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Abstract

The error propagation among estimated parameters reflects the correlation among the parameters. We study the
capability of machine learning of “learning” the correlation of estimated parameters. We show that machine
learning can recover the relation between the uncertainties of different parameters, especially, as predicted by the
error propagation formula. Gravitational lensing can be used to probe both astrophysics and cosmology. As a
practical application, we show that the machine learning is able to intelligently find the error propagation among
the gravitational lens parameters (effective lens mass ML and Einstein radius θE) in accordance with the theoretical
formula for the singular isothermal ellipse (SIE) lens model. The relation of errors of lens mass and Einstein radius,
(e.g., the ratio of standard deviations s s= qML E

 ˆ ˆ ) predicted by the deep convolution neural network are
consistent with the error propagation formula of the SIE lens model. As a proof-of-principle test, a toy model of
linear relation with Gaussian noise is presented. We found that the predictions obtained by machine learning
indeed indicate the information about the law of error propagation and the distribution of noise. Error propagation
plays a crucial role in identifying the physical relation among parameters, rather than a coincidence relation,
therefore we anticipate our case study on the error propagation of machine learning predictions could extend to
other physical systems on searching the correlation among parameters.
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1. Introduction

Since 1979 (Walsh et al. 1979), gravitational lensing effects
have been used as a practical approach in numerous
researches of astrophysics and cosmology (e.g., see recent
reviews Oguri 2019; Liao et al. 2022). As an important role in
astronomical research, gravitational lens can generate the
multiple images of galaxies, quasars and supernovae, Einstein
cross and Einstein ring and so on, which contain very
important information about luminous objects (Blandford &
Narayan 1992; Jullo et al. 2010; Oguri & Marshall 2010;
Kneib & Natarajan 2011; Atek et al. 2018; Kelly et al. 2018;
Spiniello et al. 2018). Furthermore, gravitational lensing
effects also play an important role in the study of cosmology.
By using the gravitational lens, astronomers and cosmologists
can determine the distribution of baryonic matter and dark
matter in galaxies and clusters of galaxies more precisely, and
then determine some important parameters of cosmology
(Frieman et al. 1994; Helbig & Kayser 1996; Vegetti et al.
2012; Hezaveh et al. 2016).

Although many of the lensing systems have been found
through the traditional searches (e.g., Collett 2015), with the
rapidly increasing data sets, the enhancement of automated
methods to discover lens candidates and estimate the relation-
ship among the parameters become highly necessary (Hezaveh
et al. 2017). Besides searching candidate, modeling is executed
by running maximum likelihood algorithms that were
computationally expensive (e.g., Diego et al. 2005; Bradač
et al. 2009; Metcalf & Petkova 2014), and the traditional
parameter estimation methods are time consuming (Lefor et al.
2013). Convolutional neural networks (CNNs), known as a
class of deep learning networks, can be trained to identify
characteristics of specific images. Recently, CNNs have been
used to study lens modeling as a more efficient parametric
method (Hezaveh et al. 2017; Morningstar et al. 2018; Schuldt
et al. 2021). Furthermore, the authors of Hezaveh et al. (2017)
have extended the work to estimate the uncertainties in
parameters with neural networks (Perreault Levasseur et al.
2017), which was produced by using dropout techniques that
evaluate the deep neural network from a Bayesian perspective
(Gal & Ghahramani 2015; Hortúa et al. 2020). Some latest
related works (Park et al. 2021; Wagner-Carena et al. 2021)
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have demonstrated Neural Networks can be used as a powerful
tool for uncertainties inference. The main purpose of their work
is to improve the prediction accuracy: by eliminating some
unrepresentative prior deviations of the training set, the
deviation of the predicted results of the testing data set will
not be affected by the deviations.

