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Abstract

We use the distance sum rule method to constrain the spatial curvature of the Universe with a large sample of 161
strong gravitational lensing systems, whose distances are calibrated from the Pantheon compilation of type la
supernovae using deep learning. To investigate the possible influence of mass model of the lens galaxy on
constraining the curvature parameter €2, we consider three different lens models. Results show that a flat Universe
is supported in the singular isothermal sphere (SIS) model with the parameter € = 0.0497013!. While in the
power-law (PL) model, a closed Universe is preferred at the ~3o0 confidence level, with the parameter
= —0.2457007. In the extended PL model, the 95% confidence level upper limit of € is <0.011. As for the
parameters of the lens models, constraints on the three models indicate that the mass profile of the lens galaxy
could not be simply described by the standard SIS model.
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Constraining the Spatial Curvature of the Local Universe with Deep Learning

1. Introduction

The standard cosmological model (ACDM model), regarded
as a cornerstone solution derived from the homogeneous and
isotropic Friedmann—Robertson—Walker (FRW) metric, pre-
sents a comprehensive framework in cosmology. This model
postulates the existence of radiation, ordinary baryonic matter,
non-luminous dark matter, and enigmatic dark energy as
constituents of the Universe. Its validity and credibility find
strong support from a plethora of cosmological observations
(Ade et al. 2016; Aghanim et al. 2020). Especially, the most
recent findings derived from the conclusive full-mission
analysis of the cosmic microwave background (CMB)
anisotropies by the Planck mission exhibit remarkable agree-
ment with the prevailing spatially flat 6-parameter ACDM
cosmological model. These results not only validate the
standard framework but also provide stringent constraints on
the cosmological parameters with an exceptional level of
precision (Aghanim et al. 2020). However, some challenges
come following the success of the ACDM model. Recently, the
“Hy tension problem,” i.e., the measured value of Hubble
constant H, from the local type Ia supernovae (SNe Ia)
observation is inconsistent with the result from the Planck
observation of CMB, has attracted great attention (Freedman
2017; Riess et al. 2016, 2019; Di Valentino et al. 2021). This
discrepancy is possibly caused by either unknown systematic
uncertainties or new physics beyond the standard ACDM
cosmology.

In the context of the FRW metric, the spatial curvature
parameter plays a pivotal role in elucidating the geometric
nature of the Universe. By incorporating measurements from

the CMB and baryon acoustic oscillation (BAO), it has been
established that the Universe can be reasonably modeled as
spatially flat. This conclusion is supported by the constraint on
the curvature parameter, €2, =0.001 + 0.002 (Aghanim et al.
2020). Considering the intricate degeneracy between the
curvature parameter and the equation of state of dark energy,
the assumption of a flat Universe is commonly adopted during
the analysis of dark energy properties. Small deviation of
spatial curvature from zero would generate enormous effects on
the reconstruction of dark energy and on the evolution of the
Universe (Ichikawa & Takahashi 2006; Clarkson et al. 2007,
Gong & Wang 2007; Virey et al. 2008). Although the Planck
CMB data constrain the spatial curvature at a very high
precision, the predicted evolution not only depends on a certain
cosmological model (the ACDM model), but also on the
evolution of the early Universe. Recently, the reanalysis of
Planck data showed that a closed Universe is favored against a
flat Universe (Di Valentino et al. 2019, 2021). The presence of
the so-called “H, tension problem” suggests the possibility of
deviations between the actual state of the Universe and the
predictions of the standard ACDM model. Specifically, it
implies that the cosmological parameters derived from CMB
measurements may differ from those obtained through local
data. Consequently, it becomes crucial to ascertain the spatial
curvature of the local Universe in a manner that is independent
of specific theoretical models.

