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Abstract

Eruption of solar flares is a complex nonlinear process, and the rays and high-energy particles generated by such an
eruption are detrimental to the reliability of space-based or ground-based systems. So far, there are not reliable
physical models to accurately account for the flare outburst mechanism, but a lot of data-driven models have been
built to study a solar flare and forecast it. In the paper, the status of solar-flare forecasting is reviewed, with
emphasis on the machine learning methods and data-processing techniques used in the models. At first, the
essential forecast factors strongly relevant to solar flare outbursts, such as classification information of the sunspots
and evolution pattern of the magnetic field, are reviewed and analyzed. Subsequently, methods of resampling for
data preprocessing are introduced to solve the problems of class imbalance in the solar flare samples. Afterwards,
typical model structures adopted for flare forecasting are reviewed from the aspects of the single and fusion
models, and the forecast performances of the different models are analyzed. Finally, we herein summarize the
current research on solar flare forecasting and outline its development trends.
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1. Introduction

A solar flare, discovered by Carrington (1859) in 1859, is an
explosive phenomenon that occurs in the magnetized plasma of
the solar atmosphere. The important mechanism governing the
flare eruption is considered to be magnetic reconnection (Inoue
et al. 2017), which can last from a few minutes to more than ten
minutes. In this short period, flares can release massive energy
up to 1028–1032 J (Shibata & Magara 2011), accompanied by a
sudden enhancement in particle radiation.

High-energy particles produced by the solar flare can
penetrate the human body and cause biochemical damage.
Simultaneously, intensive ultraviolet radiation and X-rays can
cause a dramatic increase in the concentration of electrons in
the ionosphere, triggering a sudden disturbance of the
ionosphere. In addition, they have a significant impact on
spacecraft communication, broadcast signals, and satellite
navigation. Therefore, to understand the mechanism of solar
activity and guarantee the safety of human space exploration,
conducting solar flare forecasting, which is of great scientific
significance and practical value, is necessary.

In recent years, with the popularization of machine learning
(ML) algorithms, flare forecasting methods have evolved from
traditional empirical statistical methods to data-driven model-
based forecasting methods. The data-driven model-based
methods are composed of three steps as follows.

The first step is to select forecast factors. Now, available
forecast factors generally describe the non-potentiality and
complexity of the solar active regions, which are believed to be
strongly related to flare outbursts. Among them, the prevalent
two factors are classification information of the sunspots and
evolution pattern of the magnetic field. Even though great
achievement has been made in solar flare forecasting based on
these two factors, it is necessary to propose novel precursor
factors reflecting the physical mechanism of solar flare
eruptions and have a strong correlation with them to further
improve the forecast accuracy.
The second key step is to preprocess the flare observation

data before training a forecast model. Thus far, observation
tools and measurement instruments under large-scale deploy-
ment provide massive flare data, and based on data-driven
forecast models, a large amount of data can be used to train the
models and obtain flare outburst patterns. However, there are
non-negligible problems with the data preprocessing. On one
hand, the space environment where the artificial satellite works,
such as charged particles, radiation, and magnetic field, will
induce noises in the flare observation data and images. On the
other hand, as flare eruption is a small-probability event, flare
events represent a minority class in the sample data. The
imbalance phenomenon of flare sample data will bring
difficulties with learning the flare outburst patterns of a
minority class. Currently, most researchers use resampling to
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resolve the class imbalance problem in the flare data. Never-
theless, resampling cannot fully use the effective information in
the data, and it will introduce additional errors to the forecast
models. Thus, it is urgent to investigate the preprocessing
methods to attack the imbalance problem in flare forecasting.

The third and most critical step is to build a prediction model
using statistical ML methods, deep learning methods, or a
combination of them. Single and fusion models have
advantages in forecasting tasks, and evaluation of the model
performance requires a horizontal comparison and analysis of
multiple quantified metrics. Overall, more attention should be
focused on the model structure design and type selection.
Meanwhile, choosing more novel algorithms and designing the
models adapting to the imbalance problem are hot topics for
future research.

Given the above problems in solar flare forecasting, we
herein review the research status of flare forecasting from the
following three aspects: selection of forecast factors, flare
samples and their preprocessing methods, and design methods
of the forecast model. In the first section, we introduce the
classification information of the sunspots and evolution pattern
of the magnetic field, and the historical flare rate based on the
multiple evolution patterns of flares and their outburst
correlations is discussed. The second section introduces flare
samples and their preprocessing methods, mainly including the
methods of standardization and normalization of samples and
the methods of class imbalance processing of samples. The
third section overviews the design methods of the forecasting
model, in terms of the single model design methods, fusion
model design methods, and other forecasting methods. The
design methods of the single and fusion models are discussed
with regard to shallow and deep model design, respectively. In
the fourth section, current research status of solar flare
forecasting is summarized, and its development trend is
sketched. The article concludes in the last section.

2. Selection of Forecast Factors

Cicogna et al. (2021) pointed out that solar flares erupt in
solar active regions, which host a complex and powerful
bipolar magnetic flux. Estimating the probability of flare
eruptions in the active regions and making a reliable forecast of
them is challenging. The first step of forecasting a flare outburst
is to select flare forecast factors. Selecting appropriate forecast
factors is critical to improving the performance of flare-
forecasting models. Most available flare forecast algorithms,
both at the experimental and research stages, estimate future
flare probabilities based on sunspot parameters of the active
regions, magnetic field parameters, and historical flare rate.

2.1. Sunspot Parameters

Sunspots refer to dark spots in the solar photosphere, which
have the characteristics of a strong magnetic field and low

temperature; therefore, they appear black compared with the
adjacent regions and are considered a good marker of the solar
active regions. Sunspots’ rotation (Vemareddy et al. 2016) and
shear motion in the photosphere (Vemareddy et al. 2012)
contribute to the accumulation of magnetic energy in the active
regions (Démoulin & Pariat 2008), thereby providing condi-
tions for flare eruptions. The direct observation quantities based
on sunspots include the number of sunspots, number of sunspot
groups, area of sunspot groups, longitudinal extension value of
the solar surface, and morphological characteristics of the
sunspot.
The more complex the morphology and polarity of the

sunspots are, the higher the likelihood of a flare outburst is.
Figures 1 and 2 show two typical longitudinal magnetic maps
of the full solar disk for clarifying this. With a reasonable
classification of sunspots, researchers can better characterize
flare events (McIntosh 1990). According to the magnetic field
polarity and morphological characteristics of a sunspot, solar
physicists have given the following three classification
methods. In 1919, the Mount Wilson Observatory in the
United States proposed the magnetic classification of Mount
Wilson, classifying the sunspot groups into four types—α, β, γ,
and δ—depending on their polarity (Hale 1908), and a sunspot
group may correspond to multiple magnetic classifications
simultaneously. In 1938, Zurich classification was proposed at
the Zurich Observatory in Sweden (Carrasco et al. 2015),
which classified the sunspots into nine types, denoted by A, B,
C, D, E, F, G, and J, based on the development process of the
sunspot groups’ morphology. In 1990, McIntosh (1990)

Figure 1. Active sunspot groups (flares will erupt within the next 48 hr).
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improved the Zurich classification, using three letters to
indicate the morphological categories to which a sunspot
group belongs, and the first letter was simplified into seven
types: A, B, C, D, E, F, and H. The second letter represents the
morphological characteristics of the largest sunspot group,
including six types: x, r, s, a, h, and k. The last letter
characterizes the distribution of sunspots and is recorded as
four types: x, o, i, and c. The commonly used classification
criteria in current studies are the Wilson Mountain magnetic
classification and the McIntosh classification.

2.2. Magnetic Field Parameters

The solar magnetic field is divided into the active region,
polar region, and tranquility region magnetic fields. The main
sources of the magnetic field parameters are the solar
photosphere and chromosphere. The physical state, motion,
and evolution of the Sun are closely related to the magnetic
field, which is the direct driving source of solar activities such
as sunspots and flares.

Gallagher et al. (2002) analyzed the relations between the
photospheric magnetic field and flare. They found that active
regions with higher flare eruption rates exhibit large and
significantly changing magnetic-field gradients. Lim et al.
(2019) developed a model for forecasting the daily outburst rate
of M and X class flares based on the statistical relation between
the photospheric magnetic field parameters and the daily flare
outburst rate from 2010 May to 2018 April. The research of
Cui et al. (2006) based on the full solar disk and vector
magnetograms showed that the flare outburst rate is well

correlated with a series of physical quantities describing the
non-potential nature and complexity of the photospheric
magnetic field, such as the maximum horizontal gradient of
the longitudinal magnetic field. Komm & Hill (2009) observed
that the vorticity and magnetic flux corresponding to the active
regions of flares of different levels are quite different, with
M-class flares related to large vorticity and X-class flares
relevant to both large vorticity and large magnetic flux
simultaneously.
Korsós et al. (2018) analyzed the evolution process of the

active region before the flare eruption using SDO/HMI
Debrecen data according to their proposed weighted horizontal
magnetic gradient (WGM) (Korsós et al. 2015) in 2015. By
studying two typical active regions, it was observed that the
WGM and its time-series characteristics are strongly correlated
with flare events. In addition, the evolution of magnetic helicity
is closely related to flare outbursts. By analyzing three flare
active regions and three non-flare eruption active regions,
Korsós et al. (2020) observed that the evolution of magnetic
helicity in the active region of a flare outburst has apparent
periodicity and can be a valuable precursor of flare eruptions.
Li & Du (2019) used the vector magnetic field data of 12

months to extract four physical parameters as flare forecast
factors, which are (1) the maximum horizontal gradient of the
longitudinal magnetic field, (2) the length of the neutral line,
(3) the number of singularities, and (4) the sum of the
photosphere magnetic free energies ρsum, where ρsum is
calculated as follows

B B . 1sum
Obs Pot 2( ) ( )år = -

The reference equations for calculation of ρsum are shown in
Table 1:
Several observational studies have found that the polarity

inversion line (PIL) (Gopalswamy et al. 2003) in the strong
magnetic field region plays a vital role in flare activity (Louis
et al. 2015) and is a critical forecasting factor for solar flares.
Sadykov & Kosovichev (2017) confirmed the important role of
PIL in flare eruption and experimentally verified the possibility
of using only line-of-sight magnetograms for flare forecasting.
Yi et al. (2021) proposed a flare forecasting model based on a
convolutional neural network (CNN) and the morphological
interpretation of PIL related to the physical parameters of the
solar active region. They consider PIL to be an essential

Figure 2. Tranquil sunspot groups (no flares within the next 48 hr).

