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Abstract

The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) has been in normal operation for
more than 10 yr, and routine maintenance is performed on the fiber positioner every summer. The positioning
accuracy of the fiber positioner directly affects the observation performance of LAMOST, and incorrect fiber
positioner positioning accuracy will not only increase the interference probability of adjacent fiber positioners but
also reduces the observation efficiency of LAMOST. At present, during the manual maintenance process of the
positioner, the fault cause of the positioner is determined and analyzed when the positioning accuracy does not
meet the preset requirements. This causes maintenance to take a long time, and the efficiency is low. To quickly
locate the fault cause of the positioner, the repeated positioning accuracy and open-loop calibration curve data of
each positioner are obtained in this paper through the photographic measurement method. Based on a systematic
analysis of the operational characteristics of the faulty positioner, the fault causes are classified. After training a
deep learning model based on long short-term memory, the positioner fault causes can be quickly located to
effectively improve the efficiency of positioner fault cause analysis. The relevant data can also provide valuable
information for annual routine maintenance methods and positioner designs in the future. The method of using a
deep learning model to analyze positioner operation failures introduced in this paper is also of general significance
for the maintenance and design optimization of fiber positioners using a similar double-turn gear transmission
system.
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1. Introduction

1.1. Functions of the Fiber Positioner

The Large Sky Area Multi-Object Fiber Spectroscopic
Telescope (LAMOST) is an astronomical telescope with the
highest spectral acquisition efficiency worldwide (Zhao 2014).
It adopts a parallel controllable dual-rotation fiber positioning
scheme, and 4000 optical fibers are distributed and installed on
a 1.75 m spherical crown focal panel. LAMOST can acquire
4000 spectra simultaneously (Xing et al. 2007). The partitioned
parallel controllable technology of the optical fiber positioner is
one of the two key technologies of LAMOST, and the fiber
positioner is its core part (Hu et al. 2006). It consists of a
central axis and an eccentric axis with equal arm lengths. The
transmission mode can keep the transmission chain in a self-
locking state so that the fiber can maintain a stable position

after the positioning process is completed. The optical fiber is
clamped at the end of the eccentric rotary shaft, and the
positioning of the optical fiber in the plane is achieved by the
joint movement of the central rotary shaft and the eccentric
rotary shaft. The fiber positioner has a two-stage transmission
structure that forms a double-rotation j− θ motion, in which
the stroke angle of the central rotary axis is 0°–360° and the
stroke angle of the eccentric rotary axis is 0°–180° (Hu et al.
2003). The movement can position the fiber mounted on it to
any position in the circular observation area. The gyration radii
of the central rotary axis and the eccentric rotary axis are both
8.25 mm. Thus, as illustrated in Figure 1, the effective motion
range of each fiber end face is a Φ33 mm circle. Moreover, the
center distance between the adjacent positioners is 25.6 mm, so
the observation areas of the fiber positioners overlap each other
(Xing et al. 1998). As demonstrated in Figure 2, no positioning
blind spot is produced through this design scheme.
This optical fiber positioning method has high positioning

accuracy and positioning efficiency. The Sloan Digital Sky
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Survey (SDSS) telescope utilized the perforated positioning
method in the early days, which required the installation hole to
be made according to the star coordinates on the aluminum plate,
and each optical fiber was inserted before observation, which
was very inefficient in terms of positioning (Macktoobian et al.
2019). Early on, the Subaru telescope employed the pendulum
positioning method for the needle. This approach controls the

piezoelectric actuator through a zigzag voltage pulse signal,
tilting the mechanical structure of the fiber mounted to the target
position, thereby completing fiber positioning. However, this
positioning method brings about insufficient optical fiber light
intake and light defocusing problems, and the positioning
efficiency is not high enough. The new SDSS and Subaru
projects choose to be similar to the LAMOST dual-rotation
positioning method, which greatly improves the accuracy and
efficiency of optical fiber positioning (Fisher et al. 2012, 2014;
Grossen et al. 2020). The current Dark Energy Spectroscopic
Instrument (DESI) telescope with 5000 fibers also adopts this
optical fiber positioning method to achieve larger-scale optical
fiber positioning (Leitner et al. 2018; Poppett et al. 2018; Zhang
et al. 2018; Fagrelius et al. 2020).

