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Abstract

Large scale spectroscopic surveys such as that using Large-sky Area Multi-Object Fiber Spectroscopic Telescope
(LAMOST) have collected spectra of millions stars in the Milky Way. Utilizing this huge sample of stars to study
the assembling history and structure of our Galaxy requires accurate estimates of distance, extinction, age, and
mass for individual stars. Combining the parallax constraint from Gaia EDR3 with Bayesian inference, we have
estimated the distance and extinction for stars observed in LAMOST DR7, as well as the stellar mass and age for
evolved stars in this data release. We validated the accuracies of the stellar parameters by comparing our results
against various measurements, including the star-pair technique, asteroseismology, globular clusters, and isochrone
fits to main sequence stars and subgiants. This is a valuable catalog of stellar parameters under a Bayesian
framework estimated using the data from Gaia EDR3 and LAMOST spectroscopic data. With this data set we
explored the stellar population of the Galactic massive substructure Gaia-Sausage-Enceladus (GSE). The
kinematically selected members of GSE have a median metallicity of [Fe/H] = −1.29 and a median age of
11.6 Gyr.

Key words: stars: distances – stars: fundamental parameters – stars: kinematics and dynamics – Galaxy: formation
– (Galaxy:) globular clusters: general

1. Introduction

We have entered a golden era of Galactic archaeology with
many large-scale sky surveys and huge data sets available in
both photometry and spectroscopy, e.g., the Two Micron All-
Sky Survey (2MASS, Skrutskie et al. 2006), the Sloan Digital
Sky Survey (SDSS, York et al. 2000), the Sloan Extension for
Galactic Understanding and Exploration (SEGUE, Yanny et al.
2009), the Large-sky Area Multi-Object Fiber Spectroscopic
Telescope (LAMOST, Deng et al. 2012; Liu et al. 2014), the
Apache Point Observatory Galactic Evolution Experiment
(APOGEE; Majewski et al. 2017), and the Gaia mission (Gaia
Collaboration et al. 2016, 2018, 2021). These ambitious
surveys have provided valuable information for a large number
of stars, and are essential for understanding the structure,
formation, and evolution of our Galaxy. It is expected that in
the next decade the ongoing (e.g., LAMOST and Gaia) and
upcoming (e.g., 4MOST, WEAVE; Dalton et al. 2014; de Jong
et al. 2019) surveys will continually revolutionize our view on
the Galactic structure and its assembling history.

To make full use of these surveys to study the assembling
history of our Milky Way, it is crucial to derive and use the
multi-dimensional information on individual stars. These
astrophysical properties include the six-dimensional phase
space coordinates (i.e., three-dimensional (3D) position and 3D
velocity), metallicity and chemical abundances, photometries,

age, and extinction. The combination of these astrophysical
parameters can be used to reconstruct the assembly history of
the Galaxy. Chemo-dynamical studies have led to many new
findings, such as stellar streams, dwarf satellites, and clumps.
One of the major contributions of Gaia to this field is the
discovery of the so-called Gaia-Sausage-Enceladus (GSE;
Belokurov et al. 2018; Helmi et al. 2018; Xiang &
Rix 2022), a major merger event of the Milky Way 8–11
Gyr in age. Now our inner halo is almost dominated by the
relics of this massive merger event. This finding is achieved by
the analysis of kinematics, chemistry, age, and spatial
distribution of stars, which demonstrate the importance of the
combination of multi-dimensional information on individual
stars.
The LAMOST Galactic survey began its regular survey in

the fall of 2012, which was the first spectroscopic survey to
obtain spectra of over 10 million stars, and regularly released
basic stellar parameters measured with the official LAMOST
stellar parameter pipeline (LASP; Wu et al. 2011; Luo et al.
2015). These stellar parameters include effective temperature
Teff, metallicity [Fe/H], surface gravity glog , and the line-of-
sight velocity Vr. To fully make use of this huge data set for
Galactic archaeology, it is of vital importance to provide an
estimate of distance, extinction, age, and stellar mass. In
addition to those basic stellar parameters, in the Value-Added
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Catalog, more physical parameters (like the distance, extinc-
tion, mass, and age) from the LAMOST surveys are provided
to the community (e.g., Wang et al. 2016b; Xiang et al. 2017a).
For example, using the isochrone fitting method, Xiang et al.
(2017b) derived stellar ages for around 1 million main
sequence turnoff stars and subgiants in the LAMOST Spectro-
scopic Survey of the Galactic Anti-center (LSS-GAC;
Liu et al. 2014). Xiang & Rix (2022) derived ages for
subgiants in LAMOST Data Release 7 (DR7) with the
Bayesian isochrone fitting method. Huang et al. (2020) derived
distances, masses, and ages for ∼140,000 primary red clump
stars with a kernel principal component analysis method. The
measurements of the previous studies were usually based on
different methods, different models, and different prior
functions, which usually caused systematic errors (Pinson-
neault et al. 2018). It would be useful to check those results
from different approaches.

