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Abstract

The influence of a third-body’s orbital elements on the second-body’s motion in a hierarchical triple system is a
crucial problem in astrophysics. Most prolonged evaluation studies have focused on a distant zero-inclined third-
body. This study presents a new perspective on second-body motion equations that addresses a perturbing-body in
an elliptic orbit derived with consideration of the axial-tilt (obliquity) of the primary. The proposed model is
compared by the dual-averaged method and the N-body problem algorithm. After validation, a generalized three-
body model is derived to investigate the effects of the third-body’s orbital elements on secondary-body motion
behavior. The proposed model considers short-time oscillations that affect secular evaluation and applies to
exoplanets with all the primary and third body eccentricities, inclinations, and mass ratios. It is shown that the
obliquity of the primary (or third-body’s inclination) must be considered for precise long-term assessment, even in
highly-hierarchical systems.
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1. Introduction

The disturbing effect of a third-body on a secondary-body’s
motion in a hierarchical triple system is a crucial problem in
astrophysics. It has wide applications in star systems and
exoplanets (Han et al. 2014; Ricker et al. 2015), and has been
extensively studied in the literature (Domingos et al.
2014, 2015; Nie & Gurfil 2021). There are evaluations of the
orbital elements of a secondary-body that orbits around a
primary-body on a timescale of thousands of days; hence, it
would be impossible to plan such evaluations without
addressing third-body orbit characteristics (Bakhtiari et al.
2017b). In prior studies, the X-Y plane of the inertial coordinate
(placed on the centroid of the primary-body) has been used as
the third-body orbital plane for simplification instead of relying
on the primary-body’s equatorial plane (Carvalho et al. 2011;
Sosnitskii 2014; Rollin et al. 2016; Lara 2022) and the
restricted three-body problem (Wang et al. 2016; Abouelmagd
et al. 2020; Abbasali et al. 2021; Saeed & Zotos 2021). It
means that the obliquity (axial-tilt) of the primary-body is
ignored, and the equatorial plane of the primary-body is
assumed to be the perturbing-body orbital plane. This
simplification may lead to significant error in long-term
evaluations of a three-body problem, especially for exoplanets
that orbit on inclined orbits. The star 30 Arietis B is one of the
stellar companions for which consideration of orbital inclina-
tion became important due to the effect on the system’s
stability (Kane et al. 2015). This issue is due to the existence of

arelatively large separation of the detected stellar companion to
30 Arietis B. Further, the evaluation of inclination is important
in such a system. In most previous works, the disturbing
function (model for third-body perturbation) is expanded in the
form of Legendre polynomials truncated up to the second-order
term (quadrupole term) and a single-average (averaged over the
secondary-body orbit) or double-average (averaged over the
third-body orbit plus averaged over the secondary-body orbit)
model is employed without consideration of the primary-
body’s obliquity (Bello & Singh 2015; Gomes & de Céssia
Domingos 2016; Neishtadt et al. 2018, 2021). Single- and dual-
average methods are used to eliminate short-period terms by
decreasing the degrees of freedom of the motion equations of
the secondary-body. Besides neglecting obliquity, the single-
average model becomes inefficient when considering the
primary-body’s oblateness or other perturbations (Grishin
et al. 2017). Therefore, the primary-body is neglected in
previous works in favor of the single-average technique. Also,
the double-average process does not consider short-term effects
that affect the secular evolution and break down when
conducting long-term evaluation. This error is more striking
for a moderately-hierarchical three-body system because the
disturbing force’s short-time oscillation and high-order expan-
sion (Ito 2016) are ignored (Katz et al. 2011).

