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Abstract

We intend to study a modified version of the planar Circular Restricted Three-Body Problem (CRTBP) by
incorporating several perturbing parameters. We consider the bigger primary as an oblate spheroid and emitting
radiation while the small primary has an elongated body. We also consider the perturbation from a disk-like
structure encompassing this three-body system. First, we develop a mathematical model of this modified CRTBP.
We have found there exist five equilibrium points in this modified CRTBP model, where three of them are collinear
and the other two are non-collinear. Second, we apply our modified CRTBP model to the Sun–Haumea system by
considering several values of each perturbing parameter. Through our numerical investigation, we have discovered
that the incorporation of perturbing parameters has resulted in a shift in the equilibrium point positions of the Sun–
Haumea system compared to their positions in the classical CRTBP. The stability of equilibrium points is
investigated. We have shown that the collinear equilibrium points are unstable and the stability of non-collinear
equilibrium points depends on the mass parameter μ of the system. Unlike the classical case, non-collinear
equilibrium points have both a maximum and minimum limit of μ for achieving stability. We remark that the
stability range of μ in non-collinear equilibrium points depends on the perturbing parameters. In the context of the
Sun–Haumea system, we have found that the non-collinear equilibrium points are stable.

Key words: celestial mechanics – Kuiper Belt: general – planets and satellites: dynamical evolution and stability

1. Introduction

Celestial mechanics plays an important role in understanding
the dynamics of solar system bodies (see, e.g., Murray &
Dermott 1999; Souchay & Dvorak 2010; Lei 2021; Pan &
Hou 2022). One of the problems in celestial mechanics is the
Circular Restricted Three-Body Problem (CRTBP). The study
of CRTBP has the aim to investigate the movement of an
infinitesimal object under the gravitational influence of two
primaries that have a circular orbit around their center of mass.
CRTBP has several applications, such as for deep space
exploration and satellite navigation. The classical version of
CRTBP assumes the primaries are point masses and it only
considers the gravitational interaction between them. There are
five equilibrium points in the case of planar. Three of them are
collinear (L1, L2, and L3) and the other two are non-collinear
(L4 and L5) (Murray & Dermott 1999). In order to make the
CRTBP model more realistic, the classical version has been
modified by considering several additional parameters.

A stellar object, including the Sun, emits radiation. This
radiation exerts pressure on objects in its path. There have
been numerous studies that have considered radiation pressure
force as another additional force in the restricted three-body
problem (see, e.g., Haque & Ishwar 1995; Ishwar & Elipe
2001; Kushvah et al. 2007; Kushvah 2008a; Das et al. 2009;

Yousuf & Kishor 2019; Patel et al. 2023). For instance, the first
study on this topic was done by Radzievskii (1950). Chernikov
(1970) extended the study by considering the relativistic
Poynting–Robertson effect. Simmons et al. (1985) examined
the effect of radiation pressure force in all ranges of value.
More recently, Idrisi (2017) and Idrisi & Ullah (2018)
considered the effect of planetary albedo on CRTBP as a
consequence of solar radiation pressure force.
Since the stars and planets are not perfectly spherical,

another aspect that has been considered in the CRTBP is the
oblateness of the primaries. Early studies about the impact of
an oblate primary on the dynamics of restricted three-body
problem were published by Danby (1965), Sharma & Subba
Rao (1978, 1986). More recently, the effect of oblateness on
the dynamics of CRTBP has been studied in detail by several
authors (see, e.g., Markellos et al. 1996; Douskos &
Markellos 2006; Safiya Beevi & Sharma 2012; Abouelmagd
et al. 2013; Zotos 2015; Yousuf et al. 2022). Moreover, some
authors have considered the effect of both oblateness and
radiation force in their calculation. For instance, Singh &
Ishwar (1999) studied the linear stability of triangular
equilibrium points when both primaries are oblate and emitting
radiation. This study was extended by Singh (2009) for the
nonlinear stability of L4. AbdulRaheem & Singh (2006)

Research in Astronomy and Astrophysics, 23:115025 (11pp), 2023 November https://doi.org/10.1088/1674-4527/acf978
© 2023. National Astronomical Observatories, CAS and IOP Publishing Ltd. Printed in China and the U.K.

