). Each simulation contains Nc= 7683 CDM
particles and Nν= 7683 neutrino particles within a box of side
length L= 600Mpc/h. We consider two fiducial neutrino
masses: 3× 50meV and 3× 100meV. The energy density of
the neutrinos is Ων=Mν/93.14h

2 (Mangano et al. 2005), while
other cosmological parameters are consistent with Planck:
Ωcb= 0.32, ns = 0.96 (Planck Collaboration et al. 2020). In
the CUBEP3M neutrino implementation, neutrinos are started at
a later redshift (z= 10) than CDM (z= 100). The value of σ8 is
specified at the initial neutrino redshift and is
σ8(Mν= 3× 100 meV)= 0.09, σ8(Mν= 3× 50meV)= 0.0927
and σ8(Mν= 0meV)= 0.095. We have also run a simulation
without cosmological neutrinos where we keep Ωcb fixed.
Keeping Ωcb fixed instead of Ωm=Ωcb+Ων ensures that the
CDM phases are the same between simulations (Bayer
et al. 2022), and should better isolate the effect of reconstruction.
We furthermore use the same method to generate CDM
perturbations (e.g., using z= 10 transfer functions propagated
back to z= 100). When applying the isobaric reconstruction, we
use the CDM density field only, as this is what most correlates
with halos (Brandbyge et al. 2010; Villaescusa-Navarro
et al. 2013). Moreover, to calculate the variation of the power
spectrum with respect to neutrino masses (Equation (2)), we also
run simulations where we vary neutrino mass by ±0.0025meV
for Mν= 3× 50meV and ±0.005 meV for Mν= 3× 100meV,
and also adjust σ8 consistently. We have run seven simulations
with the above settings in total, all using the same random seed
for the initial condition.
For the baseline result shown in Figure 2, we consider an

idealized survey without shot noise, so that the diagonal terms
of the non-Gaussian covariance matrix can be rescaled to
coincide with the Gaussian contribution

= =ab ab a aC C
k

V k
P k P k

2
, 8F

s

G
3

( )
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where Vs= 4πk2Δk is the volume of spherical surface in
Fourier space, and kF is the fundamental mode of the box,
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kF= 2π/L, with L being the box size of the simulation. Here
we assume the survey volume V= 10 (Gpc/h)3. For both
fiducial masses, the final constraints improve by roughly a
factor of two. This sets the ideal baseline for potential
improvement in measuring the neutrino mass with
reconstruction.

Given the intrinsic variation of the reconstruction method,
we would like to understand further how this uncertainty
propagates to cosmological constraints. Following the standard
approach (Huterer & Takada 2005; Huterer et al. 2006), we
define the bias on parameter pi as

d = -p F B , 9i ij jsys
1( ˆ ) ( ) ( )

where Fij is the Fisher matrix, and the bias vector Bj is given by
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¶
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j
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where δPsys is the systematic deviation of the power spectrum.
As demonstrated in the last section, our systematic error is
multiplicative, therefore we have δPsys/Prec= σ( frec).

For a more realistic description of the LSS survey, we will
include both clustering bias and shot noise in the covariance
matrix, including both the on- and off-diagonal terms.
However, instead of estimating the covariance matrix from
the reconstructed halo samples, given the high numerical cost,
we assume that the algorithm does not significantly change the
shot noise. We test this ansatz by subsampling the dark matter
particles and evaluating the shot noise before and after the
reconstruction. Specifically, for a given simulation, we
subsample particles to a particular number density n. Since
particles are randomly selected, the resultant density contrast
δsub(x) is unbiased and only differs from the underlying dark

matter field δmat(x) by a shot noise contribution

d d= -d x x xN . 11sub mat( ) ( ) ( ) ( )