The measurement of spatial curvature is generally the by-
product of the validity test of the FRW metric. A model-
independent approach was introduced by Clarkson et al.
(2007, 2008) to scrutinize the validity of the FRW metric.
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This method involves a comparative analysis of the cosmic
expansion rate and cosmological distance, and has since been
widely employed to examine the FRW metric and impose
constraints on the spatial curvature (Mortsell & Jonsson 2011;
Sapone et al. 2014; Cai et al. 2016). Bernstein (2006) put forth
an alternative model-independent geometric approach to
constrain spatial curvature. This methodology revolves around
the fundamental sum rule of distances along null geodesics
within the FRW metric framework. Rasidnen et al. (2015)
employed the distance sum rule (DSR) to evaluate the accuracy
of the FRW metric. By combining data from SNe Ia and strong
gravitational lensing (SGL), they examined the validity of the
FRW metric. Their analysis confirmed the overall validity of
the FRW metric, although the obtained constraint on the spatial
curvature parameter was relatively weak or loosely constrained.
Considering the interdependence between the curvature para-
meter and the parameters of the lensing model, Xia et al. (2017)
adopted more intricate lensing models in their analysis and
attained constraints on the spatial curvature by leveraging a
substantial data set comprising 118 SGL systems (Cao et al.
2015, 2016). Following this line, there were a series of works
devoted to constraining the spatial curvature with updated
observational data (Li et al. 2018; Qi et al. 2019; Liu et al.
2020; Cao et al. 2022). It should be noted that the constraints
on the spatial curvature derived from the aforementioned
studies suffer from limitations arising from the relatively small
size of the available SGL sample, as well as uncertainties
stemming from unknown systematic effects. Moreover, the
methods to calibrate the distances of lenses and sources within
SGL systems rely on a polynomial approximation that is
assumed to fit the SNe Ia sample. Further research and
advancements in data acquisition and analysis techniques are
necessary to address these limitations and improve the
precision of spatial curvature measurements in cosmology.

To alleviate the above shortcomings, Wang et al. (2020)
made significant advancements in constraining the spatial
curvature. They employed the DSR method and combined data
from the Pantheon SN Ia compilation with a data set
comprising 161 SGL systems. Notably, they avoided assump-
tions regarding the parametric form of the distance-redshift
relation of SNe Ia. Instead, they employed a Gaussian Process
(GP) method to reconstruct the dimensionless comoving
distance based on the Pantheon compilation. Without the prior

of Hy, the constraints on spatial curvature are € = 0.57730 in

the singular isothermal sphere (SIS) model, = —0.246" 98
in the power-law (PL) model, and Q4 = 0.25701$ in the
extended power-law (EPL) model. Previous studies have
indicated that a larger data set is beneficial to achieve a tighter
constraint on 0, (Xia et al. 2017; Li et al. 2018; Qi et al. 2019).
However, the GP method is unable to extrapolate the curve
beyond the available data region, and its accuracy diminishes
significantly in regions where data points are sparse.
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Consequently, in their analysis, only the SGL systems with
redshifts lower than the maximum redshift of the SNe Ia data
could be utilized. This constraint resulted in a reduction in the
number of available SGL systems from the initial 161-135.
Therefore, although the constraint of Wang et al. (2020) is
tighter than previous works, the method to reconstruct the
distance-redshift relation can be further improved so that all
SGL systems can be used to constrain the spatial curvature.
In this paper, we will maintain the advantages of Wang et al.
(2020), i.e., the large data set and model-independence, and
employ a deep learning method to reconstruct the distance-
redshift relation based on the Pantheon data set, extending it up
to the maximum redshift of the available SGL systems. Deep
learning is a realm dedicated to the research of various Atrtificial
Neural Networks (ANNs), which are composed of layers of
neurons modeled after the biological neurons in a human brain.
Hence, deep learning is fantastic to deal with large and highly
complex tasks, such as classification, clustering, generation and
so on. Deep learning has emerged as a powerful tool in various
cosmological research areas, demonstrating its effectiveness in
tasks such as predicting galaxy morphology (Dieleman et al.
2015), constraining dark energy (Escamilla-Rivera et al. 2019),
and calibrating gamma-ray bursts (GRBs) (Luongo & Muccino
2021; Tang et al. 2021b). In our recent work (Tang et al. 2021a),
we applied deep learning techniques to reconstruct the distance-
redshift relation of SNe Ia without making any assumptions
about the cosmological model or the parametric form of the
relation. Furthermore, we utilized this reconstructed relation to
investigate potential redshift dependencies in the luminosity
corrections of GRBs. Unlike the GP method, which is
constrained to reconstruct the curve within the data region, deep
learning has the capacity to extend the reconstruction far beyond
the available data region. Thus all of the SGL systems can be
used and the constraint on the spatial curvature would be tighter.
The structure of the remaining sections of this paper is as
follows: Section 2 provides an overview of the DSR method
and the lens mass models utilized in constraining the spatial
curvature. Section 3 outlines the observational data sets
employed in the analysis and details of the procedure for
reconstructing the distance-redshift relation using deep learning
techniques. The obtained results are presented in Section 4.
Lastly, Section 5 contains the discussion and summary.