Table 1
Physical Quantities Describing the Magnetic Field in the Solar Active Region

Name of Physical Quantity Calculation Formula

Total photosphere magnetic field free energy
density

B B dAtot
Obs Pot 2( )r = å -

Mean value of free energy of photosphere
magnetic field

B B
N

1 Obs Pot 2¯ ( )r µ å -
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predictor for training flare forecast models using deep learning
methods.

The New Scientist website reported on 2020 July 30 that
Kusano et al. (2020) at Nagoya University in Japan developed
a physical model known as the kappa scheme that can forecast
the outburst of solar flares several hours in advance. The
timing, location, and scale of flare eruptions depend mainly on
the magnetic flux density close to the solar surface PIL. The
kappa scheme makes predictions by analyzing strong magnetic
fields related to solar flares. Using the kappa scheme, the exact
location and scale of each flare outburst can be clarified, and
the feasibility of the sunspots and magnetic field evolution
characteristics in the active region as flare forecasts can be
indicated.

Thus, the magnetic field parameter is becoming an important
forecasting factor owing to its clear physical meaning.

2.3. Historical Flare Rate

Flare outbursts are small-probability events, and their
eruption is strongly periodic and characterized by localization.
Park et al. (2020) inferred that the key to successfully
forecasting the timing of a flare eruption is to focus on the
transition period between the calm and active phases of the
flare, and they proposed a method of combining forecast factors
to evaluate the accuracy of the prediction. Experiments have
shown that for flare outbursts of M level and higher,
considering temporal accumulation or periodicity in the
prediction process helps improve the overall flare forecast
performance. In terms of selection of flare prediction factors,
the attention mechanism (Niu et al. 2021) can be used to select
the features that are more critical to flare forecasting among the
input features, thus improving the prediction rate of the model.
Park and Leka improved the accuracy of their model in
forecasting flare outbursts. However, the time cost of model
training is ignored, while a model incorporating the attention
mechanism can make fast classification predictions even
though it sacrifices some accuracy.

Roy et al. (2020) studied the short and long-term fluctuations
of the solar chromosphere using flare forecast factors. At first,
they obtained data from the Northern Hemisphere, Southern
Hemisphere, and the entire flare period from 1976 January to
2014 December, portraying the periodicity of the flare
outbursts. Wheatland (2004) used the historical information
on flare eruptions in active regions in the forecast model. They
obtained a high accuracy rate for the X-class flares. Nishizuka
et al. (2017) considered flare observation data from 2010 to
2015 and extracted 60 flare-related features, including the
magnetic neutral line, current helicity, and historical flare rate.
They employed three ML algorithms for flare forecasting:
support vector machine (SVM), k-nearest neighbor (KNN), and
random tree. The experiments show that using the historical

flare rate as a forecasting factor can improve flare forecast
performance.

2.4. Other Parameters

In addition to the above common forecasting factors, several
other types of forecasting factors have been proven to be
feasible for forecasting flares. Aschwanden & Aschwanden
(2008) investigated the correlation between the fractal dimen-
sion of specific indicators of flare outbursts in active regions
and flare eruption rates according to the fractal approach of
nonlinear science. Yu et al. (2009) proposed the concept of a
combination of forecasting factors based on the rough set
theory to select the essential forecasting factors. They solved
the problem of excessive dimensionality while retaining as
much information as possible regarding the data.
The solar 10.7 cm radio flux correlates well with flare

outbursts, and the phenomenon of a sudden increase in radio
flux is called a radio burst. Ndacyayisenga et al. (2021)
performed a statistical analysis of radio bursts and explored
their relations with the number of sunspots. Experiments have
demonstrated that radio bursts are closely related to the number
of sunspots, and statistical analysis of radio bursts has observed
that 65% of them are related to flare events. Panos & Kleint
(2020) thought that the photospheric magnetic field data could
not completely meet the data source of flare prediction, and
they extended the study of flare prediction to spectral data for
the first time. Research has shown that well-performing flare
prediction models can be generated from spectral data alone,
thereby confirming the feasibility of using spectral data for flare
prediction. Gyenge et al. (2016) studied the temporal and
spatial properties of flare eruptions and demonstrated that they
can be used to improve the accuracy of flare forecasts.
Space satellite observations conducted by Skylab, the Solar

Maximum Mission (Doschek 2021), and the Yohkoh (Sharma
et al. 2021) project in Japan have identified several new
characteristics of flare outbursts. According to the features of
the flare outbursts found, we can extract flare-related forecast-
ing factors: the density of the coronal layer which increases by
one to two orders of magnitude as the accelerated particles
release heat at the location of flares in the coronal layer, and
then moves toward the interior of the Sun to reach the
chromosphere. In the chromosphere, the heat released by the
particles increases the temperature of the plasma gas and
expands it into a plasma ring through evaporation. Subse-
quently, the toroidal plasma is cooled by energy conduction
and radiation and flows back to the bottom of the magnetic
lines of force, i.e., the coronal layer. By imaging the X-ray, we
observe that the X-ray is usually emitted from the bottom of the
flare in the flash phase. Starting from the pre-flare phase, the
coronal streamers covering the flare are generally ejected in the
form of bubbles and are known as coronal mass ejec-
tion (CME).

4
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2.5. Section Summary

The first step in flare forecasting is selecting the forecast
factors. Using appropriate forecast factors can significantly
improve the performance of flare-prediction models. In this
section, research on flare predictors in recent years is in terms
of sunspot parameters, magnetic field parameters, historical
flare rate, and other parameters. As the fractal information of
the sunspots and evolution pattern of the magnetic field have a
strong correlation with the flare outbursts, they were used as the
preferred forecast factors. Although other parameters have a
certain correlation with the flare outbursts and are utilized as
forecast factors in some studies, their validity still needs to be
verified through a large number of experiments.

3. Flare Samples and Their Preprocessing Methods

3.1. Normalization and Standardization of Flare Samples

3.1.1. Sample Normalization Process

Because different forecasting factors in the solar flare data
set have different dimensions and orders of magnitude, the
effectiveness of models that require kernel functions, such as an
SVM, can strongly depend on whether the features are
normalized. When the order-of-magnitude difference between
individual features is significant, if the original metrics are
directly input into the model, the features with a larger order of
magnitude are dominant in the kernel function calculation. By
contrast, features with smaller values are ignored, which is
likely to lead to a large amount of information loss. Therefore,
to guarantee the reliability of the results, original features must
be normalized.

The most common method of normalization is min-max
normalization. The principle is to calculate the ratio of the
difference between each original data value and the minimum
value to the sample value interval length. Afterward, all data
values are transferred to the [0, 1] interval, where x and x¢
represent the samples before and after scaling, respectively, and
xmin and xmax represent the minimum and maximum values of
the samples, respectively. This is expressed by the following
equation

x
x x

x x
. 2min

max min
( )¢ =

-
-

3.1.2. Sample Standardization Process

The standardized method is used for preprocessing, as shown
in Formula 3, where μ and σ denote the mean and standard
deviation, respectively, of the sample data. The mean of the
transformed sample data is 0 and the variance is 1, which
mitigates the effect of sample outliers on the scaling results to a

considerable extent.

x
x

. 3( )m
s

¢ =
-

Standardization accelerates the model update weights and
convergence effectively and improves the accuracy of the
forecast model.

3.2. Class-imbalance Processing Methods of Samples

3.2.1. Inter-class and Intra-class Imbalances in Flare Samples

Imbalanced data is a general term for data with imbalanced
sample sizes or different misclassification costs (Vuttipittaya-
mongkol & Elyan 2020). As the forecast model was initially
designed for the classification of balanced data sets, when it is
used for classifying imbalanced data sets, it usually tends to
favor the majority of class samples. This may render the
classifier unable to learn the pattern of a few classes of samples
and accurately classify them, resulting in degraded classifica-
tion performance (Tao et al. 2019). In addition, an imbalance
problem was also present in the training set of the flare forecast
models. That is, flare eruption events are small probability
events corresponding to a small number of classes in the data
set, and dealing with class imbalance problems is necessary.
The imbalanced state of the data set can be subdivided into

two types: inter-class and intra-class imbalances (He &
Garcia 2009), as shown in Figure 3. Among them, inter-class
imbalance refers to an imbalance in the number of samples
between various categories in the data set. Intra-class
imbalance refers to the imbalance of data distribution density
within a certain class of sample space. That is, there are
multiple subcategories with the same category and different
data distributions.
The frequency of flare outburst varies with the solar cycle

showing a periodicity of about 11 yr, and the number of flare
outbursts is significantly more in the active period than in the
quiet period (Nandy 2020). Therefore, the intra-class imbalance
problem also exists in the flare samples, but most of the current
studies focus on the impact of the inter-class imbalance
problem in the flare samples on the model forecast accuracy.
We herein mainly overview the processing methods of the
inter-class imbalance in flare samples.