It has been demonstrated that Bayesian inference is a powerful
and important method in astrophysics, especially in deriving
stellar parameters (Burnett & Binney 2010; Burnett et al. 2011;
Binney et al. 2014; McMillan et al. 2018; Queiroz et al. 2018;
Aguirre Børsen-Koch et al. 2022; Anders et al. 2022; Wang et al.
2022b). With this approach, we have derived distance and
extinction for the LAMOST spectroscopy survey (Wang et al.
2016b) and SDSS/APOGEE survey (Wang et al. 2016a). In the
current work, we improved our former calculation by imposing
constraints with parallaxes from Gaia Early Data Release 3
(EDR3). With extensive comparisons with independent measure-
ments, we show that accurate parallaxes are important for
obtaining accurate stellar parameters, especially for significantly
improving the accuracies of stellar ages and masses.

The paper is structured as follows. In Section 2, we briefly
describe the methodology and data employed in the current
analysis. In Section 3, we compare our estimates of distance,
extinction, mass, and age with independent measurements in
the literature. In Section 4, we use these data to study the age
and metallicity of GSE substructures. Finally, a summary is
given in Section 5.

2. Methodology and Data

In Wang et al. (2016a, 2016b), we applied the Bayesian
method to estimate the distance and extinction to stars observed
by both the LAMOST and APOGEE surveys. The observables
used in this method include stellar parameters Teff, glog , and
[Fe/H], from LAMOST/APOGEE spectra, and infrared
photometries J, H, Ks from the 2MASS survey. In this work,
we include the constraint of Gaia parallax (ϖ). These
observables form an observed vector

O T g J H Ks, M H , log , , , , . 1eff( [ ] ) ( )v=

Each star can be characterized by a set of “intrinsic”
parameters: metallicity [M/H], age τ, initial mass, position

on the sky l, b, and distance from the Sun d. These quantities
also form another vector

X l b dM H , log , , , , . 2([ ] ) ( )t=

With trivial Bayesian theory, we can determine the posterior
probability of P(X|O), which is the conditional probability of
the parameter set X given O
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where P(O|X) is the likelihood of O given the parameter set X.
O and X can be connected by theoretical isochrones. P(X) is the
prior probability ascribed to the set of parameters. A Gaussian
function is used to associate the measured observables for each
component of O with a mean Õ and standard deviation Õs .
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An extinction model and a three-component model of the
Galaxy for the distribution functions of metallicity, density, and
age are used for the prior probability, P(X)
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Here i= 1, 2, 3 correspond to thin- and thick-disk, and
stellar halo, respectively.
The extinction prior model (AVprior(ℓ, b, d) ) is taken from

Sharma et al. (2011) with normalization to infinity adopted
from Schlegel et al. (1998). The Padova stellar isochrones3 are
used. With the posterior distribution function P(X|O) in hand, it
is trivial to derive the moments for each component xi of X. The
first and second moments for each component xi of X are the
expectation and uncertainties for each stellar parameter
respectively. In the current work, we derived the expectation
values and their associated uncertainties for four stellar
parameters: stellar distance, extinction, stellar mass, and age.
For details on the method, please refer to Wang et al.
(2016a, 2016b), Burnett & Binney (2010), Burnett et al.
(2011), Binney et al. (2014).
In the current work, we follow the same method as used in

Wang et al. (2016a, 2016b), but with several improvements.
First, the metallicity resolution of isochrones is increased to a
step of 0.05 dex ranging from −2.2 to 0.5. These improved
resolutions in metallicity result in 55 metallicity isochrones,
which are a factor of 2.5 larger than those used in Wang et al.
(2016a, 2016b). Even though the uncertainty of observed
stellar metallicity is larger than this value, higher resolution of
metallicity in isochrones helps break the degeneracy between
metallicity and age for the internal precision, especially for the
stellar age. We note that this metallicity bin size is within the
ranges of the literature using a Bayesian framework for stellar