1

mailto:ibnu.nurul.huda@brin.go.id
https://doi.org/10.1088/1674-4527/acf978
https://crossmark.crossref.org/dialog/?doi=10.1088/1674-4527/acf978&domain=pdf&date_stamp=2023-10-17
https://crossmark.crossref.org/dialog/?doi=10.1088/1674-4527/acf978&domain=pdf&date_stamp=2023-10-17


investigated the dynamics of CRTBP when both of the
primaries are oblate and emit radiation, together with
perturbations in the Coriolis and centrifugal force. Other
authors, such as Nurul Huda et al. (2015), Dermawan et al.
(2015) and Mia et al. (2023), considered the effect of
oblateness and radiation force in the Elliptic Restricted
Three-Body Problem.

Our solar system contains several types of celestial bodies.
Among them are elongated objects like a few asteroids, comets,
and dwarf planets. These celestial bodies can be approximately
described as finite straight segments. Previous studies of
CRTBP have been enriched by assuming one or both primaries
have an elongated body. At first, Riaguas et al. (1999) and
Riaguas et al. (2001) analyzed the dynamics of a two-body
problem by considering one of the primaries as a finite straight
segment. These works were extended by, e.g., Jain & Sinha
(2014), Kaur et al. (2020), and Kumar et al. (2019), into the
restricted three body-problem assuming both or one of the
primaries have elongated shapes. In more recent studies, Verma
et al. (2023a) examined the perturbed restricted three-body
problem, where the smaller primary has an elongated shape and
the larger primary is oblate and emits radiation. Verma et al.
(2023b) considered the effect of a finite straight segment and
oblateness to study the dynamics of the restricted 2+ 2 body
problem.

Meanwhile, the effect of a disk-like structure as a perturbing
force near a three-body system has been well studied by several
authors (see, e.g.,Jiang & Yeh 2004; Kushvah 2008b;
Kushvah et al. 2012; Kishor & Kushvah 2013; Mahato et al.
2022a). Jiang & Yeh (2004) considered CRTBP by analyzing
the influence of a disk-like structure near the three-body
system. Yousuf & Kishor (2019) analyzed the effect of a disk-
like structure, oblateness, and albedo on the CRTBP. Mahato
et al. (2022a) extended the study of classical CRTBP by

considering a disk-like structure and an elongated body.
Mahato et al. (2022b) investigated the stability of equilibrium
points within a framework of the perturbed restricted 2+ 2
body problem, taking into account the influence of a disk-like
structure.
This study aims to obtain the collinear and non-collinear

equilibrium points and investigate their stability under a
framework of modified CRTBP incorporating the effect of
radiation pressure, oblateness, finite straight segment, and disk-
like structure. We intend to extend the work of Yousuf &
Kishor (2019) by assuming the small primary to be a finite
straight segment rather than being oblate. It is also an extension
of Mahato et al. (2022a) since we consider the effect of
oblateness and radiation from the bigger primary.
Here we apply our modified CRTBP model to the Sun–

Haumea system by assuming the Sun is a bigger primary with
an oblate shape and emitting radiation and Haumea is a smaller
primary which has an elongated body. We also consider the
Kuiper Belt as a disk-like structure surrounding the Sun–
Haumea system. Haumea was chosen as our case study because
of its unique characteristics, which have captured the attention
of scientists since its discovery in 2003. The surface of Haumea
is dominantly covered by water ice (Barkume et al. 2006;
Pinilla-Alonso et al. 2009; Noviello et al. 2022). There is also
evidence that organic material exists on Haumea’s surface
(Lacerda et al. 2008; Gourgeot et al. 2016). Recently, it was
discovered that Haumea has a ring and two satellites named
Namaka and Hi’iaka (Ortiz et al. 2017). Moreover, previous
studies have proposed Haumea as a destination for space
missions in the coming decades (see, e.g., Grundy et al. 2009;
Sanchez et al. 2014).
Besides the Sun–Haumea system, this modified CRTBP

model can be applied to other cases. For instance, many
planetary systems outside of our solar system have been