A non-simplified model is proposed in this paper to
overcome the accumulated error in prolonged evaluation of
this problem in previous works caused by neglect of axial-tilt,
the breakdown of the dual-averaged (DA) approximation over
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the long-term or a highly-eccentric orbit, and inaccuracy due to
expansion of the third-body potential to a quadrupole term in a
moderately-hierarchical system (Luo et al. 2016). This study
has developed a non-simplified secondary-body motion model
by considering third-body gravity and investigating the
prolonged effects of primary-body obliquity. The proposed
model is valid for long-term evaluations of a moderately-
hierarchical and massive third-body system. In addition, it will
be shown that the DA model will be inaccurate and
inapplicable when the disturbing-body is massive in a
moderately-hierarchical system. This paper illustrates the effect
of obliquity on the variation of a prolonged orbital element and
critical inclination. It is shown that obliquity should be
considered for a planet on an inclined or eccentric orbit, like
some exoplanetary systems. This aspect is demonstrated in
several generalized three-body system simulations. This study
is organized as follows: Section 2 proposes a non-simplified
model of an oblate primary-body orbiter considering the
inclined-elliptical third-bodies for prolonged investigation. The
proposed model can assess short-term variations and avoid
error accumulation in the long-term evaluation of prior models
such as the DA model (Liu et al. 2012; Luo et al. 2016).
Section 3 provides numerical results to validate the proposed
model and demonstrate the importance of obliquity and the
non-simplified model. Also, the effect of orbital elements of a
third-body is investigated on the secondary-body motion in a
generalized moderately-hierarchical three-body system. An
inclined, eccentric, massive third-body is applied to the
proposed model with obliquity to demonstrate the imperfec-
tions in the DA model. Finally, Section 4 summarizes the
results and presents the conclusion and reasons for this
research.

2. The Dynamic Model

The system explained in this investigation includes an inner
binary of two celestial bodies (a primary- and secondary-body
with mass M and m, respectively), and a perturbing-body with
mass m3. The changes in outer orbit (third-body orbit) are
neglected, and the outer orbit is assumed to be Keplerian. The
system’s geometry is illustrated in Figure 1 as an attractive
physical case of m3; > M >> m (the test particle limit). Also, the
coordinate system (OXYZ) describes the inertial frame whose
origin is attached to the primary-body’s center of mass. The X
—Y plane concurs with the primary-body’s equatorial plane,
and the north pole of the primary-body is supposed to be along
the Z-axis (Bakhtiari et al. 2017¢).

The angular rotational velocity of the Local Vertical-Local
Horizontal (LVLH) coordinate is

W= WX + wyy + w;z, )

where w, and w, are the steering and orbital rate of the
secondary-body’s orbital plane, respectively. According to the

Figure 1. The configuration of the primary- and secondary-body as the inner
two celestial objects in the presence of an inclined perturbing-body.

orbital elements of the secondary-body, w, and w, are written as
(Xu & Wang 2008)

Wy = cos(ﬁ)ﬂ + sin(9)cos(i)£, 2)
dt dt
do dQ)
= — + ] ) 3
we = cos(i) o (3)

where s, and c, represent sin(*) and cos(*) respectively.
Moreover, i, 0, € render inclination, the argument of latitude,
and the right ascension of ascending node (RAAN), respec-
tively. The derivatives of the unit vectors are yielded as

i()c) =w XX =uwy, )
dt
d
—(Y) =W XY = Wil — WX, (5)
dt
d
—@)=wxz=—wy, (6)
dt
r h
X=—,z2=—,y =2 XX, @)
| |7

where h = |r X F| is the angular momentum. Also, the angular
velocity component of the y-axis equals zero (Kechichian
1998).

di Q
, = —sin(f) — + cos(f)sin(i)— = 0. 8
wy sin( )dt cos( )Sm(l)dt (8)

2.1. Secondary-body Motion Affected by Inclined
Third-body

The secondary-body motion is described by hybrid orbital
elements (r, vy, i, h, 6, Q1) (Bakhtiari et al. 2017¢c) Also, the
third-body is in an inclined orbit with semimajor axis as,
eccentricity e3, argument of perigee ws, argument of latitude 65,
and RAAN 5 (Xu et al. 2012). Also, the potential function of
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the system is stated as (Bakhtiari et al. 2017a)

1 1
Ws = M3(d7 - r,—3" . ra} 9

where ps3 is the gravitational constant of the third-body,
r3 = X3X + Y3y + z3z is the vector that adjoins the centers of the
primary-body and third-body in the LVLH frame, and
d3=r;—r is the vector from the secondary-body to the
third-body center, expressed as

= J — r? + 33 + 232 (10)

The gradient of the potential function of the perturbing-body is
set as follows

1 1 H3
VW; = - = —= |- —=r an
3 “3[@3 d;)3 3

Additionally, the gradient of the primary-body’s gravitational
potential function must be present in the LVLH frame. The
potential gravitational function of the oblate primary-body can
be derived as below (Bakhtiari et al. 2017c)

U=-t_ k—(l - sinz(i)sinz(e)),
ko =35 uR2 /2. (12)

The gradient of the gravitational potential of the primary-body
is derived in the LVLH frame as