3.2.2. Class-imbalance Processing Methods Based on
Resampling

Resampling methods for solving class imbalance (Batista
et al. 2004) generally include oversampling, undersampling,
and mixed sampling. The resampling method is at the root of
solving the class imbalance problem directly from the data
level and is not constrained by a specific classification model
(Yu et al. 2018). Figure 4 illustrates the basic principle of
resampling.

5
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Oversampling aims to increase the number of minority-class
samples to achieve a reduction in sample imbalance, whereas
undersampling has the opposite effect. Mixed sampling is a
neutralization of the individual oversampling and undersam-
pling methods. However, traditional oversampling or under-
sampling methods simply change the number of samples to a
balanced ratio. The undersampling methods may lead to loss of
sample information and the oversampling ones may cause
artificial errors. Meanwhile, they introduce additional errors to
the model if the information in the data is not fully utilized.

Most studies use a resampling-based approach to dispose of
the class imbalance in flare data. Table 2 shows the classical
algorithms for resampling methods and their characteristics.

3.3. Section Summary

The problems of redundant attributes, class imbalance and
noise in solar flare observed data can greatly reduce the

speed of flare model training and the accuracy of forecasting.
Therefore, to improve the training efficiency and accuracy of
the prediction model, preprocessing the flare observation
data is necessary. This section first briefly introduces the
normalization and standardization of flare data, and then
reviews the class imbalance processing methods based on
resampling in flare forecasting in recent years. Currently,
most studies use resampling to address class imbalance
problems in flare data. However, resampling methods cannot
fully use the valid information in the data and they may
introduce additional errors to the forecast models. Therefore,
several studies have started to consider and experiment with
a range of classifier-based imbalance processing methods,
such as methods of classifiers incorporating resampling
strategies, methods of classifiers with the introduction of
cost-sensitive factors, and methods of classifiers based on
regular term optimization. However, these methods have not

Figure 3. Inter-class imbalance and intra-class imbalance.

Figure 4. Basic principle of resampling.
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been widely used in flare forecasting, and their applicability
needs further investigation.

4. Design Methods of Forecasting Model

Flare prediction models based on ML algorithms rely mainly
on information such as sunspot morphology and magnetic field
evolution parameters extracted from the solar active regions or
collected from the satellite observation sites and observations in
observatories (Nurzaman & Dani 2019). The core of the
forecast models is to establish the complex nonlinear correla-
tions between the flare outburst and the chosen parameters. So
far, many researchers have explored and designed models with
high forecasting rates.

According to their structural properties, the models are
classified as static, dynamic, or self-organizing (Osokin et al.
2004). Output of the static model is only related to input at the
current moment, i.e., it portrays the flare situation during the
forecast period from the observations in the current moment.
Compared with a static model, a dynamic model introduces
information on the evolution of the active region, i.e., based on
the current state of the active region, influence of the previous
state of the active region is also considered. The self-organizing
criticality model is based on the theory of self-organizing
criticality that assumes that when the system is in a critical state
the behavior of all its components is interrelated. In flare
activities, this is reflected in the magnetic reconnection events,
which cause the magnetic field gradient to be less than the
critical state value by releasing the magnetic field energy.
When a new magnetic field vector is added, the process is
repeated, eventually driving the magnetic field to a critical
state, which in turn leads to a flare outburst. Compared with the

first two models, the physical interpretation of this class of
models is better (Morales & Charbonneau 2016).

4.1. Design Methods of a Single Model

4.1.1. Design Methods of Shallow Model

Liu et al. (2017a) trained a flare forecast model based on a
random forest (RF) using the physical parameters provided by
the SDO/HMI active region patch (SHARP). Based on the
maximum radiation intensity produced by the X-ray flares, they
divided the active regions of flare eruptions into four categories
to predict the eruption probability of a certain type of flare in a
given active region within 24 hr. The experiments showed that
the RF forecast model trained with the SDO/HMI parameters
has a fairly high forecast rate. This is the first time that RF has
been used to make multiclass forecasts of solar flares. In the
same year, Liu et al. (2017b) used a model trained by RF to
forecast the eruption of flares with a specific intensity level
within 24 hr for a given active region. Through analysis of the
soft X-ray emission data observed during the current solar
activity minimal period from 2017 July to September,
Stanislavsky et al. (2019) showed that the eruptive or non-
eruptive state of the solar flare conforms to the hidden Markov
model (HMM) (Stanislavsky et al. 2020). In the following year,
they proposed a statistical method for predicting soft X-ray
flare outbursts using the HMM, which also achieved higher
accuracy in flare forecasting.
Falco et al. (2019) described a flare forecasting tool based on

sunspot group characteristics, assuming that the frequency of
flare eruptions follows Poisson statistics. The tool uses
observational instruments to collect the morphological attri-
butes of sunspot groups and then calculates the probability of
flare outbursts in active regions. This tool, which combines

Table 2
Resampling Methods and Their Main Characteristics

Method Name Characteristics

Undersampling Plain undersampling Random removal of negative samples; Simple and more random.
Clustering-based undersampling New negative samples are generated based on clustering,

which better retains the information of the original negative samples.

Oversampling Plain oversampling Random replication of positive samples; Simple and more random.
(Chawla et al. 2002) SMOTE Based on distance, positive samples are generated by linear interpolation,

which helps to reduce the risk of overfitting.
(Han et al. 2005) Borderline-SMOTE More boundary information is considered than SMOTE, and the synthesized

samples are more closely concentrated at the category boundaries.
(Beinecke & Heider 2021) ADASYN The variant of SMOTE; The synthetic positive samples mostly originate

from minority positive samples that are closer to the negative samples.
Clustering-based oversampling New positive samples are generated based on clustering,

and the characteristics of the original positive samples are refined.
(Wang & Duan 2017) DS-SMOTE Based on the distance, the density threshold is calculated to

obtain the sparse combination, and the linear value is obtained.
Mixed sampling (Arjun & Manoj 2021) SMOTE-ENN Use data cleaning technology to solve the problem that SMOTE

(Wang et al. 2019) SMOTE-Tomek often produces overlapping samples.
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sunspot morphological parameters and statistical techniques,
has a high forecast rate and is more sensitive to flare eruptions
with high strength levels. To further improve the accuracy of
flare forecasting, Yuan et al. (2016) proposed a flare forecast
model combining principal component analysis (PCA) and
SVM and comprehensively considered forecast factors such as
sunspot parameters and 10.7 cm solar radio flux. They first
coded the above parameters with appropriate attributes and
normalized the data set for preprocessing. Subsequently, they
extracted the main features using PCA and applied SVM to
build the forecast model. Finally, they made a horizontal
comparison between their model and the model combines
photospheric magnetic field parameters and sunspot parameters
in the active regions which was proposed by Rong et al. (2013).
The analysis showed that the model has a strong ability to
predict positive cases, a higher accuracy rate (AC) and a lower
false alarm rate (FAR).

Jonas et al. (2018) used ML methods to extract relevant
magnetic field evolution information from the photosphere and
coronal observational images to build flare forecasting models.
Florios et al. (2018) used various ML algorithms, including RF,
multilayer perceptron (MLP), and SVM, to establish flare-
forecasting models. The ML-based forecasting model pipeline
design was defined by Cinto et al. (2020). It is divided into five
steps: feature selection, hyperparameter update and optim-
ization of the model, model loss function selection, adjustment
of the model training endpoint, and model performance
evaluation. Subsequently, a flare forecasting model based on
an extreme gradient enhancement tree and considering time-
series features is established to verify the validity of that
standardization. The evaluation indexes of the model show that
the model has a higher true skill score (TSS) and a lower FAR
than other basic models.

Domijan et al. (2019) established a flare-forecasting method
based on the characteristic magnetic parameters generated by a
solar active region detection tracker (SMART) (Higgins et al.
2011). They used edge correlation as a feature selection method
to establish magnetic features related to the flare eruption
intensity and designed forecasting methods by deducing flare
eruption patterns through logistic regression. Anastasiadis et al.
(2017) attempted to reveal the complex mechanism of flare
outbursts and thus predict solar flare events by statistically
analyzing a large number of magnetic maps of active regions.
Ma et al. (2017) used univariate clustering combined with
multivariate decision trees for flare prediction based on
incorporating time-series features of flare data sets. They
observed that the total unsigned magnetic flux and total
unsigned magnetic helicity were strongly correlated with flare
outbursts compared to other characteristic parameters. Hazra
et al. (2020) used photosphere magnetic parameters and their
time-series characteristics to train a logistic regression algo-
rithm to forecast solar flares. The magnetic parameters included
the total unsigned magnetic flux and total unsigned magnetic

helicity. Finally, the experiments show that the model has a
higher TSS than other classifiers under the same conditions.