Table 1
The Abscissa Position of Collinear Equilibrium Points (L1, L2, and L3) in Sun–Haumea System with μ = 2 × 10−9 and T = 0.11

1 − q A l Mb L1 L2 L3

1 0 0 0 −1.000873832771965 −0.999126671989864 1.000000000833333

1.6 × 10−6 2.6 × 10−11 3.5 × 10−7 3 × 10−7 −1.00087355691303 −0.999126395886954 0.999999369260791
1.6 × 10−4 2.6 × 10−11 3.5 × 10−7 3 × 10−7 −1.00085632697634 −0.999108413962744 0.999946566436973
1.6 × 10−9 2.6 × 10−11 3.5 × 10−7 3 × 10−7 −1.00087373433354 −0.999126573666542 0.999999902060868

1.6 × 10−6 2.6 × 10−11 3.5 × 10−7 3 × 10−7 −1.00087355691303 −0.999126395886954 0.999999369260791
1.6 × 10−6 2.6 × 10−9 3.5 × 10−7 3 × 10−7 −1.00087355691116 −0.999126395888830 0.999999369260793
1.6 × 10−6 2.6 × 10−13 3.5 × 10−7 3 × 10−7 −1.00087355691305 −0.999126395886936 0.999999369260791

1.6 × 10−6 2.6 × 10−11 3.5 × 10−7 3 × 10−7 −1.00087355691303 −0.999126395886954 0.999999369260791
1.6 × 10−6 2.6 × 10−11 3.5 × 10−5 3 × 10−7 −1.00087402445000 −0.999125928668234 0.999999368852499
1.6 × 10−6 2.6 × 10−11 3.5 × 10−9 3 × 10−7 −1.00087355686628 −0.999126395933676 0.999999369260832

1.6 × 10−6 2.6 × 10−11 3.5 × 10−7 3 × 10−7 −1.00087355691303 −0.999126395886954 0.999999369260791
1.6 × 10−6 2.6 × 10−11 3.5 × 10−7 3 × 10−5 −1.00086393713086 −0.999116570293592 0.999989644085257
1.6 × 10−6 2.6 × 10−11 3.5 × 10−7 3 × 10−9 −1.00087365419779 −0.999126493044322 0.999999466517286
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discovered, and some systems have been found to have dust
particle disks or asteroid belts, which are believed to be similar
to the Kuiper Belt or main belt in our solar system (see, e.g.,
Greaves et al. 1998; Matrà et al. 2019). Meanwhile, previous
studies explained the presence of extrasolar asteroids or dwarf
planets near the host star (see, e.g., Jura 2003; Dufour et al.
2010). Moreover, some space explorations have been devoted
to exploring small solar system bodies near the main belt or
Kuiper Belt region. It is known that several solar system bodies
have an irregular shape. Therefore, it is reasonable to study the
combined effects of perturbations from a disk, an elongated
body, and an oblate radiating body on the motion of an
infinitesimal mass in the CRTBP.

The structure of this paper is as follows. In the next section,
we present a mathematical formulation of the dynamical model.
The position and stability of equilibrium points are elucidated
in Section 3. Section 4 describes the implementation of the
dynamical model in the Sun–Haumea system. Finally, the
conclusion is provided in Section 5. Here, MATLAB’s
Symbolic Toolbox is used to conduct certain algebraic
calculations and find numerical solutions.