With multiple realizations of subsampling, we have checked
that the average power spectra of these shot noise fields Nδ(x)
are consistent with the theoretical value of 1/n, where n is the
number density of the subsample, with one caveat that the
DTFE tessellation10 would introduce an extra smearing
window function (Chan & Hamaus 2021).
To examine how reconstruction affects the shot noise, we

can define a similar “shot noise” field Nrec(x) after the
reconstruction

d d= -x x xN . 12rec rec
sub

rec
mat( ) ( ) ( ) ( )

Here d xrec
sub( ) and d xrec

mat ( ) are the reconstructed fields of the
subsample δsub(x) and matter δmat(x) respectively. In Figure 4,
we show the power spectra ratio f kSN ( ) between these two
shot noise contributions

= =
á ñ
á ñd d d

f k
P

P
k

N N

N N
k . 13SN rec

SN

SN
rec rec( ) ( ) ( ) ( )

In principle, an ensemble average of multiple subsamples
á ñf kSN

s( ) would be preferred. However, due to the numerical
cost of the reconstruction, we only utilize one subsample for
each situation. The results are reasonably stable and smooth
and are adequate for our purpose. As shown, the reconstruction
slightly increases the shot noise power before eventually
dropping to zero at high-k. This small-scale damping is mainly

Figure 4. Numerical test on how reconstruction affects the shot noise contribution. Various curves show the ratio of power spectra f kSN ( ) (Equation (13)) between the
post- and pre-reconstruction shot noise fields (Equations (11) and (12)). Different colors signify different number densities of the subsampled fields. As shown, the
reconstruction slightly increases the shot noise power before reducing it to zero at high-k. This damping is mainly caused by the internal smoothing of the
reconstruction algorithm. As shown, the damping scales of our higher-resolution maps (5123, solid lines) are much smaller than those of the lower-resolution maps
(2563, dashed lines).

10 The density fields are estimated with the Delaunay tessellation (DTFE)
method (Bernardeau & van de Weygaert 1996; Schaap & van de
Weygaert 2000) to ensure the numerical stability of our reconstruction
algorithm (Wang et al. 2017; Yu et al. 2017; Zhu et al. 2017).
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caused by an internal smoothing process in our reconstruction
algorithm (Wang et al. 2017; Zhu et al. 2017) to ensure
numerical stability, and the physical damping scale kdamp is
determined by the grid size.

Due to the computational cost of high-resolution reconstruc-
tion, our numerical test does not fully extend to much smaller
scales before reaching the internal damping scale. However,
compared to our forecasting results in Figures 5 and 6, i.e.,
those with the shot noise contribution, where most curves
stabilize around k= 0.3∼ 0.4h/Mpc, we believe that, for our
purpose, it is reasonable to assume the reconstruction algorithm
does not significantly change the shot noise contribution.

With such an assumption, we could construct the covariance
matrix of the biased tracer with the matter covariance matrix
(Figure 1). Instead of rescaling the diagonal to Equation (8), we
add the on-diagonal Poisson contribution

d= +ab a abC
k

V k
P k
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2 1
, 14F
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3 2
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as well. Furthermore, following Chan & Blot (2017), we also
include the non-Gaussian shot noise up to the 1/n2 order.
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Meanwhile, we estimate large-scale bias using the halo model.
Considering a sample of galaxies more luminous than a
threshold luminosity Lth, the bias is expressed as

ò= á > ñ
¥

b
n

b m N m L
dn

dm
dm

1
, , 16g

g 0
th( ) ( ) ( )

and the average number density ng

ò= á > ñ
¥

n N m L
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dm
dm, . 17g

0
th( ) ( )

Figure 5. The constraints on neutrino mass Σmν for various survey parameters. The statistical errors are shown in solid lines and systematic bias in dashed lines.
Different colors represent two different fiducial neutrino masses, red lines for Σmν = 3 × 50 meV and blue lines for Σmν = 3 × 100 meV. The units of the number
density n and volume V are (Mpc/h)−3 and (Gpc/h)3 respectively.
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Here dn/dm is the halo mass function, b(m) is the halo bias
factor and á > ñN m L, th( ) represents the halo occupation
distribution (HOD) function for galaxies above luminosity Lth
in halos of mass m. For our purpose, we adopt the HOD
functions with varying luminosity thresholds Lth from
Zehavi et al. (2005) and then estimate the bias of given
number density ng by matching the interpolated bg–ng relation.
At redshift z= 0, the obtained biases are: bg= 1.15, 1.31,
1.45, 1.66 for number density ng= 5× 10−3, 2× 10−3, 10−3,
5× 10−4 (Mpc/h)−3 respectively.