4.1.2. Design Methods of Deep Model

Macroscopically, analyzing the morphology and evolution-
ary characteristics of solar active region parameters is an
essential means of predicting solar flare eruptions. Classical
flare forecasting models are established based on statistical
relations between solar flares and forecast factors extracted
from observational data. The artificial method of extracting
solar activity features cannot meet the requirements of flare
forecasting. In this regard, Li & Huang (2018) used an ML
algorithm to extract the corresponding flare forecast factors to
establish a forecast model. Using three forecast factors
extracted from longitudinal magnetograms of the full solar
disk, Wang et al. (2017) adopted a neural network algorithm to
build a short-term forecast model for flares. The model forecast
accuracy was comparable with that of a professional with long-
term forecasting experience. Nishizuka et al. (2018) developed
a forecasting model called the Deep Flare Network (DeFN),
using deep neural networks (DNNs), that overcomes the
challenge of a traditional DNN forecasting process as a black
box (Castelvecchi 2016).
Huang et al. (2018) proposed a CNN-based model for solar

flare forecasting that uses images of the active regions within
30° selected from SOHO/MDI and SDO/HMI magnetograms
to train and test the CNN. They indicated that this model
focuses on active-region magnetograms with PIL or strong
magnetic fields. Based on the improvement of the CNN
algorithm, Fu et al. (2018) attempted to forecast solar flares
using a LeNet-5 type of CNN. The model is characterized by
stacking convolutional and pooling layers to capture complex
abstract features in image data. Deshmukh et al. (2020) used
CNN to extract the morphological features of images and
combined them with manually extracted features for flare
forecasting using MLP. Experiments show that the method is
more accurate than forecasting methods that use a single
feature. Abed et al. (2021) established the ASAP_Dep flare
prediction model by integrating CNN and Softmax classifiers
based on the ASAP system introduced by Colak & Qahwaji
(2009), where the model extracts special features from SDO/
HMI images. The experiments showed that the model
performed better on the FAR, TSS, and Heidke Skill Score
(HSS). Shin et al. (2016) proposed an AlexNet architecture
based on CNN to construct flare-forecasting models using
SOHO/MDI images. For class C, M and X flares, the accuracy
of the model to predict flare bursts is 90%, of which the
accuracy of class M and X flare bursts is 96%, and the FAR is
60%. Deng et al. (2021) balanced the number of samples for
different flare strength levels using generative adversarial
network (GAN) technology. The experiments showed that
sample balance is crucial to the stability of the CNN model.
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That is, the augmented data generated by the GAN effectively
improves the stability of the prediction model.

Park et al. (2018) used three CNN architectures to construct
flare forecasting models, including AlexNet (Lu et al. 2018)
and GoogLeNet (Khan et al. 2019), and they proposed a new
model combining GoogLeNet and DenseNet (Huang et al.
2016). They used SOHO/MDI magnetograms from 1996 May
to 2010 December to train the models and then used SDO/HMI
magnetograms from 2011 January to 2017 June to test the
models. The three CNN models were compared with the flare
forecasting models proposed by Colak & Qahwaji (2009),
Bloomfield et al. (2012), and Hunter et al. (2018) in the same
data sets. Table 3 shows the comparison results of the models,
among which all indicators of the CNN model proposed by
Park, except FAR, are better.

Landa & Reuveni (2022) proposed a multilayer, one-
dimensional CNN forecast model with time-series data of soft
X-rays observed by the GOES satellite as the data set. The
model was trained and evaluated by randomly selecting a
portion of the data set and extracting time-series features.
Experiments show that the model considering the time-series
characteristics of the flare data has a higher forecast rate, and
this makes recurrent neural networks (RNNs) and their
corresponding variant algorithms, which can extract time-
series features of data, a hot topic of research for researchers. In
the study of RNN variants of long short-term memory neural
networks (LSTMs) for short-term forecasting models of solar
flares, Chen et al. (2019) used a self-encoder to extract features
from SDO/HMI magnetogram data, and used LSTM to extract
time-series features from the data for flare forecasting. Liu et al.
(2019) utilized SHARP data to construct flare forecasting
models for intensity levels � M5.0, �M and �C in the next 24
hr, separately, based on the LSTM method considering
historical flare rates.

He (2021) used the SHARP data provided by SDO/HMI in
the active solar regions as a data set. They first analyzed the
feature importance of each physical parameter in the SHARP
data using the extreme gradient boosting (XGBoost) method
(Ramraj et al. 2016). Subsequently, they extracted the time-
series features of flare data and built the flare forecast model for
the next 48 hr. The experiments show that the model is superior
to the traditional ML models in terms of the true positive rate

(TPR) and TSS, which are 0.7483 and 0.7402, respectively,
and the FAR and ACC are close to those of the traditional ML
models, which are 0.0081 and 0.9894, respectively. In general,
the overall performance of the model was better than that of the
traditional ML model. She compared this model with the CNN-
based flare prediction models built by Li et al. (2011) with
SOHO/MDI magnetograms as the data set and by Huang et al.
(2010) using SOHO/MDI and SDO/HMI magnetograms as
the data set for a horizontal comparison of quantified
performance metrics. As shown in Table 4, compared with
the CNN model using magnetogram data, the LSTM model has
a slightly lower TPR than the CNN model, lower FAR than the
model proposed by Huang, higher TPR than the model
proposed by Li et al. (2011), and better accuracy (ACC) and
FPR than the CNN model. Moreover, as shown in Table 5, the
data samples of the LSTM forecasting model are fewer than
those of the CNN forecasting models. The model performance
can be further improved if the number of data samples in the
LSTM forecasting model is increased.

4.2. Design Methods of the Fusion Model

4.2.1. Design Methods of Shallow Model

Considering the solar projection effect, most forecast models
focus only on active regions within 30° of the center of the

Table 3
Performance Metrics of the three CNN Models Compared with the Other Three Flare Forecasting Models

ACC FAR HSS TSS Datasets

Lu et al. (2018) 0.78 0.14 0.57 0.57
Khan et al. (2019) 0.79 0.21 0.57 0.56 Train: 1996–2008 Test: 2009–2017
Park et al. (2018) 0.82 0.17 0.63 0.63
Colak & Qahwaji (2009) 0.81 0.30 0.51 0.47 Train: 1972–1998 Test: 1999–2002
Bloomfield et al. (2012) 0.71 0.65 0.32 0.46 Train: 1988–1996 Test: 1996–2010
Hunter et al. (2018) 0.76 0.65 0.34 0.49 Train: 1996–2010 Test: 2010–2015

Table 4
LSTM Model and CNN Model Evaluation

Forecasting method TPR FPR FAR ACC TSS

He (2021) LSTM 0.7483 0.5000 0.0081 0.9894 0.7402
Li et al. (2011) CNN 0.8050 0.2297 0.1860 0.7919 0.6190
Huang et al. (2010) CNN 0.8100 0.8449 0.1900 0.8111 0.6200

Table 5
Contingency Table

Forecasting
Method

True Posi-
tive (TP)

False Nega-
tive (FN)

True Nega-
tive (TN)

False Posi-
tive (FP)

LSTM 113 38 13840 113
CNN 1008 291 978 231
CNN 1614 378 37711 8783
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solar disk. However, solar flares can also erupt in active regions
outside 30°. To address this problem, Li & Du (2019) proposed
a cost-sensitive decision tree algorithm. They built two flare
forecasting models from the active regions within 30° of the
solar disk center and outside 30° of the solar disk center. After
evaluating the performance of the two models, they integrated
them into one model, i.e., a full-disk solar flare forecasting
model was obtained. The structure of the model is illustrated in
Figure 5. The analysis shows that the forecasting rate of the
model outside 30° of the center of the solar disk is worse than
that of the model within 30°, owing to the projection effect. In
addition, the model within 30° had a higher TN rate than the
model built based on CNN under the same conditions.
Benvenuto et al. (2020) combined supervised regression
methods incorporating regularization with the classification
techniques of unsupervised fuzzy clustering for flare forecast-
ing. Subsequently, they compared the model with several
single ML models under the same data set for analysis. The
results show that the forecast performance of the hybrid method
is better than that of all other unsupervised methods.

The ensemble forecasting strategy has been applied to
numerical weather forecasting in recent years, and it is a method
that combines different forecast models to obtain more accurate
results. In the field of flare prediction, Guerra et al. (2016)
demonstrated the applicability of ensemble forecasts with
multiple model inputs for forecasting flare eruptions within a
specific solar activity region. Ribeiro & Gradvohl (2021)

analyzed three flare prediction methods: SVM, RF, and Light
Gradient Boosting Machine (LightGBM) (Zhou et al. 2002). To
uncover the best-performing combination of forecast models,
they combined the three algorithms two-by-two through logical
connectors. In addition, the three algorithms were combined by
the majority vote combination method (Sun & Li 2008). Based
on these combinations, the forecasting models of M-class and
X-class flares within the time ranges of 24, 48, and 72 hr in
advance are established. In addition, they highlighted the effect
of data preprocessing on the performance of solar flare
forecasting models. Table 6 displays the combination of
forecasting methods with the best performance metrics on the
test set at 24, 48, and 72 hr. The table shows that the majority
vote combination method has good prediction performance at 24
and 72 hr. The above results affirm that the best approach to
predicting solar flares is to combine the two approaches or the
majority vote combination method.
Liu et al. (2017c) used the longitudinal magnetograms

provided by SOHO/MDI and the magnetograms observed in
the active regions to build image libraries, and they proposed a
genetic optimization algorithm based on image libraries to infer
flare outburst patterns. This inference method combines flare
forecast results with the forecasterʼs experience to generate the
final results. The experimental results show that the metrics of
TP rate, HSS, and average accuracy of the method are better
than those of the traditional ML methods. In particular, this
method is the first to incorporate artificial experience to predict

Figure 5. Full-disk solar fare forecasting model.