2. Mathematical Formulation of the Dynamical
System

In this work, we consider a system where an infinitesimal
mass moves under the influence of a bigger primary with mass
m1 and a small primary with mass m2. The primaries of this
system have circular orbits around their center of mass. We
treat the bigger primary as a source of radiation with an oblate
spheroid shape, while the small primary has an elongated
shape. The unit of time is normalized to make the Gaussian
constant of gravitation equal to one. The mass parameter is

represented by μ=m2/(m1+m2) where m1= 1− μ and
m2= μ. In the case of a restricted three-body problem, it is
more convenient to introduce the system in the rotational
coordinate Oxy. The primaries are located on the x-axis with the
distance between primaries chosen as the unit of length. The
coordinates of the bigger primary, small primary, and the third
body are (μ, 0), (μ− 1, 0), and (x, y), respectively. The
oblateness factor of the bigger primary can be represented by
A= (AE2− AP2)/5R2 where A= 1, AE and AP represent the
equatorial and polar radii, respectively, and R is the effective
radius when assuming the primary to be a spherical object.
Meanwhile, the radiation force Fp acts opposite to the
gravitational force and diminishes with respect to distance.
The total force acting on the bigger primary can be written as
Fg− Fp= qFg, hence q= 1− (Fp/Fg). Here q is called the
mass reduction factor where 0< 1− q= 1. The small primary
is assumed to be a finite straight segment with length 2l. The
effect of a disk-like structure surrounding the system is also
considered in this study. Following Miyamoto & Nagai (1975),
the planar version of unitless potential disk-like structure is
given by ( )V x y M r T, b

2 2= + , where Mb is the total
mass of disk-like structure, r2= x2+ y2 is the radial distance of
the infinitesimal mass, and T= a+ b is the total of flatness and
core parameters. Let the distance of primaries to the center of
mass be s1 and s2. Considering the previous works such as
Kushvah (2008b), Yousuf & Kishor (2019), and Mahato et al.
(2022a), the motion of the primaries is given by

( )

( )
( )

m s n
Gm m

R l

A

R

GM m r

r T

m s n
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R l
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R

GM m r
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1
3

2
,

1
3

2
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1 1
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2 2
2 1 2
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2 2 3 2

=
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⎛
⎝

⎞
⎠

Table 2
Positions of Non-collinear Equilibrium Points (L4 and L5) in Sun–Haumea System with μ = 2 × 10−9 and T = 0.11

1 − q A l Mb
L4,5

x y

1 0 0 0 −0.499999998000000 ±0.866025403784439

1.6 × 10−6 2.6 × 10−11 3.5 × 10−7 3 × 10−7 −0.499999464678626 ±0.866024982450545
1.6 × 10−4 2.6 × 10−11 3.5 × 10−7 3 × 10−7 −0.499946656129219 ±0.865994492868782
1.6 × 10−9 2.6 × 10−11 3.5 × 10−7 3 × 10−7 −0.499999997479636 ±0.866025290063446

1.6 × 10−6 2.6 × 10−11 3.5 × 10−7 3 × 10−7 −0.499999464678626 ±0.866024982450545
1.6 × 10−6 2.6 × 10−9 3.5 × 10−7 3 × 10−7 −0.499999465965624 ±0.866024981707493
1.6 × 10−6 2.6 × 10−13 3.5 × 10−7 3 × 10−7 −0.499999464665756 ±0.866024982457975

1.6 × 10−6 2.6 × 10−11 3.5 × 10−7 3 × 10−7 −0.499999464678626 ±0.866024982450545
1.6 × 10−6 2.6 × 10−11 3.5 × 10−5 3 × 10−7 −0.499999464372405 ±0.866024982155884
1.6 × 10−6 2.6 × 10−11 3.5 × 10−9 3 × 10−7 −0.499999464678656 ±0.866024982450574

1.6 × 10−6 2.6 × 10−11 3.5 × 10−7 3 × 10−7 −0.499999464678626 ±0.866024982450545
1.6 × 10−6 2.6 × 10−11 3.5 × 10−7 3 × 10−5 −0.499999464663069 ±0.866013755215885
1.6 × 10−6 2.6 × 10−11 3.5 × 10−7 3 × 10−9 −0.499999464678781 ±0.866025094722156
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where R= s1+ s2 is the distance between primaries.
r 1c