Whether the uncertainties of estimated parameter by the
Network reflects the a correlation among the parameters plays
an important role in understanding the predication mechanism.
Being different from the above works on estimation error, in
this paper we focus on the relation of errors of prediction
results by machine learning. Namely, we test whether the error
relation can reflect the correlation among the predicted objects
through the prediction errors from deep neural networks
(DNNs). We compare the estimation results of the effective
lens mass (which cannot be observed directly from the lens
image) and Einstein radius (which can be approximately
measured from the lens image) to find the error propagation
among the parameters prediction of machine learning, then to
find the potential relationship between the two parameters. To
our knowledge, the current work is the first one, which shows
that machine learning can recover the relation between the
uncertainties of different parameters, especially, as predicted by
the error propagation formula. In fact, the correlation of the
uncertainty in each parameter can be learned by general Neural
Networks automatically, which will be demonstrated by means
of machine learning on a linear relation toy model and strong
lens data in Section 2. The detailed information about
simulation and results in two models (toy model and lens
model) is discussed in Section 3. Summary is drawn in Section
4 with some additional discussion.

2. Error Propagation Among Parameters

Traditionally, given the known physical relation of
parameters or an analytic likelihood function, the relation of
uncertainties of parameter estimation is presented by the error
propagation formula, the Fisher matrix approach, or a Bayesian
posterior distribution of multi-parameters. The error propaga-
tion formula is quite common and most simple approach when
one cannot directly measure some parameters. By using a
particular relation of two parameters, the differentiation law
and the Taylor expansion, one can derive the error propagation
formula of two parameters on their standard deviation σ:

s s=
¶
¶

y
y

x
x . 12 2( ) ( ) ( )

The effective lens mass ML (see definition in Equation (6)) in a
strong lens system is an example. In traditional estimation
approach, people could directly measure the θE and estimate the
lens mass ML based on a lens model. The errors of ML (e.g., the
standard deviation sML

) is calculated through the error
propagation law with the error of θE (sqE

). While, the Neural

Networks do not need this known relation to get ¶
¶

y

x
, since in the

supervised-training step one can directly design any label. Then
the Neural Networks could directly show the results of σ2(y)
and σ2(x). Note that, when individual label relates to individual
parameter, the relation of parameters is not indicated in the
training process. We highlight the difference of the error
propagation approach and the Neural Networks approach in
Figure 1.
We will demonstrate the error propagation of Neural

Networks in two cases: a linear relation toy model with
Multi-layer Perceptron based networks in Section 2.1 and the
lens model with convolution-based networks in Section 2.2.
Here we summary the main results using the symbols in
Table 1. Taking the lens model into consideration, the relation
of s

q
A
Ê
and s

M
B

L
ˆ from two Networks do not have clear relation,

since the Network is not trained with information on the data
noise distribution and we do not know the systematical error of
the Network itself. So it is not trivial to check if the relation of
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error propagation law. In fact, if the predication error is only
from the Network itself (e.g., the label value is exactly equal to
the data value), the sq

C
Ê
–s

M
C

L
ˆ relation does not follow the error

propagation law assuming Gaussian noise. On the other hand,
if the data noise is dominated, the sq

C
Ê
–s

M
C

L
ˆ relation follows the

error propagation law (see details in Figure 7). This consistency
is a puzzle for us, since one did not label the θE–ML relation in
the training process but only separately label the true
parameters of θE and ML.

2.1. Toy Model

We design a linear relation with Gaussian noise n as follows:

= +
= =

= +

X d n
Y d i

Y Y N
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i i i

⎧
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( )

where d is an arbitrary value and n is a Gaussian noise n∼N(0,
σ), X is an input datum with three labels Yi, Yî is the predicted
value of Yi, and Ni is the prediction error from the neural
network. For each X, we assign a label set {Y1, Y2, Y3}, which
is in values {d, d2, d3}. By this type labels, we not only try to
check if the Network could overcome the Gaussian noise n and
predict the true value {d, d2, d3} from X, but also to investigate
the relation of errors of predication s s s, ,Y Y Y1 2 3

{ }( ˆ ) ( ˆ ) ( ˆ ) . The

predicted value Y Y Y, ,1 2 3{ ˆ ˆ ˆ } given by the neural network can be
regarded as a function of the testing variable X, which is
determined by an un-known predication mechanism of the
neural network. Therefore the properties of predication errors
{N1, N2, N3}, e.g., the distribution of them, are unclear.
However, we could directly compare the predication results

of s s s, ,Y Y Y1 2 3
{ }( ˆ ) ( ˆ ) ( ˆ ) (labeled as a function  among them in
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below) with the well-defined error propagation relations of {X,
X2, X3} (labeled as a function  in below).