3 http://stev.oapd.inaf.it/cgi-bin/cmd
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parameter estimation. Sanders & Das (2018) relied on a bin
size of 0.01 dex in metallicity following similar methodology
as us for stellar age estimation, but considering Gaia Data
Release 2 (DR2) parallax. Anders et al. (2022) used 0.1 dex in
metallicity bin size in their “StarHorse” code. Lin et al. (2022)
adopted 0.04 and 0.03 dex bin sizes for metallicity in the range
[−3, −1] and [−1, 0.5], respectively. Second, we imposed
parallax constraints from Gaia EDR3 (Gaia Collaboration et al.
2021) in the observable vector O, the errors of which are
considered in Equation (4). We note that the systematic errors
in the Gaia EDR3 parallaxes were corrected following the
method suggested by Lindegren et al. (2021), which are also
validated by independent checks (Huang et al. 2021; Zinn 2021;
Wang et al. 2022a). These improvements lead to accurate
estimates of stellar parameters as demonstrated in the following
sections.

In this work, we utilize LAMOST DR7 with atmospheric
parameter measurements for around 5 million stars (Wu et al.
2011; Luo et al. 2015). We cross-matched this catalog with Gaia
EDR3 to obtain parallax. There are 204,878 stars without
parallaxes available in Gaia EDR3, for which we set their parallax
errors to infinite. This corresponds to a flat prior in the parallax
constraint. In Appendix A, we discuss the uncertainties of
distance, extinction, stellar mass, and age yielded by our method.

3. Comparison and Validation with External
Measurements

In this section we compare the distance, extinction, mass,
and age for stars measured with our Bayesian inference to those

in the literature. In this way, we have an overview on the
accuracy and any systematic uncertainties of our measure-
ments. In the following comparisons, we will select LAMOST
data with signal-to-noise ratio (S/N) greater than 20 unless
otherwise stated.

3.1. The Distance

The left panel of Figure 1 compares the distance derived by
our Bayesian method with LAMOST data with that derived
with Gaia EDR3 parallaxes. In this comparison, 10%
uncertainties of Gaia EDR3 parallax data are selected for
cross-matching with LAMOST data. The red crosses indicate
the median values, and the error bars show the 1σ dispersion in
each bin. Thanks to the constraints from the Gaia EDR3
parallax used in our Bayesian method, the distance derived is
well correlated with the distance of Gaia EDR3 with tiny
uncertainties. There are many stars with large deviation from
the one-to-one straight line. There could be several reasons for
these stars, e.g., large uncertainties in stellar atmospheric
parameters from spectroscopic observation, and the mismatch
of stars between LAMOST data and Gaia EDR3 due to large
proper motion (PM).
The right panel of Figure 1 displays the distribution of

fractional difference in the parallaxes between our measure-
ment and Gaia EDR3, where the values of mean and dispersion
are labeled on the top left. There are large extended wings in
the distribution of fractional difference of parallaxes, which are
linked to the stars with large deviation from the one-to-one

Figure 1. (Left) Comparing distance derived by our Bayesian method with that of Gaia EDR3 parallax. The black-dashed line shows the one-to-one line. The red
crosses indicate the median values, and the error bars show the 1σ dispersion. The color bar on the right indicates the number density. (Right) The fractional difference
distribution of parallax. The values of median and dispersion are labeled on the top left. In the comparison with Gaia EDR3 data, the criterion of σϖ/ϖ < 0.1 has been
used to select parallax with high accuracy.
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correspondences in the left panel of Figure 1. Several reasons
may cause this.

3.2. The Extinction

In this section we compare the extinction measured by our
Bayesian method with measurement with the star-pair
technique (Yuan et al. 2013). This technique has been applied
to LAMOST data to estimate the extinction of individual stars,
which is provided in the Value-Added Catalog of the
LAMOST survey (e.g., Xiang et al. 2017b). In our method,
we used the Cardelli et al. (1989) extinction curve with
RV= 3.1 to calculate the extinction of the Ks band (AKs), which
provides a relation A 0.117Ks = Av (for details please refer to
Wang et al. 2016b). With the star-pair technique, Yuan et al.
(2013) suggest the extinction coefficient of R(Ks)= 0.306. To
make a fair comparison, we used the same extinction curve
(Cardelli et al. 1989) to convert their AKs to Av.