VU — [# ’%2(1 - 3sin2(i)Sin2(9))]x
+ [ sin2(sin20) |y
+ [kr’—j sin2(2i)Sin(9)]z- (13

Describing the secondary-body’s position, velocity, and
acceleration vectors in the LVLH frame is required to produce
the gradient of the potential function applied to the secondary-
body (Xu et al. 2012)

o (14)
Ay =vorx+ty (15)
dt r
d? dv h? 1 dh h
R P 16
dtz() (dt 3) rdty wrz (16)

In the above equations, % is the angular momentum, which is
defined as h = |r x %L Establishing the relation between the
unit vectors r =x, r = [r00]”, r3 = [x3y;23]7, and a combina-
tion of Equations (11) and (13), the potential function gradient
acting on the secondary-body is encapsulated in the LVLH

Bakhtiari
frame
I T 201V qin2
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Now by taking on j—;(r) = —(VW + VU) and by combining
Equations (16) and (17), the secondary-body’s motion with the
primary-body’s obliquity in the presence of third-body
perturbations can be expressed as in Equations (18)—(23).

dr
A 18
T (13)
2
dvx __H + h kf_z(l 3 sin(i) sin®(0))
dt oot
1 1 M3
# (s = ) - 5ir) "
ah = —kj—z sin®(i)sin(26) — ru; L - L Y3 (20)
dt r3 73 d3

do r 1 1 h
— =cos()sin(@)—p3| = — — |z3 + —=
dt (@sind )h”3(r33 df)“ 2

+ % cos?(i)sin?(0). (21)
% _ _% sin(2i)sin(26)
r

r 1 1
—cos()—p| = — — |z3. 22
()hu3(r3 d;)m (22)

3

dQ ) ki ko
— = —sin*(f)cos(i
” @] ()h T3

(L - d%})z} (23)

The non-simplified secondary-body motion equations are
obtained with six hybrid orbital elements.

The secondary-body’s motion can be evaluated using five
equations, Equations (18)—(22), which are independent of 2.
Also, when utilizing these equations, the perturbing-body’s
inclination is considered to be important for long-time motion
evaluation.

r sin(6)

h sm(l)
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Moreover, the orbital rate w, is equal to (Wei et al. 2013)

h
W= = 24)
r

Also, the steering rate of the orbital plane will be extracted by
applying Equations (16) and (17)

. o . k]z
wy = —sin(2i)sin(0) =—=
@sin()-
r 1 1
— — sl = — —= |z 25

Now, employing (24), (25), and (18)—(20), the time derivative
of the rotation components of the LVLH frame relative to the
inertial coordinate can be derived as

dwy
oy =
dt
— kj_2(2i cos(2i)sin(f) + d—HSiH(Zi)COS(G)
r3h dt
1 dh . N 3Vx)
h dt r
k r 1 dl’ 1 dh
sm 2i)sin(f) — —
h ( l) ( ) M3( dt h dt)
L T O Y IR
Rood) o\ d3 d
L ldg_L%Z (26)
h 4 dt di dt
_ dwz . 2Vxh 207 i ka
o, = i sin (z)sm(ZQ)r—5
1 1 1
1 ’ 27
’ IJJ(}"; d’; )yB ( )
where

d dx; dr) dy;  dzz /
L= -ZL)+ B L E1 /4 28
dt( & [( dt dt dt dt > %)

Applying Equations (18)—(23) requires knowing the displace-
dx’ % %] components of

the third-body. These components are acquired by following
the steps below:

ment [x; y; z3]7 and velocity

1. The classical orbital elements of a third-body in an
inclined elliptical orbit with a semimajor axis as,
eccentricity es, inclination i3, argument of perigee ws,
argument of latitude 63 and RAAN ()3 are derived based
on Keplerian motion.

2. The position and velocity vectors of the third-body are
attained along the p (the apse line in the perifocal frame)
and ¢ (lies along the 90° true anomaly to p) (Hintz 2015)

Bakhtiari

by 1

e D3 ;(cos(f) + sin(f;)q) (29)
T ts3 1+ e3cos(fy) VP V-

r3 = 3= —[—cos(f)p + (e3 + cos(f))ql. (30)

H3

3. The position and velocity vectors of the third-body in the
inertial frame are obtained from the perifocal frame by:

0y
Co;Cay — Su:CiSa, —8Su,Ca, — CuyCiSo,  SwsSas
= Cw3SQ3 + Sw3Ci3CQ3 —Sw3SQ3 — CUJ3C1‘3CQ3 —Si3C93
Sw3Si3 Cw3Si3 Ci}
3D
where Sy = sin(*), Cyx = cos(¥).
ry = Q. (32)
vi =0l (33)