Table 6
Results of the Best Forecast Model in the Test Dataset of Solar Flare Forecasting

Time Range Forecasting Model Metrics

TP rate TN rate TSS F1−score

24 hr Majority voting method 81.0 % 77.4% 58.4% 49.4%
48 hr RF and LightGBM 76.7% 74.8% 51.5 % 47.1%
72 hr Majority voting method 81.2% 73.3% 54.5% 52.2%
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flare outbreaks. Murray et al. (2017) also highlighted the
impact of incorporating artificial empirical forecasts into
forecast models and demonstrated that models incorporating
artificial experience had higher forecast rates than the original
models. Park et al. (2017) proposed that the indicator scores for
assessing the performance of flare forecasting models do not
consider the effects of various cost losses. For the first time,
they applied the indicator score-based decision to a flare
prediction model with cost loss.

4.2.2. Design Methods of Deep Model

Based on the deep learning method, a multimodal flare
forecasting model was proposed by Ma et al. (2021). By
combining the active region magnetograms, magnetic field
parameters, and flare event labels with the advantages of high
accuracy of fully connected neural networks, high recall of
CNN, and its ability to effectively extract high-level semantic
information, they trained flare prediction models based on the

sunspot group magnetograms as well as the magnetic feature
parameters, separately. Finally, they formed the final output by
the weighted fusion of the forecast results of the two models.
The fusion model structure is illustrated in Figure 6, and the
results of the discriminative strategy are depicted in Figure 7.
The experiments show that the main performance evaluation
metrics of the model were at least 7.8% better than those of the
other models. Table 7 presents a horizontal comparison of the
quantified metrics of the performance of the forecast models
designed by Yuan et al. (2016), Ma et al. (2021), and
He (2021).
Deng et al. (2021) proposed a hybrid CNN model for global

flare forecasting, and the model was denoted as M. Considering
the effects of the rising and falling phases of the solar activity
cycle, they proposed two CNN sub-models—Mrp and Mdp—for
forecasting flare outbursts in the rising and falling phases of the
solar activity cycle, respectively. The experiments show that
the TSS of model M improved considerably compared with

Figure 6. Structure of multimodal flare forecast model.

Figure 7. Schematic of model fusion strategy.
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those of previous studies; in particular, the TSS of the two sub-
models was higher. Zheng et al. (2019) proposed a hybrid CNN
four-classification model wherein the intensity level of flare
eruptions can be predicted. The model comprises three binary
classification sub-models with similar structures, one of which
coarsely classifies the sample inputs and the other two sub-
models of which then finely classify the classification results of
the first stage. This strategy effectively reduces the additional
error in the model caused by the imbalanced sample numbers
of the flare outburst categories (N, C, M, and X). The overall
structure of the model is shown in Figure 8.

Chen et al. (2022) proposed a two-stage flare forecasting
system, the first of which consists of an unsupervised clustering
algorithm, k-means, which was used to improve the TP rate,
and several CNN models, which improved the flare forecasting
rate by integrating the forecasting results of the CNN models.
In the second stage, three CNN models were selected:
Xception, Resnet18, and Resnet34. The results demonstrate
that the F1–score of this flare forecasting system reaches
0.5639. Deshmukh et al. (2022) proposed a hybrid two-stage
ML method to alleviate the problem of high FAR in flare
forecasting models. The first stage is a CNN model based on
the VGG-16 structure and the second stage is a model based on
an extreme random tree (ERT). In model training, the
hyperparameters are updated iteratively to maximize TSS,
which solves the problem of large discrepancy between the TP
and FP rates in the highly imbalanced flare data set. Finally,
they established a flare forecast system 12 hr in advance.

Sun et al. (2022) used data sets from two solar observation
cycles provided by SMART and SHARP (Bobra et al. 2021) to
examine the flare forecasting performance of two deep learning
models—LTSM and CNN models—and explored the possibi-
lity of combining LSTM and CNN. The experiments showed

that LSTM generally performs better than CNN forecasts as the
sample size increases considerably for two solar cycles. In
addition, the fusion model of the LSTM and CNN has a higher
TSS than the individual models.
Making a series of optimizations and building a flare

prediction model based only on CNN does not essentially solve
the problem of simply using image recognition and ignoring
the fact that flare samples have time-series characteristics. In
this regard, Fang (2018) proposed fusing LSTM to extract the
time-series characteristics of flare observed data of active
regions based on a CNN, and the structure of the fusion model
is illustrated in Figure 9. Analysis of the prediction results
showed that the fusion model achieved 94.1% accuracy, 94.6%
precision, 87.5% recall, 91% F1−score, 86.6% HSS, and 85%
TSS. This model was compared with the models based on
multi-model fusion proposed by Liu et al. (2017b) and the
models designed using shallow neural networks proposed by Li
& Du (2019) under the same conditions, as affirmed in
Figure 10. Wan et al. (2022) designed a resampling-based CNN
and Gated Recurrent Unit (GRU) fusion model for flare
forecasting and showed that the fusion model has an advantage
in flare forecasting tasks, i.e., by comparing the forecast
performance of a single algorithm and the fusion algorithm, the
TSS, HSS, and FAR of the fusion algorithm are superior.
Table 8 displays a horizontal comparison of the quantified
metrics of the flare prediction models of Fang (2018), Li & Du
(2019), and Wan et al. (2022). Tang et al. (2021) used the
observed magnetograms of sunspot groups and a neural
network method driven by characteristic magnetic parameters
to design a flare prediction model that incorporated DNN,
CNN, and bidirectional LSTM. The experiments confirmed that
the fusion model outperformed traditional statistical models
and any single ML model.

4.3. Other Forecasting Methods

Sunspot activity directly affects the outer space environment,
and flares erupt when they gather to a certain level. The least-
squares support vector machine (LSSVM) (Suykens et al.
2002) can effectively solve the highly nonlinear problem of
forecasting the monthly mean sunspot numbers, providing a
new idea for flare forecasting.
When a flare erupts, a large number of X-rays are the first to

reach the Earth, causing a sharp increase in the electron
concentration in the ionosphere, resulting in a subsequent
decrease in the equivalent reflection height of the ionosphere,
which causes a phase anomaly in the very-low-frequency
(VLF) signal. Su et al. (2019) used a VLF receiver to monitor
the abnormal phase changes of the VLF signal during the
launch of the Chinese “Shenzhou-1” spacecraft. Subsequently,
the intensity level of the flare was successfully predicted based
on these data and compared with the flare eruptions observed
by the GOES satellite managed by the U.S. The results show

Table 7
Horizontal Comparison of Flare Prediction Models by Yuan, Ma, and He

Horizontal
Comparison ACC Recall FPR FAR

Yuan et al.
(2016)

MLP 77.9% 68.1% 22.1% L

PCA-SVM 82.7% 62.9% 17.3% L

Ma et al.
(2021)

Sigmoid 89.3% 41.1% L 34.7%

CNN(ResNet34) 88.4% 37.1% L 26.3%
CNN(Incep-
tion V4)

90.4% 41.1% L 59.2%

Multimodal
model

94.5% 41.1% L 59.7%

He (2021) LSTM 93.94% 74.83% 50.00% L
XGBoost 91.96% 50.66% 48.99% L
SVM 91.99% 32.45% 45.56% L
RF 90.91% 31.78% 54.28% L
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that the prediction is highly consistent with the GOES satellite
observations of flare outbursts, which verifies the feasibility of
the VLF method for forecasting solar flares. Flare eruptions are
characterized by enhanced X-ray fluxes, and the direct
forecasting of X-ray fluxes can reflect flare outbursts to some
extent. Yi et al. (2020) forecasted the X-ray flare flux profile by
designing a deep-learning model. The results show that the
model can successfully perform distribution forecasting of flare
X-ray flux without any preprocessing of the data to extract
features and outperforms other models.

Krista & Chih (2021) introduced a flare eruption tracking
tool that identifies flare characteristics and outburst precursors
by detecting extreme ultraviolet (EUV) radiation values,
revealing the relation between EUV and flares and the possible
mechanisms causing flare eruptions. In addition, Bertolucci
et al. (2017) and Edmonds (2018) studied the relations between
planetary positions and flare outbursts. Petrakou (2021)
investigated the relations between the timing of flare eruptions
and the relative motion of planets and used ML techniques to
forecast flare outbursts.

Figure 8. Overall structure of the hybrid CNN-based four-classification model for solar flare prediction.

Figure 9. CNN+LSTM fusion forecasting model structure.
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4.4. Section Summary

The core task of solar flare forecasting is to build a forecast
model using statistical ML methods, deep learning methods, or
a combination of them, and how to choose a high-performance
forecast model is a key problem for experts and scholars to
solve. In this section, the single-model and fusion-model design

methods, which have been widely used in flare forecasting in
recent years, are described. The forecasting performance of
these models is analyzed with horizontal comparison, and other
forecasting methods are briefly outlined. It is demonstrated that
solar flare forecasting models show diversified development,
and with regard to statistical ML, a large number of
comparative experimental analyses demonstrate that models
combining multiple statistical ML methods have better
forecasting performance than single-method models. As for
deep learning, the sparse connection and weight sharing
properties of CNN reduce the total number of parameters in
the training process and facilitate CNN to learn flare burst
patterns quickly. In addition, RNN and its corresponding
variants can better take into account the time-series features of
flare data. The fusion model combining these two methods can
learn flare outburst patterns more accurately and the quantified
metrics of prediction performance are excellent. To further
improve the forecast rate, hyperparametric search for the
optimization of forecast models, selection of more novel
algorithms, and design of models adapting to the imbalance
problem of flare observed data are open to further research.