Figure 2 features the comparison of Av between our
extinction and that derived by the star-pair method in the
LAMOST Value-Added Catalog DR2 (Xiang et al. 2017b),
separated into giant (log g< 3.5, left panel) and dwarf (log
g> 3.5, right panel) stars. The median difference of Av derived
from the two independent methods is very small, i.e., 0.01 and
0.03 mag for giants and dwarfs, respectively, with a dispersion
of ∼0.2 mag.

3.3. The Stellar Mass

In this section, we compare the stellar mass to other
measurements. We note that it is only possible for mass and age

estimation for evolved stars, since the identification of mass
and age using theoretical isochrones is very difficult for main
sequence stars. We will hereafter consider evolved stars with

glog < 3.9 for their mass and age validation in this section and
the following section.
Pinsonneault et al. (2018) derived masses and ages for 6676

evolved stars (1< glog < 3.5) with Kepler asteroseismic data
and APOGEE spectroscopic parameters. We cross-matched
this catalog with LAMOST DR7, and found that most of these
stars were observed by LAMOST.
Figure 3 compares our Bayesian stellar mass to that derived

by Pinsonneault et al. (2018). There is good agreement between
the stellar mass estimated by these two independent measure-
ments, while there is a general trend that at high mass the
MKepler tends to be larger. The mean difference for the whole
sample is 0.06 Me, with a dispersion of 0.23 Me. The median
value and 68 percentile interval of fractional difference
are 0.06 0.12

0.22
-
+ .

Xiang et al. (2017a) estimated stellar age and mass for ∼1
million main sequence turnoff and subgiant stars from the
LAMOST spectroscopic survey. They also adopted a Bayesian
algorithm with observation data derived from LAMOST
spectra, including Teff, absolute magnitude Mv, [Fe/H], and
[α/ Fe]. Even though they adopted the Bayesian algorithm as
we did, there are great differences, e.g., the prior function,
isochrone models, and, more importantly, constraints given by
Gaia parallax. Therefore, it is interesting to compare the results
from these two methods. Figure 4 compares the estimated
stellar masses, which show good correlation. The red stars
indicate the median value at each bin, which shows that the

Figure 2. Comparing the extinction Av derived by our Bayesian method with that from the star-pair method (Yuan et al. 2013). The left panel shows results of giants
with glog < 3.5, and the right panel exhibits dwarf stars with glog > 3.5. The median difference and 1σ dispersion are labeled on the top left of each panel. The blue-
dashed line in each panel indicates the one-to-one correspondence. The background gray-scale image in each panel signifies the number density of stars.
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mass from Xiang et al. (2017a) is slightly larger than ours at
large mass range. The median difference is only 0.05 Me, and
dispersion is 0.12 Me. The median value of fractional
difference is 0.04, and the 68 percentile interval of the
fractional difference is [−0.11, 0.05].

3.4. The Age

In this section, we compare our stellar age to those estimated
from other independent methods. As noted in the above
section, only evolved stars with glog < 3.9 are considered in
this section.

Figure 3. Comparing stellar mass estimated by our Bayesian method to that
derived with asteroseismic data for giant stars (Pinsonneault et al. 2018). The
red stars indicate the median value for each bin, and error bars signify the
dispersion in each bin. The blue-dashed line indicates one-to-one correspon-
dence. The median value and 68 percentile interval of fractional difference
distribution are labeled on the top left with red color.

Figure 4. Comparing stellar mass estimated with our Bayesian method to that
from Xiang et al. (2017a) for main sequence turnoff stars and subgiants. The
spectral data with S/N > 20 were used in this comparison. The blue dashed
line indicates the one-to-one correspondence. The median value and 68
percentile interval of fractional difference distribution are labeled on the top left
with red color.

Figure 5. Comparing stellar age measured in current work for giant stars to that
from Pinsonneault et al. (2018) with asteroseismic data. The blue-dashed line
indicates the one-to-one correspondence, and the red stars and error bars show
the median value and 1σ dispersion in each bin respectively. The red numbers
on the top left express the median value and 68 percentile interval of fractional
difference distribution.