4. The position and velocity vectors of the third-body in the
LVLH frame (located on the secondary-body) can be

derived by
%
CoCq — $yCiSa  CopCq + S9CiCo  SpS;
=|8Ca — CySiSa —SpSa — CCiCqa CyS; | (34)
SiSa —5;Cq G
r3=®rf =[x y; zl, (35)
dx; dy, dZ3]
yy=0LyE = | = 5 22| 36
’ ET [ dt dt dt (36)

3. Result Analysis

At first, some numerical simulations were done to demon-
strate the proposed model’s validity for secondary-body
motion. The model presented by Liu et al. (2012) was
employed to validate Equations (18)—(23). Subsequently, the
outcomes of this model can be explored.

3.1. Validation

Contrary to some previous works (Castelli 2012; Mardling
2013; Sosnitskii 2014; Kholostova 2015; Rollin et al. 2016;
Singh & Tyokyaa 2016; Topputo 2016), here, the perturbing-
body’s inclination is not taken as zero. No restrictions or
simplifications have been invested when deriving the motion
equations or simulations considering third-body effects. The
motion of the secondary-body was compared with the results
for the DA method using similar orbital parameters. Figure 2
illustrates the effect of primary-body obliquity and the
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Figure 2. Variation of inclination in 400 canonical time units for various initial
inclinations; double-averaged model (Liu et al. 2012) (dashed line), the
proposed model (solid line).

difference between the DA and the proposed exact solution
using Equations (18)—(23). The parameters used in Figure 2 are
similar to those in Liu et al. (2012). In Figure 2 the eccentricity
of the secondary-body is varied due to the effect of Kozai—
Lidov oscillation. Both Kozai and Lidov found that the
oscillation of a secondary-body’s eccentricity and inclination
is much longer than its orbital period (Naoz 2016). The
parameters used in Figure 2 are similar to those in Liu et al.
(2012).

The proposed model shows good accuracy and can be used
to investigate the planetary orbiters problem further. Further-
more, Table 1 lists the DA’s root mean square error (RMSE)
and the proposed model for better comparison with a
hierarchical three-body system. Here, the N-body (numerical
integration of the N-body equations of motion) algorithm is
employed as an accurate numerical method to show the error
created by the DA and proposed models. The parameters
chosen are % =10, % =50,e;3=025e=02,0=0.

As expressed in Table 1, the proposed model is more
accurate than the DA model, especially for orbits with high
inclination. In the next section, results show that the DA’s error
is increased, and results become unreliable with increasing
time. The DA approximation made simplifications to insert the
gravity effect of the third-body in the motion equation of the
secondary-body (quadrupole approximation) (de Almeida
Prado & Vieira Neto 2006; de Almeida Prado 2003). Also,
the DA model ignores the short-term oscillations, which cause
an accumulation of errors in a long-term investigation (Ricker
et al. 2015).

In former studies, the gravitational potential of a perturbing-
body are expanded in terms of (a/a3)". Most of them are
expanded to the quadrupole (n =2), which breaks down for

Bakhtiari

Table 1
Evaluation of RMSE for Double-average and Present Model Compared to N-
body Algorithm for Different Values of Initial Inclination of Asteroid Orbiter

Double-average Model Present Model

Inclination Inclination
=- Eccentricity (deg) Eccentricity (deg)
ip = 80 0.021 2.54 0.007 0.37
ip="175 0.025 3.04 0.009 0.42
ip =65 0.031 3.65 0.009 0.46
ip = 60 0.039 4.37 0.010 0.50
ip =55 0.049 5.05 0.011 0.51
ip =50 0.063 5.59 0.011 0.53

prolonged moderately-hierarchical systems (% < 100). Some
studies have expanded the potential gravity of the perturbing-
body to octupole (n = 3) to prevent a significant change in the
long-term evaluation results (Katz et al. 2011; Lithwick &
Naoz 2011). The octupole level of approximation yields an
interesting behavior even beyond the Kozai angles and is
associated with high-order resonances that result in extremely
large eccentricity peaks and flips. In addition, this approx-
imation is useful in understanding a general hierarchical system
and the Kozai-Lidov mechanism (Naoz 2016). However, some
degree of simplification and ignoring of terms (n=4, 5, ...)
occurs in the octupole approximation. Thus, this approximation
may consider some error in the triple system, and it is
appropriate to propose a non-simplified method for this
problem.