2 2m m= - + means a dimensionless quantity of the
reference radius of the disk-like structure (Singh & Taura 2014).
Assuming R= 1, G= 1, and m1+m2= 1, the mean motion n
of the system can be calculated by adding both equations in
Equation (1), approximating the expression 1/(1− l2) in series
as 1+ l2, and neglecting the term Al2. Hence we have

( )
( )n l A

M r

r T
1

3

2

2
. 2b c

c

2 2
2 2 3 2

= + + +
+

Equations of motion of the third object in CRTBP are stated as
follows

̈

̈ ( )

x ny
x

y nx
y

2 ,
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- =
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+ =
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¶
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where U is a pseudo-potential function
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Here ( )r x l y121
2 2 2m= - + - + and ( )r x l y122

2 2 2m= - + + +
are the distance of a third body to the small primary and

( )r x y1
2 2 2m= - + is the distance between the third body and
the bigger primary. It should be noted that the equation of
motion differs from the equation of motion in Yousuf & Kishor
(2019) since, in our case, we regard the small body as a finite
straight segment.

3. Equilibrium Points

3.1. Position of Equilibrium Points

The conditions of equilibrium points are ̈ ̈x y x y= = = = 
0. Hence we can deduce that Ωx=Ωy= 0, i.e.,
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In the following, we solve Equations (5) and (6) to find the
position of equilibrium points.
The collinear points are located in a line with the primaries,

thus we have y= 0. Equation (5) becomes
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In order to find the solution, we divide the region into three
parts, i.e., (−∞ , μ− 1− l), (μ− 1− l, μ), and (μ, ∞ ). Here
L1, L2, and L3 are the solution located in (−∞ , μ− 1− l),
(μ− 1− l, μ), and (μ, ∞ ), respectively. Hence we have
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These three equations have been solved numerically to find
each collinear equilibrium point. Only the real solution is
considered for the position of equilibrium points.
Meanwhile, there are two non-collinear equilibrium points,

i.e., L4 and L5. The additional condition of these equilibrium
points is y≠ 0. Equations (5) and (6) can be rewritten in the
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form
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Hence from Equation (10) we have
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Substituting Equation (11) into Equation (9) gives
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In the classical case, the positions of these equilibrium points
are located at r1= 1 and r2= 1. Since some perturbations exist,
we assume that r1 and r2 are perturbed by ò1 and ò2
respectively. Hence, in our case, we have (Mahato et al. 2022a)

( )
r r l r l1 ; 1 2; 1 2.

13
1 1 21 2 22 2= + = + - = + +  

The calculations of ò1 and ò2 are done by substituting
Equation (13) into Equation (12) and Equation (11) and
solving these equations. By approximating with series and

neglecting higher order terms of ò1, ò2, l
2, and A, we have:

( )
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

where ( ) ( )l A M r r T1 3 2 2 1b c c
2 2 2 3 2g = + + + - + . The

position of non-collinear equilibrium points (xo, yo) is given by
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Putting the value of ò1,2 into Equation (15), we get:
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If the perturbation parameters are not considered, Equation (16)
is similar to the classical version where xo

1

2
m= - and

yo
3

4
=  .

3.2. Linear Stability

Let us assume a small displacement in an equilibrium point
by defining

( )u x x v y y; , 17o o= - = -

where “o” corresponds to the equilibrium points. The equation
of motion from this small displacement is expressed as follows:

̈
̈ ( )

u nv u v

v nu u v

2 ,

2 , 18
xx
o

xy
o

xy
o

yy
o

- = W + W

+ = W + W



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where
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Here Ωo means the pseudo-potential is evaluated at equilibrium
points. Hence it is constant. Equation (18) has general solutions

( )

u e

v e

,

22

i
i

t

i
i

t

1

4

1

4

i

i

å

å

a

b

=

=

l

l

=

=

where αi and βi are constants while λi is the root of the
characteristic equation. Substituting Equation (22) into
Equation (18) produces
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The first term on the left-hand side has to be a singular matrix.
Hence the determinant of this matrix has to be zero