Figure 6. Comparing the stellar age for main sequence turnoff stars and
subgiants in the current work to that from Xiang et al. (2017a). The blue-
dashed line shows the one-to-one correspondence, and red stars and error bars
indicate the median and dispersion in each bin respectively. The median value
and 68 percentile interval of fractional difference distribution are labeled on the
top left with red color.
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The asteroseismic data are powerful for constraining stellar
mass, and then stellar age. Figure 5 compares stellar age
estimated with asteroseismic data for giant stars from
Pinsonneault et al. (2018). The stellar ages estimated with
these two different methods are consistent with each other,
while the ages from Pinsonneault et al. (2018) are larger than

ours when ages are greater than 5 Gyr. The median value of
fractional difference is 13%.
The ages of main sequence turnoff stars and subgiants can be

relatively accurately estimated, since in these evolution stages,
the atmospheric parameters of these stars vary significantly
with age. However, for the main sequence stars it is difficult to
estimate their ages as the isochrones of different ages are tightly
crowded together (Xiang et al. 2017a). Xiang et al. (2017a)
measured the ages for ∼1 million stars’ main sequence turnoff
and subgiant stars selected from the Value-Added Catalog of
the LAMOST Galactic survey (Xiang et al. 2017b). Figure 6
compares our stellar ages to those in Xiang et al. (2017a). The
stellar ages are correlated well, while there is systematic offset
for age larger than 4 Gyr. We discuss this large systematic
offset in Appendix B. We note there is a cutoff of age at
∼13.2 Gyr in our age estimation, which results from an
imposed limitation by the Padova isochrones.
Recently, Xiang & Rix (2022) applied a Bayesian method on

LAMOST DR7 to derive stellar age for subgiant stars. There
are several differences between theirs and ours. First, the input
parameters are different. They used MK, Teff, [Fe/H], and [α/
Fe], Gaia parallax, and Gaia and 2MASS photometries. We
note that stellar labels used in their method are derived from the
data-driven Payne (DD-Payne) approach, while what we used
are from the LAMOST pipeline LASP (Wu et al. 2011; Luo
et al. 2015). Second, they adopted YY stellar isochrones, while
the Padova isochrones are utilized in our method. Third, the
extinction estimation is different. They estimated the extinction
with a methodology of the intrinsic colors empirically inferred

Figure 7. Comparing the stellar age for subgiant samples in the current work to
that from Xiang & Rix (2022). The blue-dashed line indicates the one-to-one
correspondence. The red stars and error bars signify the median and dispersion
in each bin. The median value and 68 percentile interval of the fractional
difference distribution are labeled on the top left.

Table 1
Age and Reference for the Star Clusters Used in the Current Work

Cluster Name Age (Gyr) Reference

Berkeley 17 3.98 Donor et al. (2020)
Berkeley 71 1.05 Donor et al. (2020)
Berkeley 9 2.00 Donor et al. (2020)
NGC 1245 1.06 Donor et al. (2020)
NGC 1664 0.56 Donor et al. (2020)
NGC 1857 0.47 Donor et al. (2020)
NGC 1907 0.40 Donor et al. (2020)
NGC 2304 0.68 Donor et al. (2020)
NGC 2420 2.32 Donor et al. (2020)
NGC 2682 3.43 Donor et al. (2020)
NGC 4147 12.25 VandenBerg et al. (2013)
NGC 5024 12.25 VandenBerg et al. (2013)
NGC 5272 11.75 VandenBerg et al. (2013)
NGC 6205 12.00 VandenBerg et al. (2013)
NGC 6341 12.75 VandenBerg et al. (2013)
NGC 6791 8.3 Brogaard et al. (2021)
NGC 6811 0.64 Donor et al. (2020)
NGC 6819 1.62 Donor et al. (2020)
NGC 7078 12.75 VandenBerg et al. (2013)
NGC 7789 1.84 Donor et al. (2020)

Figure 8. Comparing individual star ages of cluster members measured in the
current work to the age of clusters in the literatures. The blue-dashed line
indicates the one-to-one correspondence. The red stars and error bars signify
the median value and dispersion in each bin respectively. The median value and
68 percentile interval of the fractional difference distribution are labeled on the
top left.
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from their stellar parameters, while our extinction is calculated
self-consistently in the Bayesian inference. Figure 7 compares
the stellar ages estimated in the current work to those from
Xiang & Rix (2022). Even though there are many differences in
deriving the stellar age, both methods produce a well correlated
stellar age. This may reflect the facts that the age of subgiant
stars is well determined with high precision, and that the
constraints from Gaia parallax are important for retrieving
accurate age. We note there is only a 0.11 Gyr systematic offset
in this comparison, with fractional difference being 0.02 0.15

0.13- -
+ .