1.2. Introduction to the Fiber Positioner Drive

The transmission structure of the central shaft is diagrammed
in Figure 3. The central driving motor is connected to the motor
interface plate. The motor interface plate is fixed on the fiber
positioner with screws. The motor gear is fixed on the motor
shaft with a locking nut and rotates with the motor shaft. The
gear meshes with the internal gear, and the internal gear and the
central shaft are fixed with set screws. The central rotary
mechanism is driven by a stepper motor with a 1:1024 reducer
through a two-stage spur gear to drive the hollow shaft to
perform central rotation within the range of 0°–360° to realize
the transmission of the central rotary shaft. The structure of the
eccentric shaft drive is drawn in Figure 4. The eccentric driving
motor is connected to the motor interface plate. The motor
interface plate is fixed on the fiber positioner with screws. The
motor gear is fixed on the motor shaft with a locking nut and
rotates with the motor shaft. This gear meshes with the helical
gear, the helical gear is tightly sleeved on the intermediate shaft
and the other helical gear is tightly sleeved on the shaft to mesh
with the eccentric helical gear. The locking nut fixes the helical
gear on the eccentric rotary shaft to achieve transmission of the
eccentric rotary shaft. The eccentric rotary mechanism is
rotated by a stepper motor with a 1:16 reducer through a two-
stage single-tooth-multitooth helical gear reduction device for
0°–180° rotation to achieve the transmission of the eccentric
rotary shaft.
The fiber positioner on LAMOST adopts an AM1020

stepper motor from the Faulhaber Group in Switzerland. When
the center stepper motor operates with a minimum number of
pulses, the minimum drive arc length is 3.31 μm. When the
eccentric stepper motor runs with the minimum number of
pulses, the minimum transmission arc length is 1.687 μm.
Therefore, the central rotary shaft and the eccentric rotary shaft
operate very precisely, and the theoretical positioning accuracy
can reach the micron level. The operational accuracy of the
overall fiber positioner can be guaranteed under open-loop
operating conditions, and this will also provide the possibility

Figure 1. Schematic diagram of the fiber positioner. The stroke angle of the
central rotary shaft is 0°–360°, the rotation radius is 8.25 mm, the eccentric
rotary shaft stroke angle is 0°–180°, the swing radius is 8.25 mm and the
effective motion range of the fiber end face of the positioner is a Φ33 mm
circle.

Figure 2. Schematic diagram of the overlapping multipositioner. The effective
movement range of the end face of each positioner is a Φ33 mm circle, and the
central distance between adjacent positioners is 25.6 mm.
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of performing closed-loop control positioning on the optical
fiber positioning system in the future.

1.3. Diagnostic Method of the Operational Accuracy of
the Fiber Positioner

The positioning accuracy of the fiber positioner directly
affects the observation efficiency of LAMOST, and when the
positioning accuracy of the fiber positioner is unacceptable, at
first, the possibility of interference caused by adjacent
positioners increases, and the positioner cannot effectively
converge. Second, when the positioner installed in the focal
plane of LAMOST receives light from celestial bodies, it cannot
accurately reach the position required by the system instructions
due to the unsatisfactory positioning accuracy of the positioner;
thus, the observation target cannot be found. When the
positioning error of the fiber positioner is greater than 40 μm,
the observation target cannot accurately fall on the center of the
fiber, and when the positioning error is greater than 100 μm, the

fiber cannot be aimed at the astronomical target. To ensure the
observation efficiency of LAMOST, we define fiber positioners
with positioning errors greater than 40 μm as unqualified
positioners during positioner maintenance.
Because the fiber positioner is composed of many complex

parts, the failure rate of the positioner will increase with
increasing use time after long-term operation. The frequent
failures are divided into two types: central shaft failures and
eccentric shaft failures. The faults of the central shaft include
faults of the inner gear of the central shaft, looseness of the
anti-backlash spring plate and the motor gear, and central shaft
motor damage. Furthermore, the faults of the eccentric shaft
include faults of the eccentric shaft anti-backlash spring plate,
gear faults, loosening of the fixing screw of the optical fiber
bracket and damage to the eccentric shaft motor (Gan et al.
2007). When the above problems occur in the positioner, its
stability and reliability decrease, and the observation accuracy
decreases accordingly (Cheng et al. 2018).

Figure 3. Structural diagram of the central shaft transmission. The central driving motor, through the motor gear and internal gear meshing process, realizes the
transmission of the central rotary shaft.

Figure 4. Structural diagram of the eccentric shaft transmission. The eccentric driving motor drives the eccentric rotary shaft through two-stage single-tooth and
multitooth helical gears.
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Therefore, once LAMOST operates normally for more than
ten years, normal routine maintenance of the fiber positioner is
required every summer, and the positioner is maintained and
repaired to ensure its stability and reliability. At present, during
the process of maintaining the positioner, for a positioner with
unqualified accuracy, the cause of the positioner failure is
analyzed through manual maintenance experience. Then, the
corresponding positioner maintenance process is carried out
according to the cause of the failure. However, in the stage of
analyzing the cause of the positioner failure, it takes a long time
to find the cause of the failure because the scope of the fault is
not clear. This makes the positioner maintenance process take a
long time and causes the maintenance efficiency to be low.

To solve this problem, a new fault analysis and detection
method is proposed in this paper. Section 2 mainly describes,
based on photogrammetry, how to obtain repeated positioning
accuracy and open-loop calibration curve data of the optical
fiber positioner. Furthermore, the operating characteristics of
the fiber positioner are systematically analyzed to classify the
observed faults. In Section 3, deep learning-based long short-
term memory (LSTM) model training is applied to achieve
rapid classification and location of the fault cause of the optical
fiber location positioner. In Section 4, the experiment and its
results are summarized.