For the toy model, we can get the relation of errors of {X, X2,
X3} through the definition of standard deviation by the error

propagation law:
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where σ(n)= σ is the standard deviation of the Gaussian noise n
and s s s= =2 2n n

4 42 ( )( ) ( ) , which allows us to use the co-
variance (Cov) properties of any variable with zero mean,

= =dn n d n nCov 2 , 2 Cov , 02 2( ) ( )

At low noise limit e.g., σ= d, we have:
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It is worth to check if the noise n could affect the relation of
errors s s s, ,Y Y Y1 2 3( ˆ ) ( ˆ ) ( ˆ ) from the networks:
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2.2. The Lens Model

For the lens system X= d+ n, the data X is an observed
image (e.g., see the first supernova lens image in Kelly et al.
2015). The image could be reconstructed by a lens model d,
while the noise n is more complex than a Gaussian noise. We
adopt an SIE lens model, which is described by five
parameters: the values of Einstein radius θE, the complex
ellipticity (òx, òy) and the position of lens center (x, y). For both
training and testing data, those parameters are drawn from the
uniform distribution shown in Table 2 with different random
seeds. The network could directly predicate those five
parameters {θE, òx, òy, x, y}. For the lens model, the effective
lens mass ML (the mass enclosed inside the Einstein radius) is
related to the Einstein radius θE (Schneider et al. 1992):

q q= =M
c D

G

c D D

GD4 4
, 6L E

l s

ls
E

2
2

2
2 ( )

where Dl, Ds are the angular diameter distance of lens and
source respectively, Dls is the angular diameter distance
between lens and source. Traditionally, those distances are
inferred by redshifts of lens and source through a cosmology
model (see a recent review in Oguri 2019). Therefore, the
model for the Network could also be described by parameters
{ML, òx, òy, x, y}, if we can measure the redshift of the source
and lens by emission lines.

Figure 1. Schematic diagram of two approaches for toy model(a) and lens
model(b). In AI approach, labels for the lens case are produced by a relation,
but the relation itself is not presented to the network in training progress. We
found s s ~,Y Y1 12 1 ( )( ˆ ) ( ˆ ) and s s ~,Y Y2 22 1 ( )( ˆ ) ( ˆ ) for the toy model, and

~  for the lens model (see detail results in Section 2).
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Unlike Einstein radius, lens mass is a strongly model
dependent parameter and could not be observed by telescope
directly. However for machine learning approach, all the
parameters could be predicted from the input directly. Shown
in the toy model case, deep learning is able to extract deep
information from input and predict any designated source
parameters. We attempt to check whether it can also learn the
association among parameters indicated in the propagation of
uncertainty of predictions for the lens model. Here we take θE
and ML into concern (Equation (6)), and the predicted errors
ratio by the theoretical error propagation formula is:

s
s

º =
q

c
D

G
M . 7M

L
L

E

 ( )

Since we only try to recover the relation of errors of two
parameters (ML and θE), here we do not infer the redshifts of
lens and source, but simply assuming Dl, Ds and Dls are known
constant as did in Hezaveh et al. (2017), e.g., fixed zs= 0.5 and
zl= 0.2 (see more details in Section 3.2). The parameters {òx,
òy, x, y} are not fixed for the training and testing processes to
make sure that all results could be used as an astrophysical
application in our next work. It should be also noted that:
although we generate the labels of ML and θE for the training
data sets with the SIE lens model, the prediction processes of
DNN are not informed of any relationship of these parameters.