In Figure C1 we also check the relation between stellar age and
metallicity for comparison with Xiang & Rix (2022).

Star members for a star cluster are believed to form from a
single molecular cloud at the same time. Therefore, the star
members share a single age which is the cluster age. A star
cluster provides unique opportunities to test the age accuracies
of stellar age estimates. In this section, we compare individual
stellar ages to cluster ages from the literature.

In order to identify the member stars for a given cluster, we
use two well studied star cluster catalogs in which star
members for each cluster have been carefully identified. One is

from Mészáros et al. (2013), which provide 20 star clusters
including both open and globular clusters. These clusters
served as calibration to the pipeline of APOGEE in Sloan
Digital Sky Survey-III (SDSS-III). The other is the Open
Cluster Chemical Abundances and Mapping survey from
Donor et al. (2020), which provides large uniform, infrared-
based spectroscopic data for 128 open clusters to constrain the
key Galactic dynamical and chemical evolution parameters.
The cluster member stars have been selected based on stellar
radial velocities, PMs, spatial location, and derived metallicity
as membership discriminators. A visual inspection by several
authors for each cluster is performed to guarantee the quality of
member selection.
We cross-matched these two star cluster catalogs with

LAMOST DR7 entries, and selected cluster member stars with
glog < 3.9. Finally, we obtain 79 members belonging to 20

clusters. In Table 1 we list the clusters used in the current work
and the age adopted for each cluster and their references. For
the open clusters, the ages are adopted from Donor et al.
(2020), while for the globular clusters their ages are taken from
VandenBerg et al. (2013). One special case is the open cluster

Figure 9. The kinematic distribution of stars. GSE stars are selected following Feuillet et al. (2021) labeled by red points. The black density shows our main samples.
For details on the sample selection please refer to the text.
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NGC 6791. The age of this old super-metal-rich ([Fe/H]= 0.4)
open cluster has been studied by Grundahl et al. (2008) from
comparisons with theoretical isochrones in the mass–radius
diagram. They found the cluster is old with age from 7.7 to
9.0 Gyr, depending on the adopted models. This age is
consistent with the estimate from the eclipsing binary method
from Brogaard et al. (2021), 8.3± 0.3 Gyr. Therefore, 8.3 Gyr
is adopted in our analysis.

Figure 8 compares individual star ages measured by our
Bayesian method to the cluster age. Both ages agree well
generally, even though there are some stars with large
deviations from the one-to-one correspondence line. There
are two clusters with large age deviations from our estimate,
which are NGC 2420 and NGC 2682. We note the age of open
cluster NGC 2682 is 3.43 Gyr estimated by Kharchenko et al.
(2013) with stellar data from PPMXL and 2MASS. Based on
Gaia DR2 its age is estimated to be 3.64 Gyr by Bossini et al.
(2019) and 4.3 Gyr by Cantat-Gaudin et al. (2020). The new
results based on Gaia data lead this cluster age to be closer to
our estimation, ∼4.0 Gyr.

4. The GSE Substructure in LAMOST Survey

In the above section we have extensively compared the
distance, extinction, mass, and age, measured with our
Bayesian method to those derived with completely independent
methods. These comparisons validate our results. These data

will be valuable for studies on Galactic structure, formation,
and evolution. Below we use these data to explore the
properties of the Galactic massive substructure GSE.
In the following we will use these data to illustrate properties

of the Galactic massive substructure, GSE, which is believed
to be the relic of an ancient major merger of the Milky Way
(i.e., Belokurov et al. 2018). In order to select samples with
better kinematic and age measurements, we use strict selection
criteria as the following: to have better kinematic data from
Gaia EDR3, (1) renormalized unit weight error < 1.2, (2)
ipd_gof_harmonic_ amplitude� 0.1, and (3) ipd_frac_multi_
peak< 2. To avoid disk star contamination, we require
|b|> 30°. To have better age measurement from LAMOST
data, we select giant stars with glog 3.9< and S/N> 30.
Finally, there are 161,523 stars selected, which are our main
samples for comparison with GSE members.
To select a clean sample of GSE substructure, we followed

the method of Feuillet et al. (2021) based on the radial action
and angular momentum, JR versus Lz. They found that the
simple selection criteria  J30 55R (kpc km s−1)1/2 and
−500� Lz� 500 kpc km s−1 provide a clean and least-
contaminated sample (Feuillet et al. 2020, 2021). We also
impose |z|> 5 kpc to avoid disk star contamination. It is well
known that GSE dominates the inner halo region, so we further
constrain the sample stars with r< 30 kpc (Naidu et al. 2020).
Finally, there are 2371 stars selected as members of GSE.
In order to calculate the physical quantities, we have used a