2. Fine Run-in Experiment of the Fiber Positioner

2.1. Fiber Positioner Running and System Precision

At present, the positioning accuracy of the fiber positioner is
measured through a running and testing platform built in the

laboratory. The specific composition of the running and testing
platform is depicted in Figure 5.
The whole system consists of five main parts: the fiber

positioner, a small focus panel, a control part, a measurement
subsystem, and a light-guided fiber and light source. The small
focus panel, the fiber positioner, and a complementary metal-
oxide-semiconductor (CMOS) camera are installed on the same
air-floating platform.
Small focus panel: In this part, 276 holes are processed on the

focus panel in a honeycomb shape for the clamping positioner.
As shown in Figure 6, a fiber positioner can be installed in each
hole position, and the focal panel is perpendicular to the floating
platform.
Control part: The control host controls the camera, and the

main node controls the subnodes installed in the fiber positioner
through wireless communication to make the positioner run.
Light-guided fiber and light source: The integrated sphere

provides a uniform illuminating light source for the optical fiber.
Measurement subsystem: The camera used in the measurement

system is the CV50000 CMOS sensor from COMSIS with 7920 ∗
6004 4.6μm 8T global shutter pixels. Moreover, the camera has a
3mm full-frame optical format, and its temporal noise is 15.3 e-.
In addition, the full well capacity of the camera is 16 000 e-, and
the dynamic range is 60 dB. Finally, the lens has a typical
(maximum) optical distortion of <0.08 (0.20%) over its aperture,
and the object-image relationship of the camera is 1 pixel,
corresponding to 18.6μm. We fully consider the impact of the
distortion factors caused by the camera lenses on the measure-
ments obtained in the experimental work. Before collecting the

Figure 5. Fine run-in system of the fiber positioner. The system can achieve the control drive of the fiber positioner and the real-time measurement of the fiber
position.
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motion accuracy data of the fiber positioner, we perform camera
calibration on the CMOS camera. The purpose of camera
calibration is to solve the camera parameters, which include
camera distortion parameters, and can effectively correct the
distortion of the camera lens itself. This paper uses a polynomial
calibration model to solve the camera parameters by relying on a

calibration target. The calibration target is installed at the focal
plane, and the CMOS camera parameters are solved using the
polynomial calibration model to correct the distortion of the
camera lens itself. Since the calibration target is in the same plane
as the fiber-optic endpoint, the obtained camera parameters can
accurately capture the motion accuracy data of the fiber positioner.
The camera calibration process is carried out on a running and
testing platform built in the laboratory environment of the
University of Science and Technology of China. After the camera
calibration process is completed, the CMOS camera captures the
calibration target, and the residual distance between the actual
coordinates and the theoretical coordinates is 4.6 μm. The CMOS
camera has high measurement accuracy, satisfying the fiber
positioning accuracy requirement of LAMOST.
At present, whether the positioning accuracy of the fiber

positioner meets the preset requirements is determined through
the repeated positioning accuracy and the open-loop calibration
curve data, and the data are accurately run and obtained
through the running and testing platform.

2.2. Fine Run-in and Experimental Process of the Fiber
Positioner

When the fiber positioner is running, the central rotary axis
and the eccentric rotary axis are separately measured. We rotate
the central shaft from 0° to 360° as a round and turn the
eccentric shaft from 0° to 180° as a round. In addition, we set a
certain number of pause measurement points as index points in
each round, return to the original position after reaching the full
stroke, and then perform the next round of measurement. When
setting the indexing points, the number of indexing points
should not be too few to reflect the accuracy of the precise
meshing of the gears. Such a value would not be able to
describe the running status of the fiber positioner in detail. In
addition, the value should not be set too high so that the
detection time does not become too long. A total of 210
division points are selected to meet the above requirements. As
visualized in Figures 7 and 8, when the central shaft and
eccentric shaft run for one round, the running pulse of the
stepper motor is 63,000, that is, 300 pulses per step. To
improve the pixel coordinate accuracy of each index point, the
measurement is repeated ten times for each index point. During
the process of running, the CMOS camera captures the fiber
position coordinates of each indexing point and records the
obtained fiber coordinates in the control host. This improves
the accuracy of the measurement data and reduces errors. We
generally set the central axis of each batch of fiber positioners,
and the eccentric axis runs and tests for five rounds each. Since
the positioner is still in the running-in stage at the beginning,
the running process and the following rounds of the positioner
will be more stable. Therefore, in the calculation process, we
usually select the data from the third to fifth rounds of the
optical fiber to participate in the calculation for obtaining the

Figure 6. Front view of the small focus panel. The figure shows 276 fiber
positioners and reference fibers mounted on the small focus panel for detecting
the positioning accuracy of the system positioner.