5. Conclusion and Prospection

In summary, we herein review the techniques of solar flare
forecasting based on data-driven models in recent years from
the aspects of sample feature selection, sample preprocessing,
and forecast model design. So far, in the field of solar flare
forecasting, most studies use conventional forecast factors,
including the sunspots and magnetic field parameters. How-
ever, with the advancement of observation techniques, some
studies have found that flare outbursts are associated with
CMEs (Forbes et al. 2006) and solar energetic particles (SEPs)

Figure 10. Performance comparison between the fusion model and other methods.

Table 8
Horizontal Comparison of Flare Forecasting Models by Li, Fang, and Wan

Horizontal
Comparison

Whether
the

Outbreak ACC Precision Recall

Forecasting
model

N 87.3% 94.2% 88.1%

within 30° P 87.3% 88.2% 71.6%
Li & Du

(2019)
Forecasting

model
N 68.1% 82.3% 67.5%

beyond 30° P 68.1% 67.5% 77.2%

Fang
(2018)

epoch = 500 N 91.6% 94.8% 92.4%

batch_size = 8 p 91.6% 85.7% 90.0%
epoch = 500 N 94.1% 93.9% 97.5%
batch_size = 16 p 94.1% 94.6% 87.5%
epoch = 1000 N 90.8% 92.5% 93.7%
batch_size = 8 p 90.8% 87.2% 85.0%
epoch = 1000 N 90.8% 93.6% 92.4%
batch_size = 16 p 90.8% 85.4% 87.5%

Wan et al.
(2022)

CNN N 83.2% 84.6% 82.4%

p 84.3% 84.8% 83.1%
GRU N 86.4% 86.6% 84.5%

p 87.5% 87.8% 84.9%
CNN–GRU N 90.4% 91.2% 89.5%

p 90.8% 91.4% 90.2%
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(Reames 2013). Therefore, extracting forecast factors from the
CME and SEP events can be considered in the future.

Most studies use resampling to deal with the class imbalance
problem in flare data, but resampling introduces additional
forecast errors. To resolve the problem, it is necessary to
consider a range of classifier-based imbalance treatment
methods and verify their applicability. Meanwhile, current
study mainly deals with inter-class imbalance, whereas intra-
class imbalance exists in the flare data, which still needs to be
further studied and appropriately addressed.

In terms of ML algorithms, models that combine multiple
statistical ML methods have superior forecasting performance
compared with single-method models. With regard to deep
learning, the fusion model combining CNN and RNN can learn
flare outburst patterns more accurately, and the quantified
indicators of the forecast performance are much better. To
further improve the forecast rate, hyperparameters search for
optimization of forecast models, selection of more novel
algorithms, and design of models adapting to the imbalance
problem are hot topics for future research. In addition, with the
development of ML techniques, new algorithms such as
recommendation algorithms and self-organizing mapping
neural networks (Kholod et al. 2021) have emerged, which
can shed new light on flare forecasting.

Acknowledgments

The authors would like to acknowledge the support of the
National Key Research and Development Program of China
(No. 2022YFA1604600) and the National Natural Science
Foundation of China (NSFC, Grant No. 11975086).

ORCID iDs

Jun-feng Fu https://orcid.org/0000-0003-0242-2218

References

Abed, A. K., Qahwaji, R., & Abed, A. 2021, AdSpR, 67, 2544
Anastasiadis, A., Papaioannou, A., & Sandberg, I. 2017, SoPh, 292, 1
Arjun, P., & Manoj, K. G. 2021, CompJ, 2021, 1
Aschwanden, M. J., & Aschwanden, P. D. 2008, ApJ, 674, 530
Batista, G. E., Prati, R. C., & Monard, M. C. 2004, ACM SIGKDD

Explorations Newsletter, 6, 20
Beinecke, J., & Heider, D. 2021, BioData Mining, 14, 1
Benvenuto, F., Campi, C., & Massone, A. M. 2020, ApJL, 904, L7
Bertolucci, S., Zioutas, K., & Hofmann, S. 2017, PDU, 17, 13
Bloomfield, D. S., Higgins, P. A., & McAteer, R. T. J. 2012, ApJL, 747, L41
Bobra, M. G., Wright, P. J., & Sun, X. 2021, ApJS, 256, 26
Carrasco, V. M. S., Lefèvre, L., & Vaquero, J. M 2015, SoPh, 290, 1445
Carrington, R. C. 1859, MNRAS, 20, 13
Castelvecchi, D. 2016, Nature News, 538, 20
Chawla, N. V., Bowyer, K. W., & Hall, L. O. 2002, J. Artif. Intell. Res.,

16, 321
Chen, J., Li, W., & Li, S. 2022, SpScT, 2022, 452
Chen, Y., Manchester, W. B., & Hero, A. O. 2019, SpWea, 17, 1404
Cicogna, D., Berrilli, F., & Calchetti, D. 2021, ApJ, 915, 38
Cinto, T., Gradvohl, A. L. S., & Coelho, G. P. 2020, SoPh, 295, 93
Colak, T., & Qahwaji, R. 2009, SpWea, 2009, 277

Cui, Y., Li, R., & Zhang, L. 2006, SoPh, 237, 45
Démoulin, P., & Pariat, E. 2008, AdSpR, 43, 1013
Deng, Z., Wang, F., & Deng, H. 2021, ApJ, 922, 232
Deshmukh, V., Berger, T., & Meiss, J. 2020, arXiv:2012.14405
Deshmukh, V., Flyer, N., & Van Der Sande, K. 2022, ApJS, 260, 9
Domijan, K., Bloomfield, D. S., & Pitié, F. 2019, SoPh, 294, 1
Doschek, G. 2021, SoPh, 296, 1
Edmonds, I. R. 2018, arXiv:1811.10703
Falco, M., Costa, P., & Romano, P. 2019, JSWSC, 9, 22
Fang, R. 2018, Beijing University of Posts and Telecommunications, (In Chinese),

https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201802&filename=
1018096349.nh

Florios, K., Kontogiannis, I., & Park, S. H. 2018, SoPh, 293, 1
Forbes, T. G., Linker, J. A., & Chen, J. 2006, Coronal Mass Ejections,

2006, 251
Fu, X., Liao, C. W., & Bai, X. Y. 2018, AR&T, 15, 340, (In Chinese)
Gallagher, P. T., Moon, Y. J., & Wang, H. 2002, SoPh, 209, 171
Gopalswamy, N., Lara, A., & Yashiro, S. 2003, ApJL, 598, L63
Guerra, J. A., Pulkkinen, A., & Uritsky, V. M. 2016, SpWea, 13, 626
Gyenge, N., Ludmány, A., & Baranyi, T. 2016, ApJ, 818, 127
Hale, G. E. 1908, Terr. Magn. Atmos. Elect., 13, 59
Han, H., Wang, W. Y., & Mao, B. H. 2005, in International Conference on

Intelligent Computing, ed. D. S. Huang, X. P. Zhang, & G. B. Huang, 677
Hazra, S., Sardar, G., & Chowdhury, P. 2020, A&A, 639, A44
He, H., & Garcia, E. A. 2009, IEEE Trans. Knowl. Data Eng., 21, 1263
He, X. R. 2021, CNKI, 2021 (In Chinese), 23
Higgins, P. A., Gallagher, P. T., & Mcateer, R. 2011, AdSpR, 47, 2105
Huang, G., Liu, Z., & Laurens, V. 2016, IEEE Computer Society, 234, 4700
Huang, X., Wang, H., & Xu, L. 2018, ApJ, 856, 7
Huang, X., Yu, D., & Hu, Q. 2010, SoPh, 263, 175
Hunter, D. A., Gallardo, S., & Zhang, H. X. 2018, ApJ, 855, 7
Inoue, S., Bamba, Y., & Kusano, K. 2017, JASTP, 180, 3
Jonas, E., Bobra, M., & Shankar, V. 2018, SoPh, 293, 1
Khan, R. U., Zhang, X., & Kumar, R. 2019, JCVHT, 15, 29
Kholod, I., Rukavitsyn, A., & Paznikov, A. 2021, J. Supercomputing, 77, 6197
Komm, R., & Hill, F. 2009, JGRA, 114, 78
Korsós, M. B., Ludmany, A., & Erdelyi, R. 2015, ApJL, 802, L21
Korsós, M. B., Romano, P., & Morgan, H. 2020, ApJL, 897, L23
Korsós, M. B., Ruderman, M. S., & Erdélyi, R. 2018, AdSpR, 61, 595
Krista, L. D., & Chih, M. 2021, ApJ, 922, 218
Kusano, K., Iju, T., & Bamba, Y. 2020, Science, 369, 587
Landa, V., & Reuveni, Y. 2022, ApJS, 258, 12
Li, R., & Du, Y. 2019, AdAst, 2019, 1
Li, R., & Huang, X. 2018, SSPMA, 48, 119601
Li, R., Wang, H., & Cui, Y. M. 2011, SCPMA, 54, 1546
Lim, D., Moon, Y. J., Park, J., et al. 2019, JKAS, 52, 133
Liu, C., Deng, N., & Wang, J. T. L. 2017a, ApJ, 843, 104
Liu, H., Liu, C., & Wang, J. 2019, ApJ, 877, 121
Liu, J. F., Li, F., & Wan, J. 2017b, RAA, 17, 34
Liu, J. F., Li, F., & Zhang, H. P. 2017c, RAA, 17, 116
Louis, R. E., Kliem, B., & Ravindra, B. 2015, SoPh, 290, 3641
Lu, S., Lu, Z., & Zhang, Y. D. 2018, JComS, 30, 41
Ma, J., Liu, Z., & Shi, Y. R. 2021, Spacecraft Environment Engineering, 38,

256, (In Chinese)
Ma, R., Boubrahimi, S. F., & Hamdi, S. M. 2017, in IEEE International

Conference on Big Data (Big Data) 2017, ed. M. Khalefa,
S. D. Bhattacharjee, & D. J. Crichton, 2569

McIntosh, P. S. 1990, SoPh, 125, 251
Morales, L., & Charbonneau, P. 2016, ApJ, 682, 654
Murray, S. A., Bingham, S., & Sharpe, M. 2017, SpWea, 15, 577
Nandy, D. 2020, SoPhys, 296, 3
Ndacyayisenga, T., Uwamahoro, J., & Raja, K. S. 2021, AdSpR, 67, 1425
Nishizuka, N., Sugiura, K., & Kubo, Y. 2017, ApJ, 835, 156
Nishizuka, N., Sugiura, K., & Kubo, Y. 2018, ApJ, 858, 113
Niu, Z., Zhong, G., & Yu, H. 2021, Neurocomputing, 452, 48
Nurzaman, M. Z., & Dani, T. 2019, JPhCS, 1231, 012020
Osokin, A. R., Podlazov, A. V., & Chernetsky, V. A. 2004, Proc. Int. Astron.