Milky Way potential of Eilers et al. (2019), which is similar to
Wang et al. (2022b) and Jiao et al. (2021). The values of JR,
energy, and orbital information are calculated with AGAMA
(Vasiliev 2019). Figure 9 shows the kinematic distribution of
main samples (black points) and GSE stars (red points). The
top-left panel of Figure 9 depicts the selection of GSE
members. The top-right panel affirms that most GSE member
stars have eccentricity greater than 0.8, which is consistent with
former studies (e.g., Naidu et al. 2020).
Figure 10 features the metallicity–age relation. The GSE

stars have median [Fe/H]=−1.29, which is consistent with
recent results (Helmi et al. 2018; Mackereth et al. 2019;
Matsuno et al. 2019; Sahlholdt et al. 2019). In the literature,
∼0.1–0.2 dex higher metallicity is also observed, e.g., Naidu
et al. (2020) found the GSE has a higher metallicity
Fe H 1.15 0.33

0.24[ ] = - -
+ , and Feuillet et al. (2020) found [Fe/

H]=−1.17± 0.34.
Most GSE stars have ages in the range of 11.2–12.2 Gyr, and

these old ages may indicate that the merger was completed
around 11 Gyr ago, which is consistent with the results by Xiang
& Rix (2022), and 1 Gyr older than Helmi et al. (2018). The
median age of GSE stars is 11.6 Gyr. This median age is younger
than the estimation from Gallart et al. (2019), who find a median
age of 12.37 Gyr. We note that there is a ridge at age ∼11.6Gyr,
which could reflect the prior function adopted in our Bayesian

Figure 10. (Bottom left) Age–metallicity relation for giant stars with log
g < 3.9. The GSE stars selected following Feuillet et al. (2021) are displayed
with red points. (Top) Age distribution for GSE stars. (Right) Metallicity
distribution of GSE stars.
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method. This indicates that further improvement is required to
adopt a more sophisticated prior function. On the other hand, we
note that the comparison with Xiang & Rix (2022) in Figure 7
has shown that there is a clear correlation in the ages, while there
is no prior imposed in the age estimation of Xiang & Rix (2022)
(which actually means a flat prior function).

5. Summary

We have measured distance and extinction for around 5
million stars observed in LAMOST DR7 with Bayesian
inference, as well as stellar mass and age for giant stars.
Compared to former work (Wang et al. 2016a, 2016b), we have
imposed the parallaxes from Gaia EDR3 to constrain these
parameters, which result in accurate results achieved, in
particular for stellar age and mass. Comprehensive compar-
isons with measurements from independent methods are
performed to validate these results. We have kinematically
selected GSE member stars in LAMOST data, and studied their
metallicity and age distribution, with which we demonstrated
that this data set is valuable for studying Galactic archaeology.
We found that GSE stars have median value of metallicity [Fe/
H]=−1.29, which is consistent with literature. This corre-
sponds to star formation in GSE being dominant 11.6 Gyr ago.

This huge data set is vital for constraining Galactic formation
and evolution, and it will be released to the community as a
Value-Added Catalog on the LAMOST website.
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Appendix A
The Uncertainties of Stellar Parameters Output by

our Method

In Figure A1 we show the uncertainties of stellar parameters
output by our Bayesian method as a function of S/N. There are
clear trends that the uncertainties decrease with increasing S/N.
At S/N ∼ 20, the median values of uncertainties of distance,
extinction are 4% and 0.1 mag. At this S/N the uncertainties of
stellar mass and age for the stars with glog < 3.9 are 10% and
25% respectively. Higher accuracy of stellar age can be
achieved for subgiants as shown with blue squares in the
bottom right panel of Figure A1. At S/N ∼ 40, the age
uncertainty of subgiants is around 10%, and it decreases with
increasing S/N.
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Appendix B
Comparing the Stellar Ages Estimated by Xiang et al.
(2017a) to those by Xiang et al. (2022) and this Work

Figure B1 compares the stellar ages estimated by Xiang et al.
(2017b) to those estimated by Xiang & Rix (2022) and this
work. There are systematic offsets in star age estimations
between Xiang et al. (2017b) and Xiang & Rix (2022) and
between Xiang et al. (2017b) and this work. The offset in age
estimation between Xiang et al. (2017b) and this work is
slightly larger than that between Xiang et al. (2017b) and Xiang
& Rix (2022) in the age range from 6 to 11 Gyr.