2. Methodology

In the context of a homogeneous and isotropic Universe, the
spacetime can be described by the FRW metric, given by

a(r)?

ds? = —c%dt* +
1 — Kr?

dr? + a(t)>r2dQ2, (1)

where ¢ represents the speed of light, and K is a constant that
denotes the spatial curvature of the Universe. Specifically,
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when K <0, K=0, and K > 0, it corresponds to an open, flat,
and closed Universe, respectively. The scale factor a(r)
represents the expansion of the Universe with respect to
cosmic time, and its derivative d = % defines the Hubble

parameter H = % To quantify the spatial separation between a
source at redshift z, observed from redshift z;, the dimension-
less comoving distance is expressed as

d(z;, 25) = \/—Sk(\/ f ZIE( /)) 2)

K .
where ) = H; > represents the normalized curvature

parameter. The reduced Hubble parameter is denoted as

E@x) = % where H, represents the present-day value of
0

the Hubble parameter. The function S is defined as follows

sinh(x), (2 > 0),
Si(x) =4 x, (= 0), 3)
sin(x), (4 < 0).

For simplicity, we introduce the notation d(z) =d(0, z),

d;=d0, z), d;=d0, zy), and d;;=d(z;, zg). Under the
assumption that cosmic time ¢ and redshift z have a one-to-
one correspondence, and with the condition that the derivative
of d(z) with respect to z satisfies d’(z) > 0, the three-
dimensionless distances (d;, d,, and dj,) are connected through
the DSR relation (Résdnen et al. 2015)

d“ =1 + Qd? — —\/1 + d?. )

If the Universe is accurately described by the FRW metric, the
curvature parameter €2; should be a constant. Therefore, if the
validity of the FRW metric is confirmed, the DSR relation
provides a means to constrain the value of €. By analyzing the
relation between the dimensionless distances, we can obtain
valuable insights into the spatial curvature of the Universe.
The dimensionless comoving distances ¢; and d; can be
obtained through the analysis of SN Ia data. On the other hand,
the distance ratio d;,/d; is determined using the data from SGL
observations. In terms of the Einstein radius and the velocity
dispersion associated with the lens mass profile, the expression
for the distance ratio can be formulated. For certain gravitational
lens systems, the mass distribution of the lens has been observed
to closely approximate an isothermal profile (Cohn et al. 2001;
Munoz et al. 2001; Rusin et al. 2002; Treu & Koopmans 2002;
Rusin & Kochanek 2005). Consequently, the SIS model has
emerged as a prevalent and straightforward choice for describing
the lens mass profile. This model effectively emulates the flat
rotation curves characteristic of galaxies, featuring a density
inversely proportional to the square of the galaxy’s radius.
Additionally, the structure of galaxies has been extensively
explored through N-body simulations (Navarro et al. 1996;
Moore et al. 1998). Navarro et al. (Navarro et al. 1996)
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discovered that the halo profile of a galaxy exhibits an
approximate isothermal behavior across a wide range of radii.
However, it deviates from the #~2 PL near the central region,
transitioning to a steeper profile than r 2 as the distance
approaches the virial radius. To adequately address the specific
features of the halo profile, a density function incorporating a PL
dependence on radius has been introduced to describe the lens
profile. This density function resembles the generalized
Navarro-Frenk—White (NFW) profile (Navarro et al. 1996).
Among these descriptions, the PL. model stands out, character-
ized by a variable PL index denoted as . Remarkably, when  is
set to 2, the profile aligns with a configuration akin to an SIS. It
is noteworthy that these profile descriptions do not inherently
distinguish between luminosity density and total mass density.
When accounting for the presence of dark matter, the luminosity
density may diverge from the overall galaxy profile. This
prompts the introduction of models like the EPL model, which
accommodates the complexities stemming from both luminosity
density and dark matter distribution within the lens mass. Hence,
we consider three distinct lens models: the SIS model, the PL
model, and the EPL model, to comprehensively investigate the
influence of various lens galaxy mass profiles on the constraints
imposed on the spatial curvature.

Within the SIS model, the mass density distribution of the
lens galaxy follows a scaling relation of p oc . This leads to
an expression for the distance ratio as follows (Mollerach &
Roulet 2002)

2
b Oe )

2
d_y 47TUSIS

where 0 represents the Einstein radius, and ogyg is the velocity
dispersion associated with the lens mass profile. It is worth
noting that the equivalence between the observed stellar
velocity dispersion oy and ogg within the context of the SIS
model is not an absolute requirement (Khedekar & Chakraborti
2011). There may be potential deviations between the observed
stellar velocity dispersion and the characteristic velocity
dispersion associated with the SIS model. Consequently, to
account for such deviation, a phenomenological parameter f is
introduced, yielding ogis = fop (Kochanek 1992; Ofek et al.
2003; Cao et al. 2012; Li et al. 2019). Notably, the free
parameter f is anticipated to fall within the range of
0.8 <f*< 1.2 (Ofek et al. 2003). In practice, the velocity
dispersion is typically measured within the aperture radius 0,,,
in actual SGL data. To convert the measurement to op, an
aperture correction formula (Jorgensen et al. 1995) can be
employed, given by the equation