Figure 7. This figure illustrates the positions of the two shafts when the center
shaft is running. When the central shaft runs, to accurately measure the motion
trajectory of the central shaft drive, the eccentric shaft is spread out by 60°
before running, and then the eccentric shaft is in a stationary state. The central
shaft takes 300 pulses per step and 210 steps per round. Position 1 shows the
initial positions of the two shafts, and positions 2 and 3 are the positions of the
two axes passed during central shaft running.
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repetition of the fiber positioner. The positioning accuracy and
calibration curve data are obtained. The fiber positioner is
driven by a permanent magnetic motor through a reducer and a
gear meshing transmission, which has high transmission
accuracy and can reach the micron level. The three-wheel
measurement can effectively reflect the repeated positioning
accuracy, and the collection of more measurement rounds
increases the measurement time and decreases the efficiency of
the motion data measurement process. In addition, it does not
have a significant influence on the repeated evaluation of the
positioning accuracy. Therefore, the three-wheel measurement
data satisfy the requirements for the repeated evaluation of the
positioning accuracy.

2.2.1. Calculation of the Repeated Positioning Accuracy of the
Fiber Positioner

The coordinates of each index point are measured ten times
in a row in each round, and the average of the ten
measurements is taken as the actual coordinate value of the
index point for that round. After repeating this process for three
rounds, the mean of the coordinates for each indexing point
over the three rounds is obtained. The distance from the actual
coordinate value of each division point in each round to the
mean of the three rounds of division point coordinates is
calculated. Finally, we calculate this distance for all the
indexing points in these three rounds to determine the standard
deviation (δ). Figure 9 displays the typical repeat positioning
accuracy of the central axis and eccentric axis of the fiber
positioner. The curve in each color represents the distance error

between the actual value of the coordinates of each index point
in the corresponding round and the average value of the actual
coordinates of the index points in three rounds.
Experimental data analysis:
The repeated positioning accuracy is based on multiple

rounds of positioning at the same position of the fiber
positioner. The stability and reliability of the fiber positioner
can be qualitatively analyzed by plotting the distance between
each indexing point and the actual average value of the
coordinates of the three indexing points. Calculating the
standard deviation can quantitatively provide a determination
of whether its accuracy meets the imposed requirements. The

Figure 8. This figure illustrates the positions of the two shafts when the
eccentric shaft is running. When the eccentric shaft runs, the central shaft is in a
stationary state. The eccentric shaft takes 300 pulses per step, and each round
takes 210 steps. Position 1 shows the initial positions of the two shafts, and
positions 2, 3, and 4 are the positions of the eccentric shaft passed during the
eccentric shaft running process.

Figure 9. Typical repeat positioning accuracy diagram. The abscissa is the
number of index point steps, and the ordinate is the distance from the actual
coordinate value of each division point in each round to the mean of the three
rounds of division point coordinates. The different colored curves represent the
rounds corresponding to the run-in of the positioner.
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LAMOST facility requires that the 3δ of the fiber positioner not
exceed 40 μm to meet the requirements of the LAMOST
observations regarding the positioning accuracy of the fiber
positioner (Jin et al. 2008).

In Figure 9, the standard deviation δ of the central axis
distance of the fiber positioner is 1.6844 μm, the standard
deviation δ of the eccentric axis distance is 1.9566 μm, and the
3δ between the central axis and the eccentric axis is far less
than 40 μm. These results indicate that the fiber positioner has
high repeated positioning accuracy and can fully meet the
positioning requirements.

2.2.2. Fiber Positioner Calibration Curve Data Calculation

The average values of the last three rounds are taken as the
data that participate in the calculation process, and the center of
rotation and the two gyration radii of the central axis and the
eccentric axis are fitted by the least-squares method. Afterward,
the actual rotation angle of each step is calculated by using the
parameters of the fiber positioner through the cosine theorem.

Least-squares fitting method:
We suppose that (x, y) are the coordinates of the center of

rotation, r is the radius of rotation, and (xi, yi) are the
coordinates of the ith division point. According to the definition
of a circle,

( ) ( ) ( )- + - =x x y y r , 1i i
2 2 2

where x and y are the horizontal and vertical coordinates of the
rotation center, and xi and yi are the horizontal and vertical
coordinates of the ith division point, respectively, while r is the
radius of the rotation trajectory.

It can be deduced from Equation (1) that

( ) ( )+ + - + = +x x y y r x y x y2 2 . 2i i i i
2 2 2 2 2

We let

( ) ( )= - +d r x y , 32 2 2

where d is the solution for ( )- +r x y .2 2 2
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We find the coordinates of the center of rotation (x, y) and the
radius of rotation r.

Actual step angle calculation:

We let the angle between the ith and the i+ 1th division
point be θi; the lengths of the three sides of the triangle are la,
lb, and lc. The three side lengths of la, lb, and lc can be
calculated from the distance formula between two points in a
plane. Finally, as shown in Figure 10, according to the cosine
theorem, we obtain

(( ) ) ( )q = + -l l l l larccos 2 , 5i a b c a b
2 2 2

where la, lb, and lc are the lengths of the sides of the triangle
formed by the rotation center and the ith and i+ 1th division
points, while θi is the angle between la and lb.
Experimental data analysis:
As seen in Figure 11, the theoretical step angle of each index

point of the central axis is 1.72°, and the step angle of each
index point of the eccentric axis is 0.86°. However, the actual
calibration curves of the two axes are near their theoretical
values. The fluctuation, i.e., the number of pulses, and the
actual rotation angle are not simply linear.