( ) ( ) ( )n4 0. 24xx
o

yy
o

xx
o

yy
o

xy
o4 2 2 2l l+ - W - W + W W - W =

This equation is called the characteristic equation. It is a
quadratic equation in λ2. The solution of this quadratic

equation is ( )b b c4 2i
2l =  -  - , where b =

n4 xx
o

yy
o2 - W - W and ( )c xx

o
yy
o

xy
o 2= W W - W . If all obtained

λi are purely imaginary, then it gives the motion of stable
periodic behavior near the vicinity of equilibrium points.
However, if there is at least one λi which has the form of real or
complex, then the third body is unstable since u and v will
exponentially increase with respect to time. We can investigate
the stability behavior of the system by looking at the sign of b
and c. The system is stable if b> 0, b2− 4c> 0, and b >

b c42 - since this case produces all pure imaginary λi.

4. The Case of Sun–Haumea System

In this work, we model the Sun–Haumea system through the
framework of the restricted three-body problem with the Sun as
the bigger primary and Haumea as the small primary. Here we
also consider the Kuiper Belt in this system. We assume
Haumea has a circular orbit and orbits in the same plane as the
Kuiper Belt. The mass of the small primary is a combination of
Haumea’s mass and the mass of Haumea’s satellites: Namaka
and Hi’iaka. The Sun has a mass around 1.989× 1030 kg.
Haumea has a length of ∼2300 km for its largest axis and a
mass of 4× 1021 kg (Ragozzine & Brown 2009). Meanwhile,
Namaka and Hi’iaka have masses of 1.79× 1018 kg and
17.9× 1018 kg, respectively (Ortiz et al. 2017). Hence we have
μ= 2× 10−9 and l= 3.5× 10−7. Following Yousuf & Kishor
(2019), here we assume that the Sun has A= 2.6× 10−11 while
the Kuiper Belt has T= 0.11 and Mb= 3× 10−7. According to
Sharma (1987), the photogravitational parameter q can be
expressed in the CGS unit system as q= 1− (5.6× 10−5/aρ)
where a and ρ are the radius and density of a moving body,
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Table 3
Characteristic Roots of Collinear Equilibrium Points in Sun–Haumea System with μ = 2 × 10−9

1 − q A l Mb
L1 L2 L3

λ1,2 λ3,4 λ1,2 λ3,4 λ1,2 λ3,4

1 0 0 0 2.50618628025287 2.07031520790267i 2.51039039369088 2.07287538016581i 0.000072456881366 1.00000000175000i

1.6 × 10−6 2.6 × 10−11 3.5 × 10−7 3 × 10−7 2.50732613894453 2.07100940502565i 2.50924970700464 2.07218079713681i 0.000074119040096 1.00000030173167i
1.6 × 10−4 2.6 × 10−11 3.5 × 10−7 3 × 10−7 2.58032763652133 2.11561449848464i 2.43683616339914 2.02823606045270i 0.000074121110154 1.00000030173314i
1.6 × 10−9 2.6 × 10−11 3.5 × 10−7 3 × 10−7 2.50659334481697 2.07056321377481i 2.50998449730882 2.07262831852643i 0.000074119018377 1.00000030173165i

1.6 × 10−6 2.6 × 10−11 3.5 × 10−7 3 × 10−7 2.50732613894453 2.07100940502565i 2.50924970700464 2.07218079713681i 0.000074119040096 1.00000030173167i
1.6 × 10−6 2.6 × 10−9 3.5 × 10−7 3 × 10−7 2.50732614822158 2.07100941067903i 2.50924971630782 2.07218080279818i 0.000074119037849 1.00000029980116i
1.6 × 10−6 2.6 × 10−13 3.5 × 10−7 3 × 10−7 2.50732613885112 2.07100940496873i 2.50924970691157 2.07218079708017i 0.000074119039347 1.00000030175097i