Similarly to error relation of Y1̂ and Y2̂ in the toy model, the
error relation of ML

ˆ and qÊ is the target of this section.
Therefore we could also design three label sets: {θE, òx, òy, x,
y}, {ML, òx, òy, x, y}, and {ML, θE, òx, òy, x, y}, for one observed
image X. For the same data X, three networks shown in Table 2
are adopted to predicate the common parameters {òx, òy, x, y},
and (i) Network VGG16(θE) for {θE, òx, òy, x, y} also gives the

prediction qE
Â with the predication error qN ;A

E
(ii) Network

VGG16(ML) for {ML, òx, òy, x, y} also gives the prediction ML
Bˆ

with the predication error N ;M
B

L
(iii) Network VGG16(θE, ML)

for {ML, θE, òx, òy, x, y} also gives the prediction qE
Ĉ and ML

Cˆ

with the predication errors qNC
E
and NM

C
L
. Predication errors Ni

j

(i= θE, ML; j=A, B, C) are caused by lens data noise and
unknown network prediction mechanism, therefore we do not
know the statistical properties of NM

C
L
and qNC

E
.

2.3. Neural Networks

For the toy model: We train the networks and predict
Y Y Y, ,1 2 3{ ˆ ˆ ˆ } with a two-layer fully connected neural network
one layer has 32 fully connected units and another has one fully
connected units for Network A and B while three fully
connected units for Network C. We choose mean squared error
(MSE) and Rectified Linear Unit (ReLU) as the loss function
and activation function respectively, optimize the network by
the ADAM algorithm, set the batch size to be 512, and adjust
the learning rate to be 10−3 for the 100 epochs. Shown in Table
1, we design three types of networks for different predication
parameter sets: Network A for only Y1{ ˆ }, Network B1 for Y2{ ˆ },
Network B2 for Y3{ ˆ }, Network C for Y Y Y, ,1 2 3{ ˆ ˆ ˆ }.
For the lens model: Besides the AlexNet used in Hezaveh

et al. (2017), we adopt the VGG16 network (Simonyan &
Zisserman 2014) to predict the lens parameters. VGG16
network is a common deep learning structure and sometimes
outperforms AlexNet on computer vision tasks. We adjust the
final layer to the fully connected layer to regress the parameters
in VGG16. The structure of our VGG16 network is shown in
Figure 2.
In training process, we choose averaged MSE and ReLU as

the loss function and activation function respectively, initialize
all the weights using the imagenet’s pre-trained model,
optimize the network by the ADAM algorithm, set the batch
size to be 50, and adjust the learning rate to be 10−4 for the first
104 epoch and to be 10−6 for another 104 epoch. The training
process lasts several hours for Alexnet and twenty hours for
VGG16 with GPU RTX 2080 Ti single card.

Table 1
Symbol Description

Models Parameters Network A Network B Network C Error Propagation Consistency

lens Parameter I θE s
q
A
Ê

L s
q
C
Ê

C

Parameter II qµML E
2 L s

M
B

L̂
s

M
C

L̂

Toy Parameter I Y1 = d s
Y
A
1̂

L s
Y
C
1̂

Parameter II1 Y2 = d2 L s
Y
B
2̂

s
Y
C

2̂
A, B, C

Parameter II2 Y3 = d3 L s
Y
B
2̂

s
Y
C

3̂

Note. Error relations from Networks are compared with the error propagation formulas. Network A and B are designed for one parameter in error propagation
formulas,while Network C is for all parameters in error propagation formulas. All the errors are listed in the corresponding columns. In the network approach neither
information on noise nor the relation form of parameters are provided to Networks. For the toy model, predication errors of Network C (Equation (5)) in the no-noise
data (n = 0) case do not follow the error propagation formula at low noise limit (Equation (4)), while for the noise data (n ≠ 0) cases, relations of errors from Network
A, B and C are all consistent with the error propagation formula (Equation (3)). For the lens model, only the relation s

q
C
Ê
–s

M
C

L̂
by Network C is consistent with the

predication of the error propagation formula based on the SIE lens model (Equation (8)). Symbols with hat represent the results from Networks.
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3. Simulation and Results