2.3. Analysis of the Accuracy Error of the Fiber
Positioner

Quantitatively, a fiber positioner with unqualified positioning
accuracy has 3δ > 40 μm, and qualitatively, the repeated
positioning accuracy curve and calibration curve fluctuate greatly.
The failure cause of the unqualified positioner must be analyzed,
and the common failure causes affecting the positioning accuracy
of the positioner are divided into four types.
1. The assembly of the parts of the eccentric shaft

transmission is loose.
The looseness of the assembly of the parts of the eccentric

shaft transmission is divided into eccentric shaft anti-backlash
spring looseness, the eccentric shaft gear looseness, and the
looseness at the optical fiber bracket due to a set screw.
Eccentric shaft gear looseness is the most common of these

Figure 10. Schematic diagram of the step angle calculation process for the
central and eccentric axes. Each point in the figure represents the position of the
fiber when the positioner stalls at the indexing point, the central shaft indexing
point trajectory is circular and the eccentric shaft indexing point trajectory is
semicircular.

7

Research in Astronomy and Astrophysics, 23:125006 (15pp), 2023 December Tang et al.



causes. The cause of the fault induces a backlash impact when
the eccentric shaft gear is driven such that the eccentric shaft
transmission is not synchronized, and the optical fiber
transmission to the target point has a certain deviation.

As affirmed in Figure 12, because the optical fiber
transmission position has a certain deviation from the target
point, the residual error of the optical fiber coordinate of each
indexing point increases, and the oscillation amplitude of the
step angle of the indexing point increases.

2. The eccentric shaft motor is damaged.
When the eccentric shaft motor is damaged, the eccentric

shaft motor gear cannot be stably driven, the eccentric shaft

cannot reach the exact required position when it is driven and
the position of each round of optical fibers is not fixed.
As shown in Figure 13, due to jittering that occurs when the

eccentric shaft is driven, the position coordinates of each
indexing point are not fixed, and the residual error of each
indexing point is large. Similarly, the step rotation angle of
each indexing point in the calibration curve is also high.
3. The assembly of the parts of the central shaft transmission

part is loose.
The looseness of the assembly of the parts of the central

shaft transmission is caused by the looseness of the internal
gear of the central shaft and the looseness of the anti-backlash
spring of the central shaft. Among them, the looseness of the
internal gear of the central shaft is the main cause. When the

Figure 11. Typical calibration curve. The abscissa is the number of index point
steps, and the ordinate is the step angle between the indexing point of each step
and the next indexing point. The different colored curves represent the rounds
corresponding to the run-in of the positioner.

Figure 12. Case when the eccentric shaft gear of the fiber positioner is loose.
The standard deviation of the eccentric shaft distance in three turns of the
failure cause (δ) is 28.8509 μm. The step angle of each index point of the
eccentric axis is between 0.°6 and 1.2°, and the theoretical step angle is 0.86°.
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central shaft runs in harmony, the motor gear meshes with the
internal gear, driving the internal gear to operate. Since the
internal gear is not fixed with the central shaft, it cannot stably
drive the central shaft to rotate, resulting in lost steps and a
large error distance between the central shafts of different
wheels.

As demonstrated in Figure 14, due to the loss of steps during
the transmission of the central shaft, the position of the
indexing point in each round will not be fixed, and the residual
curve will fluctuate greatly.

4. The central axis motor is damaged.
If the motor of the central shaft is damaged, when the central

shaft runs in harmony, the motor gear cannot be driven stably,
resulting in a large shaking of the central shaft. Moreover, the
position of each indexing point in each round is unstable.

As plotted in Figure 15, due to the severe jitter that occurs
when the central shaft is driven, the position error of the same
index point in each round will be very large, and the residual
curve will fluctuate violently. Similarly, each index point in the
calibration curve has a large fluctuation.
During the maintenance of the fiber positioner, we

accumulate a large amount of data on the causes of positioner
failures. We select 500 positioners that had undergone repairs
and analyze the causes of their failures. Among the 392
positioners, the cause of failure is found to be the looseness of
the assembly of the parts of the eccentric shaft transmission
with a probability of 78.4%. For 257 positioners, the cause of
failure is the looseness of the assembly of the parts of the
central shaft transmission with a probability of 51.4%. For 21

Figure 13. Case with damage to the eccentric shaft motor. The standard
deviation of the eccentric shaft distance in three turns of the failure cause (δ) is
642.6237 μm. The step angle of each index point of the eccentric axis is
between 0.°4 and 1.2°, and the theoretical step angle is 0.86°.