3.2. Third-body’s Inclination and Eccentricity

In this section, some results are acquired to show the third-
body’s inclination and eccentricity effects on the long-term
investigation of the orbital characteristics of the secondary-
body in a moderately-hierarchical triple system. Furthermore,
the outcomes illustrate the significance of the effects of
ignorance of the primary-body’s obliquity in previous work
due to simplification. Likewise, evaluating the impact of
secondary-body eccentricity, inclination, and RAAN is also
essential. A generalized three-body system is examined to
investigate the effect of third-body orbital elements further.

In this work, the time unit equals the period of the third-body
orbiting the primary-body and initial conditions of the
secondary-body are assumed as w=60=Q=0, i, =60° and
a = 8R (R is the primary-body’s radius). The results are derived
from highly-elliptic orbits by various eccentricities of the
secondary-body orbit (e =0.0, 0.2, 0.5). Moreover, it is
supposed that the orbital elements of the third-body are:
i3=10° w3;=0;=0Q3=0, a3=250a, and eccentricity is
assumed to be in the interval 0 < e3 < 0.4. According to the
assumptions, the effect of third-body eccentricity on the inner
binary orbit can then be investigated.
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Figure 3. Variations of inclination and eccentricity for secondary-body orbit, on the orbital period of the third-body for different eccentricities. The initial conditions
of the secondary-body are assumed as w = 6 = Q =0, iy = 60° and a = 8R, and those for the third-body are: i3 = 10°, w3 = 03 = Q3 = 0, a3 = 250a.

Figure 3 illustrates the third-body’s eccentricity effect on the
alteration of the orbital elements of the secondary-body in a
prolonged mission. Eccentricity variation of the third-body’s
orbit does not cause significant changes in the amplitude of
inclination or eccentricity. In this case the secondary-body
inclination and eccentricity have some large variation, but in
some cases the raising of eccentricity can lead to instability of the
three bodies over time. This oscillation of inclination is apparent

in the investigation of two planet candidates KOI-275.01 and
KOI 275.02. The two left panels present the evolutions of their
orbital inclinations relative to the orbital plane of the proposed
stellar companion and their mutual orbital inclination (Wang
et al. 2014). This study shows a large variation in inclination.
Furthermore, the variation of the RAAN of a secondary-
body’s orbit is illustrated in Figure 4. Variation in the RAAN
gets faster by increasing the eccentricity of the third-body.
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Figure 4. Evaluation of the RAAN of the secondary-body in the presence of a third-body with different eccentricity. The initial conditions of the secondary-body are
assumed as w=0=Q =0, ip = 60°, a = 8R, and those for the third-body are: i3 = 10°, w3 = 03 = Q3 =0, az = 250a.

In the following, the importance of the inclination of the
third-body and primary-body’s obliquity is more significant
when the secondary-body has an eccentric orbit, as seen in
some exoplanets such as 30 Arietis Bb. The new best-fit
Keplerian orbital solution, along with the fit residuals, was
provided (Kane et al. 2015). The parameters include eccen-
tricity, periastron argument, orbital period, time of periastron
passage, periastron argument, radial velocity (RV) semi-
amplitude, semimajor axis, minimum planet mass, and the
RV linear trend (Guenther et al. 2009). A generalized three-
body system was considered to demonstrate the importance of
obliquity and a high-order perturbing force on a prolonged
mission for further investigation. In this example, the
eccentricity of the perturbing-body is e3 = 0.2, and obliquity
is assumed to be in the interval 0° < i3 < 100°. Also, mass and
semimajor axis ratios equal 100 and 250, respectively. The
initial values of inclination and eccentricity are 70° and 0.2 for
a secondary-body with different initial inclinations (i =20°,
50°, 80°) and w=Q=0.

Next, an evaluation of the inclination and eccentricity of the
secondary-body’s orbit is displayed in Figure 5 by employing
Equations (18)—(23). In previous works that ignore the
primary-body’s obliquity, the X — Y plane (in an inertial frame)
is considered the third-body’s orbital plane instead of the
equatorial plane of the primary-body. In this sense, the
inclination of the third-body is assumed to be zero (Bello &
Singh 2015). This simplification causes significant errors in the

prolonged evaluation of the non-planar three-body system,
specifically in the case of a massive perturbing-body.