3.1. The Toy Model

We test two cases: one is the noise case (n≠ 0 with different
noise levels) used to test the consistency between Equations (3)
and (5), and the no-noise (n= 0) to test Equations (4) and (5).
For both cases, d is drawn from a uniform distribution U[−2,
2]. For the noise case, Gaussian noise n∼N(0, σ) is adopted to
generate a sample X= d+ n with three labels Yi, which have
the values {Y1= d, Y2= d2, Y3= d3}. To avoid the over-fitting
issue, 200,000 X with σ= 0.05 and 20,000 X with σ= 0.5 are
adopted for training and testing processes, respectively. It is
worth to note that, the feature distribution of the training set
and the test set is not independent and identically distributed.
The noise level of the training set is smaller than that of the test
set. This is because we want to ensure that the model can learn
accurate mappings (Equation (2)). The function  is
calculated by the standard deviation of predictions
s s s, ,Y Y Y1 2 3

{ }( ˆ ) ( ˆ ) ( ˆ ) , which are evaluated in 20 bins of d.
Figure 3 shows the prediction results of the toy model for the

no-noise case (in upper-panel) and comparison of the function
 (red points, Equation (5)),  (blue lines, Equation (3)) and
~
 (green lines, Equation (4)) for both no-noise (in middle-

panel) and noise cases (in lower-panel). For the no noise
(n= 0) case, according to Equation (2) X= Y, model prediction
errors {N1, N2, N3} are only determined by the network itself,
and the predictions of the Network almost do hot have errors
({N1, N2, N3}∼ 0 shown in the upper-panel of Figure 3). The
propagation of errors of Ŷ caused by unknown network
prediction mechanism (the function in the middle-panel of
Figure 3) do not follow the law of error propagation, e.g.,

s s ¹
~

,Y Y1 12 1
 ( )( ˆ ) ( ˆ ) . On the other hand, for the noise n≠ 0
case shown in lower-panel of Figure 3, the propagation of
errors of Ŷ follows the law of error propagation quite well, e.g.,

s s ~,Y Y1 12 1
 ( )( ˆ ) ( ˆ ) and s s ~,Y Y2 23 1

 ( )( ˆ ) ( ˆ ) for all noise
level. Note that, since we fixed the noise level σ, larger |d|
represents smaller noise case (Equation (4)). Those trends do
not depend on the predication parameters set, since Network A,
B and C return almost identical results.
The results of noise case ~  indicate that the network

“knows” the distribution of noise n and the relation of label
numbers {Y1, Y2, Y3}, although there is no information on n in
the labels and the relation itself is also not included in the
labels. Although we do not know the predication mechanism of
the neural network for parameters predication but only the
structure of the networks, it seems that the neural network

Table 2
The Standard Deviation of the Parameter Predictions for the Test Datasets in GREAT3 and Galaxy Zoo

Test data sets Network θE ML òx òy x y
[0, 3.0] [0, 2.19] [0, 0.9] [0, 0.9] [−0.25, 0.25] [−0.25, 0.25]

GREAT3 VGG16 (θE) 0.047 L 0.080 0.071 0.075 0.073
Alexnet (θE) 0.067 L 0.081 0.081 0.093 0.091
VGG16 (ML) L 0.048 0.095 0.086 0.089 0.086
VGG16 (θE, ML) 0.050 0.046 0.090 0.082 0.078 0.079

galaxy zoo VGG16(ML) L 0.097 0.149 0.143 0.114 0.111
Alexnet(ML) L 0.141 0.143 0.132 0.144 0.143

Note. The angular parameters (θE, x and y) are given in units of arcseconds, lens massML is in units of 10
12Me. The results of the Alexnet in Hezaveh et al. (2017) are

obtained by applying their trained weights to test data sets. VGG16(θE) and Alexnet(θE) are trained to predict the {θE, òx, òy, x, y}. The VGG16(ML) and Alexnet(ML)
are for {ML, òx, òy, x, y}, and VGG16(θE, ML) is used for {θE, ML, òx, òy, x, y}. The ranges of uniform distribution of lens model parameters for networks are shown in
square brackets under the parameters. The value of mass ML is calculated by Equation (6) given θE.

Figure 2. The structure of the VGG16 used in this work.
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could guarantee the association among parameters. This
performance of the neural network could further implies as
the neural network is capable to learn the relationship among
parameters. Those properties of the Network are more
interesting when it is applying for more sophisticated physics
models, e.g., the gravitational lens model.