1.6 × 10−6 2.6 × 10−11 3.5 × 10−7 3 × 10−7 2.50732613894453 2.07100940502565i 2.50924970700464 2.07218079713681i 0.000074119040096 1.00000030173167i
1.6 × 10−6 2.6 × 10−11 3.5 × 10−5 3 × 10−7 2.50925730691060 2.07218542599087i 2.51118123266234 2.07335725400133i 0.000074119034105 1.00000030234410i
1.6 × 10−6 2.6 × 10−11 3.5 × 10−9 3 × 10−7 2.50732594585502 2.07100928745113i 2.50924951387951 2.07218067951878i 0.000074119040096 1.00000030173161i

1.6 × 10−6 2.6 × 10−11 3.5 × 10−7 3 × 10−7 2.50732613894453 2.07100940502565i 2.50924970700464 2.07218079713681i 0.000074119040096 1.00000030173167i
1.6 × 10−6 2.6 × 10−11 3.5 × 10−7 3 × 10−5 2.54765547950673 2.09562955258651i 2.46924636836900 2.04788142310119i 0.000172088738229 1.00003000142140i
1.6 × 10−6 2.6 × 10−11 3.5 × 10−7 3 × 10−9 2.50692401885402 2.07076439389322i 2.50965096408882 2.07242501730710i 0.000072473711215 1.00000000473057i

Note. Here i Means 1- . We used T = 0.11.
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respectively. Assuming a spacecraft has a= 700 cm and
ρ= 0.05 gr cm−3, 1− q= 1.6× 10−6.

We calculated the position of the collinear equilibrium points
of the Sun–Haumea system. By substituting the property of the
system into Equation (8) and solving it numerically, we found
L1, L2, and L3. Table 1 shows the position of collinear
equilibrium points. Here we vary the value of each perturbation
parameter to examine the impact on the equilibrium point
position. In the case of L1, the position gets closer to the
primaries if A and 1− q increase. Decreasing A and increasing
1− q make L2 be closer to the bigger primary. The position of
L3 is nearer with respect to primaries if the bigger primary
emits stronger radiation pressure. According to Table 1, the
position of collinear equilibrium points depends on the value of
Mb and l. Increasing Mb and decreasing l make the location of
L1 become nearer to the smaller primary. The increment of Mb

and l affects the position of L2 to become closer to the bigger

primary. L3 gets closer to the primaries if we increase the value
of Mb.
The positions of non-collinear equilibrium points are

calculated from Equation (16). Table 2 shows the positions
of non-collinear equilibrium points with respect to the chosen
value of several parameters. When there are no perturbing
factors, the triangular points have the same coordinates as in
the classical case. The inclusion of perturbation parameters has
resulted in a shift in the location of non-collinear equilibrium
points. The increment of A makes the position of these
equilibrium points closer to the small primary. In contrast, if we
reduce q or increase Mb, the positions of equilibrium points are
shifted toward the bigger primary. The positions are closer to
the bigger primary in line with the increase of l.
We now analyze the linear stability of each equilibrium point

in the Sun–Haumea system. Collinear equilibrium points lie in
the abscissa. Hence we have 0xy