Furthermore, previous works (Broucke 2003; Domingos
et al. 2014) have reported that if the secondary-body’s orbital
inclination is lower than the critical value (i=39%2), its
eccentricity does not vary remarkably in the presence of the
perturber (third-body). On the contrary, when the secondary-
body’s inclination is above the critical inclination, the orbit
becomes very elliptic over time, as affirmed in Figure 5. When
ignoring the primary-body obliquity, the critical inclination is
about 3992 (de Almeida Prado 2003).

As demonstrated in Figure 5, with an increase in the third-
body, the variation of the eccentricity of the secondary-body
occurs in a wider range, unless |i — i’| is lower than the critical
inclination of 39°2. Also, the inclination of the secondary-body
around the retrograde third-body (inclination greater than 90°,
red lines) changes in the opposite direction of the prograde
third-body (inclination less than 90°, black and blue lines). The
importance of obliquity or inclination of the third-body is
evident in these simulations. Moreover, in Figure 5, Kozai—
Lidov oscillation is present which leads to large variations
between the eccentricity and inclination of the secondary-
body’s orbit.

Figure 6 illustrates the effect of the semimajor axis ratio of a
third-body’s orbit on secondary-body eccentricity and inclina-

tion. It is demonstrated that the semimajor axis ratio % is the
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Figure 5. Changes in inclination and eccentricity of the secondary-body under the influence of a third-body with different inclinations. The initial conditions of the
secondary-body are assumed to be w =60 = =0, e = 0.2, and those for the third-body are: e = 0.2, w3 = 63 = Q3 =0, a3 = 100a.

important factor affecting the motion of the secondary-body.
By decreasing the semimajor axis ratio %, the disturbing force
of the third-body becomes more influential, and the importance
of the primary-body’s obliquity (third-body’s inclination) is
evident (see the case of % = 20). In this case, the secondary-
body motion becomes unstable and escapes from the primary-

body orbit. Also, with the third-body moving away, slower
changes occur in the orbital elements of the secondary-body.
It should be noted these results are also under the influence
of the mass ratio (mﬁ}), assuming that this value is constant and
equal to 100 in the above simulations. For this simulation, a
generalized three-body system with various values of as/a is
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Figure 6. Variations of inclination and eccentricity over 250 periods of the third-body orbit for different semimajor axis ratios. The initial conditions of the secondary-

body are assumed as w=60=Q =0, e = 0.2, i = 60°, and for the third-body they are: ¢ =0, w3 =03 = Q3 =0, %3 = 100.

examined. The initial conditions of the secondary-body are ratio of ("ﬁ’/) and semimajor axis ratio (%) are the impor-
(e =0.2), w=Q=0and i = 60° and the third-body is moving tant factors affecting the accuracy of the results. By
in a circular orbit. increasing %, the disturbing force of the third-body becomes

Figure 7 illustrates the effect of mass ratio on inclination more influential, and the importance of the primary-body
of the secondary-body’s orbit. It is shown that the mass obliquity is evident.
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Figure 7. Variations of inclination and eccentricity over 800 periods of the third-body orbit for different mass ratios. The initial conditions of the secondary-body are
assumed as w=60=Q =0, e = 0.3, i = 60°, and for the third-body they are: e = 0.2 , i = 60°, w3 = 63 = Q3 =0, a3 = 40a.

4. Conclusions

This paper proposes a new non-simplified model for
investigating problems in long-term missions. This model can
be applied to all eccentricities, inclinations, and massive
perturbers in a moderately-hierarchical system with wide
application in astrophysics. Several previous works have
ignored the effects of the obliquity of the primary-body on
prolonged evaluation. That way, previously, the X — Y plane of
inertial coordinate (placed on the centroid of the primary-body)
was assumed as the third-body’s orbital plane (for simplifica-
tion) instead of the equatorial plane of the primary-body. Here,
it is shown that ignorance of obliquity leads to a remarkable
error in prolonged evaluation. The proposed model shows good
agreement compared to the N-body numerical integration
algorithm, but the error in DA approximation increases over
time. For a more detailed examination of the third-body effect
on the prolonged motion of the secondary-body, a general
three-body system has been introduced to investigate the
perturbing effect of eccentricity and inclination and Kozai—
Lidov oscillation. Thus, consideration of the obliquity of the
primary-body is required in the long-term evaluation of three-
body systems. Finally, the effect of the semimajor axis ratio is
studied and shown on the motion of the secondary-body.
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