3.2. The SIE Lens Model

Following Hezaveh et al. (2017), we consider the singular
isothermal ellipse (SIE) lens model (Equation (6)) and fix the
redshift of lens zl= 0.5, the redshift of source zs= 2 and adopt
737 cosmology model (i.e., h= 0.7, Ωm= 0.3, ΩΛ= 0.7)

Figure 3. Predictions of the Network and comparisons of the function (red points),  (blue lines) and
~
 (green lines). The function are shown by the standard

deviation of predictions s s s, ,Y Y Y1 2 3{ }( ˆ ) ( ˆ ) ( ˆ ) , which are evaluated in 20 bins of d. The upper-panel and middle-panel are for no noise n = 0 case, and lower-panel is for
noise case. For function defined in Equation (5), three networks are adopted: C( ) is for s s s, ,Y Y Y1 2 3{ }( ˆ ) ( ˆ ) ( ˆ ) by Network C;(A and B1) is for s Y1{ }( ˆ ) by Network
A and s Y2{ }( ˆ ) by Network B1, while(A and B2) is for s Y1{ }( ˆ ) by Network A and s Y3{ }( ˆ ) by Network B2.
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(Planck Collaboration et al. 2016). The values of Einstein’s
radius θE, the complex ellipticity (òx, òy) and the position of lens
center (x, y) for both training and testing data are drawn from
the uniform distribution shown in Table 2. We simulated the
lensed images for training and testing based on source images
from COSMOS−23.5, COSMOS−25.2 in GREAT3 data. To
test the generalization of networks trained by the images with
high quality from GREAT3, we also use data from Galaxy Zoo
as source image to produce another test data set. With the
VGG16 and AlexNet trained by GREAT3 data (two million
samples in total), we estimate the parameters {θE, òx, òy, x, y} of
other branches of GREAT3 data (ten thousand samples in
total), labeled such as VGG16(θE) and Alexnet(θE) in Table 2,
respectively. More details on data, training, testing, robustness,
accuracy of individual parameter estimation and error
propagation can be found in the following content.

The source images for training data are from COSMOS
−23.5 and COSMOS−25.2. All source images are first

convolved by the point-spread function (PSF) supported in
GREAT3 data to improve image quality. These images are
used to produce two million lensed images with parameters
shown in Table 2. Each lensed image undergoes the following
operations before being fed into the network to avoid
overfitting. First, add random Gaussian noise to the lensed
image. The root mean square value of the noise is randomly
selected from a uniform distribution, and its value is 1%–10%
of the signal. Then, we use a factor of 501,000 to convert the
image to a photon count, and use these values as the λ to
generate a Poisson realization map, effectively adding Poisson
noise to the image. We use the 400,000 images including
simulated hot pixel and cosmic rays provided by Hezaveh et al.
(2017) to make the network insensitive to pixel artifacts and
cosmic rays. Then we use a random root mean square Gaussian
filter to convolve the image to simulate the blurring effect of
the PSF that reveals the factors of atmosphere and the telescope
itself. Finally, randomly translate on the image for augmenting

Figure 4. (a) One simulated training data set in GREAT3 data group; (b) One simulated test data set in Galaxy zoo data group.

Figure 5. Results for the GREAT3 data. The estimated values are shown on the y axis, while the x axis represents the segment of the point. (a) Comparison of
estimated lens masses with their true values by VGG16(ML) network. (b) Comparison of estimated lens Einstein radius with their true values by VGG16(θE) network.
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the data. The total training data samples are two million in total
and in which ten thousand data sets are used for validation.
Each training data sample is fed into the neural network with
different data augmentation operations.