In Figure 5, we present the final Fisher constraints (solid
lines) of the neutrino mass Σmν as well as its systematic errors
(dashed lines) as a function of maximum wavenumber kmax.
Each panel corresponds to a specific galaxy survey with number
density n (ranging from 5× 10−4 to 5× 10−3(h/Mpc)3) and the
survey volume V (from 3 to 15 (Gpc/h)3 ). We can see that
the reconstruction improvement is very sensitive to the shot
noise contribution, which is consistent with the conclusion from
the BAO reconstruction (Yu et al. 2017). Since, without the
supersample effect, the covariance matrix scales with the
survey volume 1/V, via kF

3, this reconstruction improvement
does not depend on V. For a survey with n= 5× 10−4 (Mpc/
h)−3, the reconstruction will reduce the measurement error by
roughly 20%∼ 30% at ~k 0.2 h Mpcmax for both fiducial
neutrino masses. Clearly, higher number density will lead
to much better constraints. For example, a survey with n=
10−3 (Mpc/h)−3 will improve the accuracy by ∼50%.

In Figure 6, we also plot the ratio between the systematic
and statistical errors. As shown, in almost all cases here, we
are free from reconstruction noise before k 0.2 h Mpcmax ( ).
For medium-size surveys, e.g., V 5 (Gpc/h)3, n 5×

10−4(Mpc/h)−3, this is true at all relevant scales. On the
other hand, for a Dark Energy Spectroscopic Instrument
(DESI)-like survey (n∼ 5× 10−4 (h/Mpc)3, V∼ 10(Gpc/h)3),
the systematic error becomes comparable to the statistical error
around k∼ 0.25 h/Mpc.

5. Discussion and Conclusion

In this paper, we investigate the possibility of utilizing the
BAO reconstruction algorithm to detect the broadband
signature, mainly focusing on the free-streaming scale caused
by non-zero neutrino mass Σmν. Of course, the discussion in
this paper could also apply for other broadband signatures, e.g.,
modified gravity. Due to the Gaussianization of the reconstruc-
tion, the reconstruction could potentially improve the measure-
ment accuracy of neutrino mass. Even though there are
difficulties in theoretical modeling of the reconstruction output,
one could still calibrate and measure from simulation. With the
Fisher matrix, we showed that the reconstruction could reduce
the constraint by roughly a factor of two. Given the intrinsic
numerical variation of the algorithm, we further examined the
potential systematic bias and demonstrated that this type of
randomness could be important for a DESI-like survey.
As an initial investigation, more challenges need to be

examined, most crucially the nonlinear clustering bias and
redshift-space distortion. As demonstrated in Yu et al. (2017);
Wang & Pen (2019) and Zhu et al. (2018), they will certainly
decrease the information gain from the reconstruction.
Furthermore, there are a variety of systematic uncertainties
one needs to consider as well, including, e.g., different

Figure 6. The ratio between systematic error and statistical uncertainty after the reconstruction. Here we only plot the fiducial neutrino mass Mν = 3 × 100 meV,
however, the result is numerically very similar for Mν = 3 × 50 meV as well. As shown, we can safely ignore the reconstruction error before k  0.2 h/Mpc for
almost all cases here. For a low number density n ∼ 5 × 10−4 medium-size survey V  5 (Gpc/h)3, this is true in all relevant scales.
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resolutions, cosmological parameters, tracer density, etc. We
will defer these uncertainties to future investigations.
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