O )
%z%@j), (©6)
ap

where o, represents the luminosity weighted average of the
line-of-sight velocity dispersion within the aperture radius, 6.
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corresponds to the effective angular radius, and 7 is the
correction factor fixed to —0.066 (Cappellari et al. 2006; Chen
et al. 2019). It is important to consider that the uncertainty
associated with o,, propagates to oy, subsequently impacting
osis- Additionally, the uncertainty in the distance ratio dj,/d; is
derived from the uncertainties in 6z and ogs. In this work, we
adopt a fractional uncertainty of 5% for 0 (Liao et al. 2016).

Within the framework of the PL spherical model, the mass
density distribution of the lensing galaxy is characterized by a
spherically symmetric PL behavior, expressed as por 7,
where ~y represents the PL index. The distance ratio in the PL
model can be described as (Koopmans et al. 2006)

where
S
_ 1 G5-291-9 T(y-1 [F(V/Z —1/2) ]2.
JE 3-7  T(y=-3/2| T(/2)

(®)

It is worth noting that when ~ takes the value of 2, the
PL model reduces to the standard SIS model. To account
for the potential redshift evolution of the mass density
profile, we introduce a parameterization for v, expressed as
Y(z;) = Yo + Y121, Where o and ~; represent two independent
free parameters.

Within the EPL model, the luminosity density profile u(r)
can differ from the total mass density profile p(r), accounting
for the presence of a dark matter halo. We adopt the following
functional forms for the PL mass density profile and the
luminosity density of stars,

—a -6
p(r)zpo(l) , u(r)=uo(i) , )
ro ro

where o and ¢ correspond to the PL index parameters, r
represents the characteristic length scale, and py and 1, are
normalization constants. The distance ratio in the EPL model is
expressed as (Birrer et al. 2019; Lee 2021)

dy _ 0g 3-6 (@)2‘”
dy 20547 (€ =203 - O\ b
y [A(ﬁ)—ﬁA(£+2)]’ (10)
M) A(6)

2
an anisotropy parameter that characterizes the anisotropic

distribution of the three-dimensional velocity dispersion. In
accordance with Wang et al. (2020), we consider § as a
nuisance parameter and marginalize over it with a Gaussian
prior of 3=0.18 £ 0.13. Simultaneously, we treat o and ¢ as

where E=a+6—2, A\(x) = I‘(x — ])/F(%), and (3 represents
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free parameters. It is worth noting that when av=6=2 and
(=0, the EPL model reduces to the standard SIS model.

3. Observational Data and Deep Learning

The distance ratios dj,/d; are obtained from the observations
of SGL systems. In a recent study, Chen et al. (2019) compiled
a new SGL sample by combining data from various galaxy
surveys, including the Lenses Structure and Dynamics (LSD)
survey (Treu & Koopmans 2004), the Sloan Lens ACS
(SLACS) survey (Bolton et al. 2006), the CFHT Strong
Lensing Legacy Survey (Cabanac et al. 2008), and the BOSS
Emission-Line Lens Survey (Brownstein et al. 2012). This
compiled sample consists of 161 galaxy-scale SGL systems,
covering a redshift range of z; € [0.0624, 1.004] for the lens
galaxies and z; €[0.197, 3.595] for the source galaxies. In
Figure 1, we illustrate the distribution of the SGL sample,
derived from diverse survey sources, as depicted in the z;-z,
plane. Additionally, we provide the redshift distribution of the
lens objects, with a predominant concentration of lenses
residing at an approximate redshift of z; ~ 0.2.

The dimensionless comoving distances d; and d; are derived
from the luminosity distance D, of SNe Ia using the relation

_ HoD.(2)

d(z) = ——————=.
(2) ol 1 2

1D

The luminosity distance D; can be obtained from the light
curve of SNe Ia. Considering a specific redshift z, the distance
modulus of SNe Ia can be expressed as

Dy(z)
Mpc

w = 510g10 + 25 = mp corr — Mp, (12)

where Mjp represents the absolute magnitude and mpcor
denotes the corrected apparent magnitude observed in the B-
band, reported in the largest and most recent Pantheon data set
(Scolnic et al. 2018). The redshift range of the SN Ia sample
used in our work, i.e., the Pantheon data set, is z € [0.01, 2.30].