We use other branch of GREAT3 data (1.8 million samples)
as source images to produce our test data set (ten thousand
samples in total). To test the generalization of networks trained
by the high quality of image from GREAT3, we use data from

Figure 6. Results for the Galaxy zoo data by VGG16(ML). The reason for the predicted value of large mass being less than the real value. (a) The box plot of the
estimated lens masses compared to the true value. (b) The residuals plot of lens mass prediction. (c) The comparison of estimated lens masses with their true values, in
which the red dots are the poor estimation samples corresponding the images in the second row of (d), the blue dots are perfectly estimated samples corresponding the
images in the first row of (d). (e) The comparison of estimated lens masses with their true values, in which the red dots are the poor estimation samples corresponding
the images in the second row of (f), the blue dots are perfectly estimated samples corresponding the images in the first row of (f).
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Galaxy Zoo (61 thousand samples) as source image to produce
another test data set (ten thousand samples in total). The data in
the Galaxy Zoo are coming from the Sloan Digital Sky Survey
(SDSS). There may be multiple galaxies and a higher noise
level comparing to the GREAT3 data. One training image from
GREAT3 and one test image from Galaxy Zoo are illuminated
in Figures 4(a) and (b), respectively.

To understand the robustness of networks, we use the
VGG16(ML) and Alexnet(ML), which are trained by the
GREAT3 data sets with higher image quality, to predict lens
mass ML of test data sets in the Galaxy Zoo data group.

Shown in Table 2, the standard deviations of the parameters
estimated by VGG16 are all slightly better than Alexnet. It
should be noted that in Hezaveh et al. (2017) the errors of their
Alexnet networks seem to be much better than ours. The reason
is that the test data sets in Hezaveh et al. (2017) are unknown
for us, we get corresponding results only considering the
network (AlexNet) with their trained weights. The standard
deviation of {òx, òy, x, y} from VGG16(ML) are comparable to
the results from VGG16(θE).

To check if the predication also depends on the parameter
value, we compare the estimated lens masses ML

ˆ by VGG16
(ML) and Einstein’s radius qÊ by VGG16(θE) with their true
values with box plot for the VGG16 trained by GREAT3 data
(Figure 5). We divide the interval into 10 segments with equal
width, and draw its box plot for each segment. For the box plot
of the Einstein’s radius, every bin has the same data
approximately. But for the box plot of the lens mass, there
are more data in the bins with small mass, because the mass is
proportional to the square of the Einstein’s radius. Shown in
Figure 5, the mean value of predicted mass ML

ˆ by VGG16(ML)
recover better the true value ML, although there are more
outliers than the Einstein’s radius qÊ by VGG16(θE). For

massive galaxies more outliers are in smaller prediction value
comparing with the true value, while for less massive galaxies
more outliers are in larger predicted value.
The results from the Galaxy Zoo data are shown in Figure 6.

The value of ML and the residuals of lens mass predicted by
VGG16(ML) are shown in Figures 6(a) and (b), respectively.
Although the average value of predicated parameters represent
the true value quite well, there are more outliers resulting larger
standard deviations for both networks (see Table 2). This is
partly because the data sets in the Galaxy Zoo data group are
sources with irregular shapes and have very noisy background
as the image shown in Figure 4(b). It can be seen that the
reason for clustering to the average value is that the noise of the
image is too large to contain useful information (see the image
data of outliers in Figures 6(d), (f) corresponding to the outliers
in Figures 6(c), (e)). In order to minimize the overall loss,
neural networks tend to output the average value of the sample.
The detailed comparison of estimated lens masses with their
true values is figured out in Figure 6, which indicates the
predicted value of small mass tends to be greater than the real
value, while the predicted value of large mass is less than the
real value (also see the residuals plot in Figure 6(b)). This
tendency is also found for {òx, òy, x, y}.
The standard deviation of all parameters predicated by

VGG16 or Alexnet in three sets of labels for all test samples are
shown in Table 2. In order to investigate the relation among the
prediction errors of θE and ML, the ratio of the standard
deviation of ML

ˆ and qÊ by VGG16 networks A, B, C (test data
set in 15 segments) as a function of the center value of ML is
shown in Figure 7. The results show that
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propagation formula (Equation (7)) and the red line (linear-fitting of(C)) represents the linear-fitting of the red dots from the predicted values of VGG16 (θE, ML).
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It can be found that the error propagation by VGG16(θE, ML) is
roughly consistent with the error propagation formula (the
yellow line represent Equation (7)  in Figure 7): ~  as
shown in the toy model case. Again, network C seems to
“know” the noise distribution since the errors follows the
theoretical error propagation formula. However, the ratio of the
errors of qÊ and ML

ˆ derived from networks A and B does not
follow the theoretical error propagation formula, which is not
the case in the toy model. The plausible reason for the
difference between the toy model and lens model is that
Equation (7) does not consider the non-Gaussian noise effects
of input data.