Figure 14. Looseness of the internal gear of the central shaft. The standard
deviation of the eccentric shaft distance in three turns of the failure cause (δ) is
505.0837 μm. The step angle of each index point of the eccentric axis is
between 1° and 3°, and the theoretical step angle is 1.72°.
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positioners, the cause of failure is a damaged central shaft
motor with a probability of 4.2%, while for 19 positioners, the
cause is a damaged eccentric shaft motor with a probability of
3.8%. Since some fiber positioners may have several types of
failure causes simultaneously, the sum of the probabilities of
the failure causes may exceed 100%.

These four types of fault causes can basically cover all
operating conditions of the positioners. During the annual
maintenance of a large number of fiber positioners, we classify
the fault causes into four major categories. The main causes of
failure are the looseness of the assembly of the parts of the central
shaft transmission and the looseness of the assembly of the parts
of the eccentric shaft transmission. In very few cases, the faults
are caused by damaged central or eccentric shaft motors.

Therefore, we believe that these four types of fault causes can
effectively cover the operational faults of the positioners.

3. Fault Diagnosis Based on an LSTM Deep Neural
Network

3.1. Fault Diagnosis Method Selection

Existing fault diagnosis methods are mainly divided into
traditional fault diagnosis algorithms and deep learning-based
fault diagnosis algorithms.
Traditional fault diagnosis methods require manual feature

extraction, feature selection, and fault classification. During
feature extraction, time–frequency statistical feature analysis,
the fast Fourier transform, the wavelet transform and time–
frequency map analysis are often used to eliminate the
influence of noise. To extract features that are suitable for
fault classification, principal component analysis (Hu et al.
2014), independent component analysis (Qu et al. 2006),
manifold learning, and other algorithms are chosen to screen
useful features. Finally, by using a backpropagation neural
network or support vector machine as the fault classifier (Feng
& Zhang 2013), fault classification can be successfully
achieved with good robustness. The traditional fault diagnosis
algorithm, such as in the simple feature extraction method, has
a wide range of applications, and can partially meet the
imposed fault diagnosis recognition rate requirements by
setting appropriate classifier parameters. However, the feature
extraction process of traditional algorithms relies on manual
extraction and expert knowledge in the field, and the general-
ization ability of the resulting model is not sufficiently robust.
The above traditional methods have difficulty satisfying the
fault diagnosis requirements of fiber positioners.
In contrast, fault diagnosis algorithms based on deep

learning have also begun to emerge with the development of
deep learning theory. Their strong robustness and extremely
high accuracy bring new ideas to the field of fault diagnosis.
Such an approach can automatically extract features from data
without relying on the prior knowledge of experts and finally
achieve fault classification, effectively improving fault diag-
nosis in terms of accuracy and efficiency. Based on the unique
advantages of deep learning in automatic feature extraction and
recognition, deep learning is selected in this paper for
diagnosing the faults of fiber positioners whose positioning
accuracies do not meet the set requirements.

3.2. Data Analysis and Model Selection

Most of the existing fault diagnosis algorithms based on
deep learning utilize vibration data for analysis. However, for
the LAMOST fiber positioner, due to its complex mechanical
structure, these methods are not suitable for fault analysis
through raw vibration signals. In this paper, through precision
running and experiments involving the fiber positioner, four

Figure 15. Damage to the central axis motor. The standard deviation of the
eccentric shaft distance in three turns of the failure cause (δ) is 334.3656 μm.
The step angle of each index point of the eccentric axis is between 0° and 2.5°,
and the theoretical step angle is 1.72°.
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sets of positioner parameters are obtained: the repeated
positioning accuracy of the central axis, the calibration curve
of the central axis, the repeated positioning accuracy of the
eccentric axis and the calibration curve data of the eccentric
axis. These parameters can correspond one-to-one with the
characteristics of positioner failures. Moreover, each group of
data contains time series data, and the data are one-dimensional
with strong contextual correspondence. Regarding the one-
dimensional data, a one-dimensional convolutional neural
network (CNN) can extract their features very well, but a
one-dimensional CNN has no memory ability and will waste
the time features of the data (Qu et al. 2018). In contrast, a
recurrent neural network (RNN) can achieve time memory
ability, but the traditional RNN model implements the back-
propagation through time (BPTT) method during training (Zhu
et al. 2022). When the given time series is long, the residual
error that needs to be returned decreases exponentially. As a
result, the network weights are updated slowly, and the model
does not have a long-term memory capability. The LSTM
model relies on a special hidden layer cell structure (Kaplan
et al. 2021), as shown in Figure 16. The input of each neuron
not only has the training data input at the current moment but

also the state input of the neuron at the previous moment. This
provides the LSTM model with a powerful context memory
ability and enables it to solve the problems of gradient
disappearance and gradient explosion. Thus, it has a good
ability to extract features from sequence data. It has been
widely used in deep learning tasks such as text learning and
speech signal processing (Song et al. 2021). Therefore, the
LSTM network is selected in this paper to extract fault features
and build a fault classification model based on the given data
and the accuracy metric. We classify the fault causes by
making the error curves of different fault positioners corre-
spond to different fault types. When using the LSTM network,
we also employ these error curves as training data for the
network.
Figure 16(a) is a schematic diagram of the LSTM forward

propagation model. xt−1, xt, and xt+1 represent the data of the
previous moment, the current moment, and the next moment,
respectively. A is the neuron that needs to be trained in the
LSTM model. ht−1, ht, and ht+1 represent the states of neurons
at the previous moment, the current moment, and the next
moment, respectively. Figure 16(b) shows the internal
structures of neurons. When neuron A is trained, three parts