To obtain the comoving distances d at the redshifts of the
lens and source for all the SGL systems, it is necessary to
reconstruct a continuous curve of the distance-redshift relation
d(z) based on the Pantheon sample. Previous work by Wang
et al. (2020) employed the GP method to reconstruct a smooth
curve of d(z) from SN Ia data. However, the reconstructed
uncertainty of the GP method tends to be large in regions where
the data points are sparse, and it becomes even more
challenging to estimate distances beyond the observed redshift
range. Consequently, SGL systems with source redshifts larger
than 2.3 could not be utilized in their analysis.

In this paper, we adopt a deep learning method to reconstruct
the distance-redshift curve without any specific assumption
about its parametric form. This approach allows us to
reconstruct the distance-redshift relation using a wide range
of redshifts, covering the entire redshift range of the SGL
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sample. Specifically, we can extend the reconstruction up to a
redshift of z=4, thus ensuring that we encompass the full
redshift range of the SGL systems under consideration. This
utilization of deep learning enables us to overcome the
limitations associated with the sparse data points and extra-
polate the distance-redshift relation to regions beyond the direct
observational range.

Deep learning has emerged as a powerful methodology for
analyzing complex and intricate data sets. One common
approach involves the utilization of ANNs as underlying
models, such as Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), and Bayesian Neural
Networks (BNNs), among others. These neural networks
typically consist of multiple layers of interconnected processing
units, where each layer receives information from the previous
layer, transforms it and then propagates it to the subsequent
layer. Through training, these networks aim to learn and
represent the underlying patterns and structures within the data.
In the context of our research, we employ RNNs as a key
component of our deep learning approach. RNNs are well-
suited for handling sequential data and making predictions
based on learned data representations. By feeding the Pantheon
data set into the RNN, we can effectively capture the
relationship between the distance modulus p and the redshift
z. This enables us to predict distances at arbitrary redshifts,
even beyond the range covered by the observational data.
However, RNNs alone are insufficient for providing uncer-
tainty estimates for these predictions. To address this limitation,
we incorporate BNNs into our network architecture. BNNs
serve as a complementary component to the RNNs and allow
us to calculate the uncertainty associated with the distance
predictions. Our previous work (Tang et al. 2021a) had
incorporated both RNNs and BNNs to model the distance
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modulus-redshift relationship based on the Pantheon data set,
while this current research emphasizes the reconstruction of the
distance curve d(z) using the deep learning approach.

The architecture of our network is illustrated in Figure 2. The
central component is the RNN, which consists of three layers:
an input layer that receives the redshift z as the feature, a
hidden layer that processes information from the previous layer
and passes it to the next layer, and an output layer that
generates the target output, which in this case is the comoving
distance d. The RNN is designed to capture the temporal
dependencies and patterns in the input data. To overcome the
challenges associated with training RNNs on long sequential
data and to address the issue of information retention over long
periods, we employ Long Short-Term Memory (LSTM) cells
as the basic units of our network. LSTM cells enhance RNNs
by incorporating explicit memory mechanisms, allowing the
network to selectively store, discard, and retrieve information.
The input and hidden layers of our network consist of 100
LSTM cells each.

In the training process, the RNN is fed with the Pantheon
data to learn and represent the relationship between the
comoving distance d and the redshift z. This is achieved by
minimizing a loss function that quantifies the discrepancy
between the network’s predictions and the observed distances.
In this work, we utilize the mean-squared-error (MSE) function
as the loss function, and we employ the Adam optimizer to find
the minimum of this function. To enhance the network’s
performance, we introduce a non-linear activation function
denoted as Ax. In our previous research on reconstructing the
distance modulus (z), we found that the hyperbolic tangent
(tanh) function outperformed other activation functions such as
ReLU, ELU, and SELU. However, since we are now
reconstructing the comoving distance d(z) instead of the
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Figure 1. Left: The distribution of the SGL sample obtained from various surveys in the zz, plane. Right: the redshift distribution of lenses.
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Figure 2. Left: The network architecture comprising a single hidden layer is illustrated. Right: The network unfolded up to time step ¢ =4, denoted as Z40
representing the ith time step. In our network, both the input layer and hidden layer are composed of LSTM cells, housing 100 neurons each. The output layer is a fully
connected (dense) layer. To mitigate overfitting, the dropout technique is implemented between each LSTM cell and its subsequent layer.

distance modulus, we compare the performance of all four
activation functions (tanh, ReLU, ELU, and SELU) to
determine the most suitable choice. By setting the time step
to t=4 and utilizing the LSTM-based RNN architecture
with appropriate activation functions, our network aims to learn
the complex relationship between the redshift z and the
comoving distance d. Through training and optimization, we
obtain a model that can predict distances at arbitrary redshifts,
including those beyond the range covered by the Pantheon
data set.