This result enlightens us that as long as the accuracy of
parameter estimation by the network is guaranteed, even if we
do not know the physical relation between the parameters of
input data, the relation will be reflected through the
corresponding error of deep learning estimation. This feature
of deep learning is valuable for further investigation on the
parameter correlation with unknown theoretical model in
advance. For example, if the lens mass is measured by
gravitational wave Hou et al. (2020), one could combine the
lens mass estimation from gravitational wave, Einstein radius
estimation from optical lens image and the redshifts z from
emission lines to investigate ML–θE–z relation.

4. Discussion and Summary

Unlike the traditional parameter estimation, the parameter
estimation by machine learning almost completely depends on
the information in samples. Assuming the SIE lens model, the
Einstein radius θE and effective lens mass ML are estimated by
the convolutional neural network, and the capability of network
acquiring the correlation information between parameters from
the data is tested through the estimation errors. In this process,
the Networks produce the relation of errors as the traditional
error propagation law based on known θE–ML relation. Such a
correlation of estimated parameters provides a self-consistent
result, so it is very important for further study on parameter
estimation by machine learning.

In order to ensure the reliability of the above results, the
accuracy of parameter estimation by the network also needs to
be guaranteed. The convolutional neural network AlexNet is an
effective approach of predicating parameters of the lens model
(Hezaveh et al. 2017). Through applying the typical
convolutional neural network VGG on the parameter
estimation of the gravitational lens, the great performance on
abstraction of features has been shown in our simulated lens
data (results are shown in Table 2 and Figures 5 and 6).
Meanwhile, the robustness of such a network could also be
guaranteed to a certain extent. From the results of Galaxy Zoo
test data sets, it is found that for the signal submerged in noise,
neural networks tend to output the average of the training set to
minimize the MSE. We also test the non-normal loss (MAE) as

the loss function after the normal generative process, and the
performance of the error propagation is similar as shown in the
MSE case. Further study could also test more advanced
networks on the performance of parameter estimation, such as
ResNet (He et al. 2015), DenseNet (Huang et al. 2016), ViT
(Dosovitskiy et al. 2021), so as to get a more accurate error
propagation corelation among parameters.
Although the MSE and MAE loss functions seem to only

guarantee the accuracy of each parameter, they ensure that the
model fits the functional relationship between input data and
output data. According to universal Approximation theorem
(Hornik et al. 1989), the functional relationship should be
presented by the perfect network structure and weights of
neurons. The fact that the error of each parameter’s estimation
by machine learning satisfies the error propagation formula is
worth discussing. The general plausible reason for this
consistency is that the mapping exists between the predicted
parameters and the input data. If there is noise in the input, the
model will output the biased prediction containing noise
according to the accurate mapping. Therefore, different
parameters will exhibit the law of error propagation due to
the same input noise. In particular, for the toy model, there is a
simple functional relationship between input and output data
i.e., = = =Y X Y X Y X, ,1 2

2
3

3{ ˆ ˆ ˆ }. In training, the model trends
to minimize the loss function in order to learn the functional
relationship. After training, the functional relationship is stored
in the weight of each neuron and the entire model has the
functional relationship contained in the training data. When we
add the noise directly to X, since the new model’s mapping is
almost the same with the mapping contained in the training
data, the predicted results exhibit the error propagation
relationship. In the lens model, it can be considered that the
CNN layer performs feature extraction on the image. The
output results of the last CNN layer are the latent variables
representing the image. The fully connected layer is a function
from latent variables to predicted results. The error of the image
will cause the error of the latent variables, and the predicted
values are function of the latent variables. So the error
propagation formula is satisfied between the predicted values
and the latent variables, and the error propagation formula is
therefore satisfied between the predicted values.
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