Even though the work of Xiang et al. (2017b), Xiang & Rix
(2022), and this paper used the LAMOST spectra, the stellar
atmospheric parameters utilized in these three works are
different. In our work the metallicity ([Fe/H]) is produced
with LASP (Wu et al. 2011; Luo et al. 2015). Xiang & Rix
(2022) follow a DD-Payne approach to derive the metallicity.
Xiang et al. (2017b) derived the stellar metallicity with the

pipeline of LSP3, which was developed at Peking University.
These different methods may lead to different scales in
metallicity. Figure B2 compares the metallicities derived with
these three approaches.
The [Fe/H] considered in Xiang & Rix (2022) is system-

atically lower than that of Xiang et al. (2017b). This may
partly explain that even though Xiang & Rix (2022) and
Xiang et al. (2017b) applied similar methods to derive stellar
age, the age of Xiang & Rix (2022) is higher than that in
Xiang et al. (2017b).
The [Fe/H] used in this work is well correlated with that of

Xiang et al. (2017b). We note that we relied on Padova
isochrones to derive stellar parameters, in which the α

abundance cannot be accounted for. In the work of Xiang
et al. (2017b) and Xiang & Rix (2022) the isochrones of YY
are used, in which the α abundance has been taken into
account. The ignorance of α could lead to a systematic
overestimation of age (Xiang & Rix 2022), but as

Figure A1. Uncertainties of distance, extinction, stellar mass, and age output by our method as a function of S/N. The red stars in each panel indicate the median
value for each bin, and the error bars signify the 68 percentile distribution. All of the LAMOST DR7 samples are used in the distance and extinction panels, while in
the stellar mass and age panels only stars with glog < 3.9 are used. The blue squares and error bars in the stellar age panel show the median value and the 68
percentile distribution for subgiants with 3.4 < glog < 3.9 respectively.
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Figure B1. Comparing star ages estimated by Xiang et al. (2017b) to Xiang & Rix (2022) and the current work. The gray color map indicates comparison between
Xiang et al. (2017b) and Xiang & Rix (2022), and the red stars and error bars signify the median value and dispersion in each bin for this comparison respectively.
Also, blue squares and blue error bars correspond to the median value and dispersion in each bin for comparison respectively between Xiang et al. (2017b) and this
work. The blue-dashed line indicates the one-to-one correspondence.

Figure B2. Comparing metallicities used in Xiang et al. (2017b), Xiang & Rix (2022), and this work.
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demonstrated by Xiang & Rix (2022) this ignorance can only
lead to a ∼15% overestimation under the assumption that all
stars have alpha abundance 0.2 dex. There is around a 30%
difference in ages between this work and those in Xiang et al.
(2017b). We note that there is also around a 20%–30%
difference in ages for old stars between Xiang & Rix (2022)
and Xiang et al. (2017b), both of which accounted for α

abundance.
Even though the [Fe/H] used in Xiang & Rix (2022) is

lower than that used in this work, the age estimated in both
works is in good agreement. This may be due to the fact that
our ignorance of α abundance is well compensated for by the
higher metallicity.

Appendix C
The Stellar Age and Metallicity Relation

Figure C1 compares the relations of stellar age and
metallicity by using our estimated age and that from Xiang
& Rix (2022). There is general consistency between the two
color maps, e.g., from 2 to 8 Gyr there are two branches in the
metallicity relation, one has flat [Fe/H] ∼ 0 dex, and the other
has a [Fe/H] decrease with increasing age from 2 to 8 Gyr. At
age greater than 8 Gyr, the metallicity decreases with age
increasing in both maps. The similarity between the two maps
reflects the fact that the ages estimated in this work and those in
Xiang & Rix (2022) are very consistent as affirmed in Figure 7.

Figure C1. The stellar age and metallicity relation. The left color map shows the results from this work, while the right panel features the results from Xiang & Rix
(2022). The magenta color contours overplotted in the left panel indicate the results from the right panel for comparison.
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