In the context of BNN, it is worth noting that designing a
traditional BNN 1is a challenging task due to its inherent
complexity. Fortunately, Gal & Ghahramani (2016a, 2016b,
2016c) had demonstrated that dropout, commonly used in deep
neural networks as a regularization technique to address the
issue of overfitting, can be viewed as an approximation to
Bayesian inference in deep GPs. This means that a network
incorporating dropout can be considered mathematically
equivalent to a Bayesian model. In this study, we incorporate
the dropout technique within the RNN to emulate the
characteristics of a BNN. By executing the trained network
multiple times, we can generate multiple predictions for the

comoving distance at different redshifts. This process allows us
to obtain a range of possible predictions and, consequently,
estimate the confidence region associated with these predic-
tions. This approach effectively mimics the behavior of a BNN,
where the network models the posterior distribution over the
parameters. In our research, we employ a dropout rate of 0.2
between the LSTM layer and its subsequent layer.

To begin the reconstruction of the comoving distance d(z),
we first normalize the comoving distance data obtained from
the Pantheon compilation according to Equations (11) and (12)
with the chosen parameters Hy=70 km s ! Mpcfl and
Mp=—19.36 (Scolnic et al. 2014). Next, we sort the
normalized data points (z;, d;) in ascending order of redshift
z; and reorganize them into four sequences. In each sequence,
the redshifts and the corresponding normalized distances are
used as input and output vectors, respectively, for training the
network. Subsequently, we train the network constructed as
described above using TensorFlow® for a total of 1000
iterations. The well-trained network is saved for later use. In
the final step, we execute the trained network 1000 times to

3 https: //www.tensorflow.org
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Figure 3. The reconstructions of d(z) from the Pantheon data are presented, employing four distinct activation functions. Top-left: tanh; top-right: ReLU; bottom-left:

ELU; bottom-right: SELU.

predict the distance d over the redshift range z € [0, 4]. The
distribution of the predicted distances is obtained as a Gaussian
distribution.

The results of the distance reconstruction using the four
activation functions (tanh, ReLU, ELU, and SELU) are plotted
in Figure 3. For comparison, we also include the best-fitting
curve of the ACDM model (represented by the black line). It is
worth noting that while the uncertainty in the reconstructed
curve using deep learning may be slightly larger than that
obtained using the GP method within the data region, the
advantage of deep learning lies in its ability to reconstruct the
curve beyond the data region. This enables us to leverage the
full sample of SGL systems.

As depicted in the results, it is observed that only the
reconstructions using the tanh and SELU activation functions
are consistent with the flat ACDM model within the lo
confidence level. Considering that most of the current
cosmological probes favor the ACDM model, and the
reconstructed curves using ReLU and ELU functions deviate

from the ACDM model too much at high redshift, these two
activation functions are excluded in the following calculation.
Therefore, we will derive the dimensionless comoving
distances of the SGL systems from the reconstruction with
the tanh and SELU functions. We emphasize that the
reconstructed curves using deep learning are independent of
cosmological model. The ACDM curves plotted in Figure 3 are
just for comparison.

4. Results

With the reconstructed d(z) curve, we can obtain the
dimensionless comoving distance and the corresponding
uncertainty at z; and z,, then calculate the distance ratio
Rsne = djs/d, according to Equation (4), and the uncertainty
ORe. Propagates from the uncertainties of d; and d;. In addition,
the distance ratios RsgL = dj;/d, can also be obtained from
SGL systems using Equations (5), (7) or (10), according to
different mass models of a lens galaxy. The corresponding
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Table 1
The Best-fitting Parameters in the Framework of SIS model Using the Distance
Reconstructed with Tanh and SELU Functions

Qk f
tanh 0.04970:147 1.038+0008
SELU 0.0820:123 1.0394060%

uncertainty og, propagates from the uncertainties of the
observations of SGL. To compare the distance ratio obtained
from SNe Ia and SGL systems, we determine the best-fitting
parameters by maximizing the likelihood function, which is
proportional to the exponential of the negative chi-square
statistic, i.e., £ oc exp(—x?2/2), where