Union, 2004, 477
Panos, B., & Kleint, L. 2020, ApJ, 891, 17
Park, E., Moon, Y. J., & Shin, S. 2018, ApJ, 869, 91

15

Research in Astronomy and Astrophysics, 23:065002 (16pp), 2023 June Han et al.

https://orcid.org/0000-0003-0242-2218
https://orcid.org/0000-0003-0242-2218
https://orcid.org/0000-0003-0242-2218
https://orcid.org/0000-0003-0242-2218
https://doi.org/10.1016/j.asr.2021.01.042
https://ui.adsabs.harvard.edu/abs/2021AdSpR..67.2544A/abstract
https://doi.org/10.1007/s11207-017-1163-7
https://doi.org/10.1093/comjnl/bxab039
https://doi.org/10.1086/524371
https://ui.adsabs.harvard.edu/abs/2008ApJ...674..530A/abstract
https://doi.org/10.1186/s13040-021-00283-6
https://doi.org/10.3847/2041-8213/abc5b7
https://ui.adsabs.harvard.edu/abs/2020ApJ...904L...7B/abstract
https://doi.org/10.1016/j.dark.2017.06.001
https://ui.adsabs.harvard.edu/abs/2017PDU....17...13B/abstract
https://doi.org/10.1088/2041-8205/747/2/L41
https://ui.adsabs.harvard.edu/abs/2012ApJ...747L..41B/abstract
https://doi.org/10.3847/1538-4365/ac1f1d
https://ui.adsabs.harvard.edu/abs/2021ApJS..256...26B/abstract
https://doi.org/10.1007/s11207-015-0679-y
https://ui.adsabs.harvard.edu/abs/2015SoPh..290.1445C/abstract
https://doi.org/10.1093/mnras/20.1.13
https://ui.adsabs.harvard.edu/abs/1859MNRAS..20...13C/abstract
https://doi.org/10.1038/538020a
https://ui.adsabs.harvard.edu/abs/2016Natur.538...20C/abstract
https://doi.org/10.1613/jair.953
https://doi.org/10.1029/2019SW002214
https://ui.adsabs.harvard.edu/abs/2019SpWea..17.1404C/abstract
https://doi.org/10.3847/1538-4357/abfafb
https://ui.adsabs.harvard.edu/abs/2021ApJ...915...38C/abstract
https://doi.org/10.1007/s11207-020-01661-9
https://ui.adsabs.harvard.edu/abs/2020SoPh..295...93C/abstract
https://doi.org/10.1029/2008sw000401
https://doi.org/10.1007/s11207-006-0077-6
https://ui.adsabs.harvard.edu/abs/2006SoPh..237...45C/abstract
https://doi.org/10.1016/j.asr.2008.12.004
https://ui.adsabs.harvard.edu/abs/2009AdSpR..43.1013D/abstract
https://doi.org/10.3847/1538-4357/ac2b2b
https://ui.adsabs.harvard.edu/abs/2021ApJ...922..232D/abstract
http://arxiv.org/abs/2012.14405 
https://doi.org/10.3847/1538-4365/ac5b0c
https://ui.adsabs.harvard.edu/abs/2022ApJS..260....9D/abstract
https://doi.org/10.1007/s11207-018-1392-4
https://ui.adsabs.harvard.edu/abs/2019SoPh..294....6D/abstract
https://doi.org/10.1007/s11207-021-01851-z
https://ui.adsabs.harvard.edu/abs/2021SoPh..296....1D/abstract
http://arxiv.org/abs/1811.10703
https://doi.org/10.1051/swsc/2019019
https://ui.adsabs.harvard.edu/abs/2019JSWSC...9A..22F/abstract
https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201802%26filename=1018096349.nh
https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201802%26filename=1018096349.nh
https://doi.org/10.1007/s11207-018-1250-4
https://doi.org/10.1007/s11214-006-9019-8
https://ui.adsabs.harvard.edu/abs/2006cme..book..251F/abstract
https://ui.adsabs.harvard.edu/abs/2006cme..book..251F/abstract
https://doi.org/10.14005/j.cnki.issn1672-7673.20180427.003
https://doi.org/10.1023/A:1020950221179
https://ui.adsabs.harvard.edu/abs/2002SoPh..209..171G/abstract
https://doi.org/10.1086/380430
https://ui.adsabs.harvard.edu/abs/2003ApJ...598L..63G/abstract
https://doi.org/10.1002/2015SW001195
https://ui.adsabs.harvard.edu/abs/2015SpWea..13..626G/abstract
https://doi.org/10.3847/0004-637X/818/2/127
https://ui.adsabs.harvard.edu/abs/2016ApJ...818..127G/abstract
https://doi.org/1029/TE013i004p00159
https://doi.org/10.1051/0004-6361/201937426
https://ui.adsabs.harvard.edu/abs/2020A&A...639A..44H/abstract
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.27562/d.cnki.gkyyz.2021.000023
https://doi.org/10.1016/j.asr.2010.06.024
https://ui.adsabs.harvard.edu/abs/2011AdSpR..47.2105H/abstract
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.3847/1538-4357/aaae00
https://ui.adsabs.harvard.edu/abs/2018ApJ...856....7H/abstract
https://doi.org/10.1007/s11207-010-9542-3
https://ui.adsabs.harvard.edu/abs/2010SoPh..263..175H/abstract
https://doi.org/10.3847/1538-4357/aaa964
https://ui.adsabs.harvard.edu/abs/2018ApJ...855....7H/abstract
https://doi.org/10.1016/j.jastp.2017.08.035
https://ui.adsabs.harvard.edu/abs/2018JASTP.180....3I/abstract
https://doi.org/10.1007/s11207-018-1258-9
https://doi.org/10.1007/s11416-018-0324-z
https://doi.org/10.1007/s11227-020-03509-2
https://doi.org/10.1029/2008JA013977
https://doi.org/10.1088/2041-8205/802/2/L21
https://ui.adsabs.harvard.edu/abs/2015ApJ...802L..21K/abstract
https://doi.org/10.3847/2041-8213/ab9d7a
https://ui.adsabs.harvard.edu/abs/2020ApJ...897L..23K/abstract
https://doi.org/10.1016/j.asr.2017.05.023
https://ui.adsabs.harvard.edu/abs/2018AdSpR..61..595K/abstract
https://doi.org/10.3847/1538-4357/ac2840
https://ui.adsabs.harvard.edu/abs/2021ApJ...922..218K/abstract
https://doi.org/10.1126/science.aaz2511
https://ui.adsabs.harvard.edu/abs/2020Sci...369..587K/abstract
https://doi.org/10.3847/1538-4365/ac37bc
https://ui.adsabs.harvard.edu/abs/2022ApJS..258...12L/abstract
https://doi.org/10.1155/2019/5190353
https://doi.org/10.1360/SSPMA2018-00040
https://ui.adsabs.harvard.edu/abs/2018SSPMA..48k9601L/abstract
https://doi.org/10.1007/s11433-011-4391-0
https://ui.adsabs.harvard.edu/abs/2011SCPMA..54.1546L/abstract
https://doi.org/10.5303/JKAS.2019.52.4.133
https://ui.adsabs.harvard.edu/abs/2019JKAS...52..133L/abstract
https://doi.org/10.3847/1538-4357/aa789b
https://ui.adsabs.harvard.edu/abs/2017ApJ...843..104L/abstract
https://doi.org/10.3847/1538-4357/ab1b3c
https://ui.adsabs.harvard.edu/abs/2019ApJ...877..121L/abstract
https://doi.org/10.1088/1674-4527/17/4/34
https://ui.adsabs.harvard.edu/abs/2017RAA....17...34L/abstract
https://doi.org/10.1088/1674-4527/17/11/116
https://ui.adsabs.harvard.edu/abs/2017RAA....17..116L/abstract
https://doi.org/10.1007/s11207-015-0726-8
https://ui.adsabs.harvard.edu/abs/2015SoPh..290.3641L/abstract
https://doi.org/10.1016/j.jocs.2018.11.008
https://doi.org/10.12126/see.2021.03.004
https://doi.org/10.1007/bf00158405
https://ui.adsabs.harvard.edu/abs/1990SoPh..125..251M/abstract
https://doi.org/10.1086/588274
https://ui.adsabs.harvard.edu/abs/2008ApJ...682..654M/abstract
https://doi.org/10.1002/2016SW001579
https://ui.adsabs.harvard.edu/abs/2017SpWea..15..577M/abstract
https://doi.org/10.1007/s11207-021-01797-2
https://ui.adsabs.harvard.edu/abs/2021SoPh..296...54N/abstract
https://doi.org/10.1016/j.asr.2020.11.022
https://ui.adsabs.harvard.edu/abs/2021AdSpR..67.1425N/abstract
https://doi.org/10.3847/1538-4357/835/2/156
https://ui.adsabs.harvard.edu/abs/2017ApJ...835..156N/abstract
https://doi.org/10.3847/1538-4357/aab9a7
https://ui.adsabs.harvard.edu/abs/2018ApJ...858..113N/abstract
https://doi.org/10.1016/j.neucom.2021.03.091
https://doi.org/10.1088/1742-6596/1231/1/012020
https://doi.org/10.1017/S1743921304006581
https://doi.org/10.1017/S1743921304006581
https://doi.org/10.3847/1538-4357/ab700b
https://ui.adsabs.harvard.edu/abs/2020ApJ...891...17P/abstract
https://doi.org/10.3847/1538-4357/aaed40
https://ui.adsabs.harvard.edu/abs/2018ApJ...869...91P/abstract