Figure 16. Schematic diagram of the LSTM nodes.
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of the data are input: ht−1, the state of the neuron at the
previous moment; Ct−1, the output of the neuron at the
previous moment; and xt, the input data at the current moment.
The forget gate inside neuron A, ft, the update gate it, and the
state gate ot are processed according to the input data in
Equations (7)–(9), respectively. σ is the sigmoid nonlinear
activation function that is often used in deep learning networks,
as shown in Equation (6). Wf, Wi, and Wo are the weight data
for the various parts. bf, bi, and bo are the offsets of the different
parts. After completing further processing, such as the steps in
Equations (10) and (11), the output Ct at the current moment
and the state ht of neuron A are obtained. The model designed
in this paper is trained for multiple epochs, and each neuron
obtains appropriate weight data, which can successfully
classify the failure data.

( ) ( )s =
+ -

x
e

1

1
. 6

x

σ is the nonlinear sigmoid activation function that is often
used in deep learning networks.

( · [ ] ) ( )s= +-f W h x b, , 7t f t t f1

( · [ ] ) ( )s= +-i W h x b, , 8t t t t i1

( [ ]) ( )s= +-o W h x b, . 9t O t t o1

ft is the forgetting gate inside neuron A. it is the update gate
inside neuron A. ot is the state gate inside neuron A. Wf, Wt,
and Wo are the weight data for each part. bf, bi, and bo are the

offsets of the different parts.

( · [ ] ) ( )= * + * +- -C f C i W h x btanh , , 10t t t t c t t c1 1

( ) ( )= *h o Ctanh . 11t t t

Ct is output of neuron A at the current moment. ht is state of
neuron A at the current moment.

3.3. Concrete Model Construction

As displayed in Figure 17, in the designed detection
framework, the positioner running and accuracy data are 4 ∗
210-dimensional data, which we send to the LSTM model for
data feature extraction. The time length of each group of data is
210, and the number of features in each moment of data is four.
The LSTM model has a total of three hidden layers, and each
hidden layer has 500 nodes. After the feature extraction process
of the LSTM, a 500-dimensional high-dimensional feature
vector is output, the data features are reduced to four
dimensions through the fully connected layer, and the
maximum direction of the four-dimensional vector is the
predicted feature direction. For the prediction result, we use
cross-entropy to calculate its loss function, calculate the model
gradient through the BPTT gradient backpropagation algo-
rithm, use the ADAM optimization algorithm to update the
model parameters, and finally obtain a converged model.

3.4. Data Preparation and Preprocessing

After viewing a long-term maintenance task of the LAMOST
fiber positioner, we find that the failures of the positioner can

Figure 17. LAMOST double-turn positioner fault detection framework based on the LSTM model. The input layer represents 4 ∗ 210-dimensional input data, and the
input data are divided into four sets of 210-dimensional input data according to the central axis and eccentric axis. LSTM is a concrete internal network model that
consists of three layers with 500 neural nodes in each layer. The linear layer linearly maps the 500-dimensional data acquired by the LSTM to four dimensions.
Finally, in the linear layer, the output results and labels are compared by the cross-entropy function to judge the model training situation and determine the
optimization direction of the model parameters.
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be classified into four categories: eccentric shaft motor damage,
eccentric shaft part looseness, central shaft motor damage, and
central shaft part looseness.

Therefore, we use four double-turn positioners that break the
central shaft and eccentric shaft according to four kinds of

faults; that is, one positioner corresponds to one kind of fault.
Afterward, the positioner is inserted into the test platform for
calibration and running, and 2000 rounds of data are obtained
for each fault. As shown in Table 1, we divide the data into a
training set and a test set according to a ratio of 4:1; that is,

Figure 18. Loss function and accuracy changes observed during training. The result of each training epoch is evaluated using the cross-entropy function to calculate
the loss rate, as shown in (a). As the number of training rounds increases, the loss rate decreases, and the model finally achieves convergence. The accuracy rate is the
amount of data correctly classified after each round of training divided by the total amount of training data, as displayed in (b), and the accuracy rate continues to
improve as the number of training rounds increases.