161 (Rene — RsaL)?
o, Q) =3 Bove — Rsa) (13)

i=1 T total

Here, p represents the set of parameters for the lens mass
profile, where p =f for the SIS model, p = (v, ;) for the PL
model, and p=(a, 6) for the EPL model. The term oy
represents the total uncertainty, which includes contributions
from the uncertainty in the reconstruction and the uncertainty
propagated from the SGL observations

2 _ 2
O total = URSNS

+ U%SGL : (14)

Assuming a flat prior on all free parameters, we calculate the
posterior Probability Density Function (PDF) of the parameter
space using the Python package emcee (Foreman-Mackey et al.
2013). It is worth noting that the prior on the spatial curvature
parameter € is set to € > — 0.39 to ensure that 1 + Qd? > 0
and 1 + def > 0 are within the redshift range z < 4.

In the context of the SIS lens model, we present the best-
fitting parameters obtained using the reconstructions with the
tanh and SELU activation functions in Table 1. Additionally,
we provide the 1o and 20 confidence contours as well as the
marginalized PDFs for the parameter space in Figure 4. For the

spatial curvature, it is constrained to be = 0.04970137 with

tanh function and € = 0.0827913 with SELU function. The
constraints on €2 in both of the two functions support a flat
Universe within the 1o confidence level, consistent with the
Planck results (Aghanim et al. 2020). The constraint on the
parameter f is rather tight, 1.038%33% with the tanh function
and 1.03970:9% with the SELU function. Both of them exclude
the standard SIS model (f= 1) at more than the 40 confidence
level. This indicates that the lens mass profile slightly but with
strong evidence deviates from the standard SIS model.

In the context of the PL lens model, the parameters are
presented in Table 2. Additionally, the contours and PDFs for
the parameter space are plotted in Figure 5. Similar to the SIS
model, the constraints with tanh and SELU activation functions
are consistent with each other at the 1o confidence level.
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Figure 4. The two-dimensional confidence contours and one-dimensional
PDFs for the parameters within the SIS model framework are depicted. The
results obtained using the distance reconstructed with the tanh and SELU are
represented by the red and blue lines, respectively.

Table 2
The Best-fitting Parameters in the Framework of PL. Model Using the Distance
Reconstructed with Tanh and SELU Functions

97 Yo N
tanh —0.2451997 2.07699%8 —0.3091 5454
SELU —0.232550%¢ 2.074+09%8 —0.307943

However, the constraint on curvature parameter in the PL
model is totally different from that in the SIS model. The
spatial curvature is constrained to be ) = —0.2457007; with
tanh function and = —0.232797¢ with SELU function. The
constraints on ), in the PL model prefer a closed Universe at
the ~30 confidence level. For the lens parameters, they are
constrained to be (5, ) = (2.0767003, —0.309°0461) with
the tanh function, and (v, 7)) = (207433038, —0.307+5433)
with the SELU function. The results deviate from the standard
SIS model (y9=2, 7, =0) at more than the 20 confidence
level, demonstrating that the total mass density profile of the
lens galaxy possibly evolves with cosmic time.

In the context of the EPL lens model, the results obtained
with two activation functions are shown in Table 3 and
Figure 6. The constraint in the EPL model is looser than that in
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Figure 5. The two-dimensional confidence contours and one-dimensional
PDFs for the parameters within the PL model framework are depicted. The
results obtained using the distance reconstructed with the tanh and SELU are
represented by the red and blue lines, respectively.

the SIS and PL models. With two functions, the spatial
curvature parameters are constrained to be €2, < 0.011 in the
tanh function and €2; < 0.051 in the SELU function at the 95%
confidence level. For the set of lens parameters, the results
obtained with two activation functions are consistent with each
other. We obtain (o, §) = (2.11479918 2.38379128) with the
tanh function and (o, §) = (2.11240317, 2.37540:125) with the
SELU function. Both results deviate from the SIS model
(a=6=2) at more than the 1o confidence level. Especially
for «, it rules out o =2 at approximately the 30 confidence
level. These results affirm that the influence of dark matter in
early-type galaxies should be considered and the total-mass
profiles are not necessarily consistent with the luminosity
profiles.