Park, J., Moon, Y. J., & Choi, S. 2017, SpWea, 15, 704
Park, S. H., Leka, K. D., & Kusano, K. 2020, ApJ, 890, 124
Petrakou, E. 2021, AdSpR, 68, 2963
Ramraj, S., Uzir, N., & Sunil, R. 2016, IJCTA, 9, 276
Reames, D. V. 2013, SSRv, 175, 53
Ribeiro, F., & Gradvohl, A. L. S. 2021, A&C, 35, 100468
Rong, L., Jie, Z., & YanMei, C. 2013, ChSBu, 58, 1845
Roy, S., Prasad, A., & Ghosh, K. 2020, RAA, 20, 110
Sadykov, V. M., & Kosovichev, A. G. 2017, ApJ, 849, 148
Sharma, J., Kumar, B., & Malik, A. K. 2021, MNRAS, 506, 4952
Shibata, K., & Magara, T. 2011, Living Rev. SoPh, 8, 6
Shin, S., Lee, J. Y., & Moon, Y. J. 2016, SoPh, 291, 897
Stanislavsky, A., Burnecki, K., & Janczura, J. 2019, MNRAS, 485, 3970
Stanislavsky, A., Nitka, W., & Małek, M. 2020, JASTP, 208, 105407
Su, Y., Dong, L., & Niu, Y. 2019, Prog. Geophys., 34, 1336
Sun, J., & Li, H. 2008, Expert Syst. Appl., 35, 818
Sun, Z., Bobra, M. G., & Wang, X. 2022, ApJ, 931, 163
Suykens, J. A. K., Van, Gestel, T., & De, Brabanter, J. 2002, Basic Methods of

Least Squares Support Vector Machines, 10 (Singapore: World Scientific), 71

Tang, R., Liao, W., & Chen, Z. 2021, ApJS, 257, 50
Tao, X., Li, Q., & Guo, W. 2019, Inf. Sci., 487, 31
Vemareddy, P., Ambastha, A., & Maurya, R. A. 2012, ApJ, 761, 86
Vemareddy, P., Cheng, X., & Ravindra, B. 2016, ApJ, 829, 24
Vuttipittayamongkol, P., & Elyan, E. 2020, Inf. Sci., 509, 47
Wan, J., Fu, J. F., & Tan, D. M. 2022, RAA, 22, 085020
Wang, J., & Duan, B. 2017, CAAI Transactions on Intelligent Systems, 12,

865, (In Chinese)
Wang, X., Wu, J., & Liu, C. 2017, J. Beijing Univ. Aeronaut. Astronaut.,

44, 772
Wang, Z., Wu, C., & Zheng, K. 2019, IEEE Access, PP, 1
Wheatland, M. S. 2004, PASA, 22, 153
Yi, K., Moon, Y. J., & Lim, D. 2021, ApJ, 910, 8
Yi, K., Moon, Y. J., & Shin, G. 2020, ApJL, 890, L5
Yu, D., Huang, X., & Wang, H. 2009, SoPh, 255, 91
Yu, L., Zhou, R., & Tang, L. 2018, Appl. Soft Comput., 69, 192
Yuan, F., Lin, J. B., & Deng, Y. Y. 2016, ChSBu, 61, 2316, (In Chinese)
Zheng, Y., Li, X., & Wang, X. 2019, ApJ, 885, 73
Zhou, Y., Lin, Q., & Xiao, D. 2002, JPhCS, 2294, 012035

16

Research in Astronomy and Astrophysics, 23:065002 (16pp), 2023 June Han et al.

https://doi.org/10.1002/2016SW001532
https://ui.adsabs.harvard.edu/abs/2017SpWea..15..704P/abstract
https://doi.org/10.3847/1538-4357/ab65f0
https://ui.adsabs.harvard.edu/abs/2020ApJ...890..124P/abstract
https://doi.org/10.1016/j.asr.2021.05.034
https://ui.adsabs.harvard.edu/abs/2021AdSpR..68.2963P/abstract
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1007/s11214-013-9958-9
https://ui.adsabs.harvard.edu/abs/2013SSRv..175...53R/abstract
https://doi.org/10.1016/j.ascom.2021.100468
https://ui.adsabs.harvard.edu/abs/2021A&C....3500468R/abstract
https://doi.org/10.1360/972012-1464
https://doi.org/10.1088/1674-4527/20/7/110
https://ui.adsabs.harvard.edu/abs/2020RAA....20..110R/abstract
https://doi.org/10.3847/1538-4357/aa9119
https://ui.adsabs.harvard.edu/abs/2017ApJ...849..148S/abstract
https://doi.org/10.1093/mnras/stab1959
https://ui.adsabs.harvard.edu/abs/2021MNRAS.506.4952S/abstract
https://doi.org/10.12942/lrsp-2011-6
https://doi.org/10.1007/s11207-016-0869-2
https://ui.adsabs.harvard.edu/abs/2016SoPh..291..897S/abstract
https://doi.org/10.1093/mnras/stz656
https://ui.adsabs.harvard.edu/abs/2019MNRAS.485.3970S/abstract
https://doi.org/10.1016/j.jastp.2020.105407
https://doi.org/10.6038/pg2019CC0214
https://doi.org/10.1016/j.eswa.2007.07.045
https://doi.org/10.48550/arXiv.2204.03710
https://ui.adsabs.harvard.edu/abs/2022ApJ...931..163S/abstract
https://doi.org/10.3847/1538-4365/ac249e
https://ui.adsabs.harvard.edu/abs/2021ApJS..257...50T/abstract
https://doi.org/10.1016/j.ins.2019.02.062
https://doi.org/10.1088/0004-637X/761/2/86
https://ui.adsabs.harvard.edu/abs/2012ApJ...761...86V/abstract
https://doi.org/10.3847/0004-637X/829/1/24
https://ui.adsabs.harvard.edu/abs/2016ApJ...829...24V/abstract
https://doi.org/10.1016/j.ins.2019.08.062
https://doi.org/10.1088/1674-4527/ac78d0
https://ui.adsabs.harvard.edu/abs/2022RAA....22h5020W/abstract
https://doi.org/10.11992/tis.201706049
https://doi.org/10.13700/j.bh.1001-5965.2017.0285
https://doi.org/10.1109/ACCESS.2019.2940061
https://doi.org/10.1086/421261
https://ui.adsabs.harvard.edu/abs/2005PASA...22..153W/abstract
https://doi.org/10.3847/1538-4357/abdebe
https://ui.adsabs.harvard.edu/abs/2021ApJ...910....8Y/abstract
https://doi.org/10.3847/2041-8213/ab701b
https://ui.adsabs.harvard.edu/abs/2020ApJ...890L...5Y/abstract
https://doi.org/10.1007/s11207-009-9318-9
https://ui.adsabs.harvard.edu/abs/2009SoPh..255...91Y/abstract
https://doi.org/10.1016/j.asoc.2018.04.049
https://doi.org/10.1360/N972015-01342
https://doi.org/10.3847/1538-4357/ab46bd
https://ui.adsabs.harvard.edu/abs/2019ApJ...885...73Z/abstract
https://doi.org/10.1088/1742-6596/2294/1/012035
https://ui.adsabs.harvard.edu/abs/2022JPhCS2294a2035Z/abstract

	1. Introduction
	2. Selection of Forecast Factors
	2.1. Sunspot Parameters
	2.2. Magnetic Field Parameters
	2.3. Historical Flare Rate
	2.4. Other Parameters
	2.5. Section Summary

	3. Flare Samples and Their Preprocessing Methods
	3.1. Normalization and Standardization of Flare Samples
	3.1.1. Sample Normalization Process
	3.1.2. Sample Standardization Process

	3.2. Class-imbalance Processing Methods of Samples
	3.2.1. Inter-class and Intra-class Imbalances in Flare Samples
	3.2.2. Class-imbalance Processing Methods Based on Resampling

	3.3. Section Summary

	4. Design Methods of Forecasting Model
	4.1. Design Methods of a Single Model
	4.1.1. Design Methods of Shallow Model
	4.1.2. Design Methods of Deep Model

	4.2. Design Methods of the Fusion Model
	4.2.1. Design Methods of Shallow Model
	4.2.2. Design Methods of Deep Model

	4.3. Other Forecasting Methods
	4.4. Section Summary

	5. Conclusion and Prospection
	References