Table 1
Composition of the Training Samples

Fault Type Number of Sample Sample Training Set Testing Set Labels
Samples Length Dimensions

Eccentric shaft motor damage 2000 210 4 1600 400 0
Eccentric shaft part looseness 2000 210 4 1600 400 1
Center shaft motor damage 2000 210 4 1600 400 2
Central shaft part looseness 2000 210 4 1600 400 3

Note. Each fault type produces 2000 pieces of fault data, and each data point has 4 ∗ 210 dimensions. Each fault type uses 1600 pieces of data as its training set and
400 pieces of data as its test set. The labels of the eccentric shaft motor damage fault data are set to 0. The labels of the eccentric shaft component looseness fault data
are set to 1. The labels of the central shaft motor damage fault data are set to 2. The labels of the central shaft component failure data are set to 3.

Table 2
Actual Data Validation Results

Fault Type Number of Samples Sample Length Sample Dimensions Accuracy Rate

Eccentric shaft motor damage 50 210 4 0.98
Eccentric shaft part looseness 50 210 4 0.94
Central shaft motor damage 50 210 4 0.98
Central shaft part looseness 50 210 4 0.96

Note. Among the fault data accumulated in the actual maintenance task, 200 fault data points are randomly selected and 50 data points are selected for each fault type.
The dimensionality of the data is 4 ∗ 210 dimensions. These data are passed into the trained fault diagnosis model, and the classification accuracy obtained for the
eccentric shaft motor damage fault data is 0.98. The classification accuracy achieved for the eccentric shaft component looseness fault data is 0.94. The classification
accuracy of the damage fault data for the central shaft motor is 0.98. The classification accuracy of the failure data for the central shaft component is 0.96.
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each fault training set has a total of 1600 pieces of data, and
each fault test set has a total of 400 pieces of data. Each fault
data label is set to 0, 1, 2, or 3.

3.5. Training Results

In this paper, the number of training rounds is set to 100, the
training data are randomly scrambled and each batch has 500
pieces of data for training. After 100 rounds of training, the
model converges, the accuracy rate achieved on the test set
exceeds 98%, and the accuracy rate achieved on the validation
set exceeds 97%. The model has a good fault data identification
ability. Figure 18 shows the changes in the accuracy rate and
loss function that occur during the training process. The loss
function of the model decreases as the number of training
rounds increases, and the accuracy rate gradually exceeds 98%
as the number of training rounds increases. Figure 19 features
the visual classification results of the final trained model for the
failure data. The LSTM model can accurately distinguish the
data of the four types of faults, and the features of each type of
fault can be accurately extracted, indicating that the trained
model has good feature extraction capabilities.

3.6. Validation Experiments with Actual Data

During a dual-turn positioner precision run and operation
conducted at the LAMOST site, we obtain a large amount of
failure data. We select 200 pieces of fault data and input them
into our fault diagnosis model to verify whether the general-
ization ability of the model is effective.
As shown in Table 2, it is verified that the constructed model

can successfully diagnose the fault data of the LAMOST field
positioner. In follow-up maintenance tasks, we will continue to
update more fault models in the maintenance task module to
achieve rapid fault type diagnosis. Moreover, the maintenance
task generates considerable positioner failure data every year,
which we can use to further optimize the model and enhance
the generalization ability of the model.

4. Conclusions

In this paper, a method for obtaining the repeated positioning
accuracy and calibration curve data of a fiber positioner through
photogrammetry and systematically analyzing the causes of the
positioner failures that do not meet the imposed requirements
during the operation of the LAMOST is proposed. The deep
learning model classifies the positioner failure data and can
accurately distinguish the causes of positioner failures. An
efficient method for performing positioner fault classification
and diagnosis is explored to greatly reduce labor and time costs
and accumulate a large amount of reliable data for the design,
processing, and assembly of subsequent positioners. This
method can effectively reduce the probability of interference
from adjacent fiber positioners, improve the convergence speed
of positioners, and improve the observation efficiency of
LAMOST. The maintenance and design optimization of this
type of fiber positioner with a double-turn gear transmission

Figure 19. Visual result plot of the failure data classification process conducted
during training. Figure (a) shows the data classification results of the first round
of training, and Figure (b) displays the fault classification results obtained after
100 rounds of training. After multiple rounds of training, the model can
accurately classify the four types of fault data.
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system will be of general significance in the future, and a similar
positioner fault diagnosis process will be carried out during the
operation of fiber-optic positioners with double-turn mechanical
structures, such as DESI and SDSS-V, and will serve as a
reference. The sizes of fiber positioners in the future will be less
than 10 mm. Because the transmission chain of such a positioner
is simpler and more efficient, its structure will be pushed to the
limit of conventional processing, and the failure rate will
increase. The process of tracking and analyzing the causes of the
positioning accuracy errors induced during operation is an
essential analysis tool for the implementation of the next
generation of miniaturized fiber positioners.

At present, the number of samples for training a deep
learning-based LSTM model is not sufficient. In subsequent
practical applications, it will be necessary to continue to
accumulate a large amount of data to improve the general-
ization ability of the LSTM model. The next research direction
will mainly be based on the large amount of positioner data
obtained in practical applications that do not meet the imposed
precision requirements, and we will divide fixed optical fiber
positioner faults into more detailed failure causes to provide
data support for the subsequent design, manufacture, and
processing of fiber positioners.
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