For enhanced clarity, Figure 7 showcases the optimal fitting
outcomes concerning the curvature parameter €2, accompa-
nied by their corresponding lo uncertainties within the
context of the SIS and PL models. Additionally, the upper
and lower bounds of €2, within the EPL model are exhibited.
Furthermore, to facilitate comprehensive comparison, we
integrate the constraints on (), originating from alternative
cosmological methodologies, including outcomes from the
Planck (Aghanim et al. 2020) and extended Baryon Oscilla-
tion Spectroscopic Survey (eBOSS) (Alam et al. 2021). Upon

Figure 6. The two-dimensional confidence contours and one-dimensional
PDFs for the parameters within the EPL model framework are depicted. The
results obtained using the distance reconstructed with the tanh and SELU are
represented by the red and blue lines, respectively.

Table 3
The Best-fitting Parameters in the Framework of EPL Model Using the
Distance Reconstructed with Tanh and SELU Functions, the Constraints of €2
are Shown with the 95% Confidence Level Upper Limits

Qe «@ o
tanh <0.011 2.11459018 2.38370438
SELU <0.051 2.112%9917 2.375504%

meticulous scrutiny, it becomes conspicuous that the con-
straints derived from the PL model exhibit noteworthy
deviations from the outcomes of the Planck and eBOSS
investigations. Meanwhile, the results stemming from the SIS
and EPL models manifest congruence with the findings of the
Planck and eBOSS initiatives. It is worth noting that the
constraints associated with the EPL model, while consistent,
display a marginally reduced stringency. Our findings under-
score that, if the Universe is indeed flat, subtle deviations
from the isothermal profile are discernible within the lens
distribution. Moreover, it is imperative to duly consider
variables such as the redshift evolution of lens profiles and the
intricate interplay of dark matter in the broader landscape of
cosmological research.
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Figure 7. Constraint results of €, in three different lens models using two activation functions in our work, compared with the constraints from other cosmological

probes, Planck and eBOSS.

5. Discussion and Summary

Based on geometrical optics, the DSR offers a model-
independent approach to testing the validity of the FRW metric
in cosmology. The DSR has proven to be a valuable tool for
constraining the spatial curvature of the Universe. Applying the
DSR method, Wang et al. (2020) recently investigated the
spatial curvature with the combination of an SGL sample and
the latest Pantheon SNe Ia. Although the total number of SGL
systems is 161, the available SGL systems in Wang et al.
(2020) are just 135 due to the GP regression used to reconstruct
the distance-redshift relation being unable to reconstruct the
curve well beyond the data region. In this research, we use the
same data samples but with a deep learning method to constrain
the spatial curvature. In contrast to the GP method, deep
learning exhibits enhanced capability in effectively reconstruct-
ing data beyond the observed range. Hence, we can make use
of the full SGL systems and improve the precision of the
constraints.

In this study, we developed a combined RNN and BNN
architecture to accurately reconstruct the distance-redshift
relation using the Pantheon sample. The RNN component of
the network is specifically designed to predict the comoving
distance at a given redshift, while the BNN component serves
as a valuable complement, allowing for the calculation of
uncertainties associated with these predictions. In the process
of the distance reconstruction, we considered four activation
functions and found that only the tanh and SELU functions can
reproduce the Pantheon data well. Hence, we calibrated the
distance of SGL systems with tanh and SELU functions. To
investigate the possible influence of different lens models on
constraining the spatial curvature, we considered three types of
lens models, i.e., the SIS model, PL model and EPL model. In
the SIS model, the spatial curvature is constrained to be

O = 0.04910137 with the tanh function, and € = 0.08271%
with the SELU function. Comparing with the result of Wang
et al. (2020), % = 0.57703%, which favors an open Universe at
20, our result favors a flat Universe with a higher accuracy due
to the increase of available SGL data points. In the PL model, a
closed Universe is favored, with the curvature parameter
O = —02457007  with  the tanh  function, and
O = —0.2327997 with the SELU function, which are
consistent with = —0.24670%8 obtained in Wang et al.
(2020). In the EPL model, the spatial curvature is constrained
to be €, < 0.011 with the tanh function, and €2; < 0.051 with
the SELU function. Comparing with the results
Q = 0.250701% in Wang et al. (2020), our constraint on the
spatial curvature parameter is looser in the EPL model, but
there is no strong evidence ruling out a flat Universe. On the
other hand, for the set of parameters in three lens models, the
results demonstrate that the lens galaxies cannot be simply
described by the standard SIS model.

In summary, the lens mass models have a noticeable
influence on the curvature parameter. In the SIS model, a
spatially flat Universe is favored within 1o uncertainty. In the
PL model, a closed Universe is favored at the ~30 confidence
level. In the EPL model, the constraint is relatively loose, but a
flat Universe could not be excluded. More accurate modeling of
the lens mass profile is necessary to further improve the
constraint on the curvature parameter.
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