oW = . In order to study the

Figure 1. Plot of μ vs. characteristic roots (λ1,2,3,4) for L1, L2, and L3, with l = 3.5 × 10−7, Mb = 3 × 10−7, A = 2.6 × 10−11, and 1 − q = 1.6 × 10−6. The real and
imaginary parts of characteristic roots are marked by solid and dotted lines, respectively. Here we used T = 0.11.
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Figure 2. Plot of μ vs. characteristic roots (λ1,2,3,4) in L4 with different parameter configurations. The real and imaginary parts of characteristic roots are marked by
solid and dashed lines respectively. Here we use T = 0.11. The details of the parameters that are used in each subfigure are as follows. (a) A = 0, 1 − q = 0, l = 0,
Mb = 0. (b) A = 2.6 × 10−11, 1 − q = 1.6 × 10−6, l = 3.5 × 10−7, Mb = 3 × 10−7. (c) A = 2.6 × 10−6, 1 − q = 1.6 × 10−6, l = 3.5 × 10−7, Mb = 3 × 10−7. (d)
A = 2.6 × 10−11, 1 − q = 1.6 × 10−4, l = 3.5 × 10−7, Mb = 3 × 10−7. (e) A = 2.6 × 10−11, 1 − q = 1.6 × 10−6, l = 3.5 × 10−7, Mb = 3 × 10−4. (f)
A = 2.6 × 10−11, 1 − q = 1.6 × 10−6, l = 3.5 × 10−4, Mb = 3 × 10−7.
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stability, we divide the abscissa into three regions, i.e., L1
(−∞ , μ− 1− l), L2 (μ− 1− l, μ), and L3 (μ, ∞ ), and
calculate the sign of b and b2− 4c numerically for each region.
First, we estimate the stability by considering the perturbation
parameters in the Sun–Haumea system. As shown in Figure 1,
there exist pure real and pure imaginary characteristic roots for
μ between 0 and 0.5. Hence, all collinear equilibrium points of
the Sun–Haumea system are unstable. Furthermore, we
conducted the calculation by varying the value of perturbation
parameters. Table 3 displays the result of the calculation. All
regions have b< 0 and b2− 4c> 0 which mean it produces
two real pairs and two pure imaginary pairs. This shows that
even if we change the value of perturbation parameters, the
collinear equilibrium points remain unstable.

Next, we investigate the stability of non-collinear equili-
brium points in the Sun–Haumea system. We discuss only L4
since the dynamics of L5 is nearly similar. In the classical case,
non-collinear equilibrium points are stable under the condition
27μ(1− μ)< 1. Hence we can deduce μ< μc, where the
critical mass μc= 0.038520896504551. This critical mass can
be calculated by finding the solution of b2− 4c= 0. In this
modified version of CRTBP, we numerically calculate the roots
by solving Equation (24). By considering the perturbing
parameters, it shows that the stability of non-collinear
equilibrium points has a maximum limit (μc) and minimum
limit (μo) of mass parameters, an aspect which is different from
the classical case. For the Sun–Haumea system, we found
μc= 0.0385208896007 and μo= 1.386× 10−12. Since the
Sun–Haumea system has μ= 2× 10−9, we conclude that the
Sun–Haumea system has stable non-collinear equilibrium
points. Figure 2 displays a comparison of stability for several
cases by changing the perturbing parameters of the Sun–
Haumea system. It shows that the range of stability depends on
the parameters A, q, l, and Mb. The characteristic roots have the
form of pure imaginary if μo< μ< μc. The considered
perturbation parameters alter the range of stability in μ. The
increment of A or reduction of q reduces the size of the stability
area. The stability region is shifted toward bigger μ if Mb and l
increase.

5. Conclusion

We have investigated the dynamics of an infinitesimal mass
under the gravitational influence of two primaries. Our study
assumes that the smaller primary is an elongated body, while
the larger primary is oblate and also emits radiation. In
addition, we have taken into account the presence of a disk that
surrounds the three-body system. We have found that there are
five equilibrium points in this modified CRTBP such that three
of them are collinear and the other two are non-collinear. Our
numerical exploration of the Sun–Haumea system has revealed
that the inclusion of perturbing parameters has caused a
displacement in the position of the Sun–Haumea system’s

equilibrium points with respect to their positions in the classical
CRTBP. We noticed that the magnitude of the perturbing
parameters (q, A, l, and Mb) can affect the positions of the five
equilibrium points. This analysis shows that the non-collinear
equilibrium points of the Sun–Haumea system are stable, while
all collinear equilibrium points are unstable. Moreover, we
have ascertained that the collinear equilibrium points remain
unstable for several possible ranges of perturbing parameters.
In contrast, the non-collinear equilibrium points are condition-
ally stable with respect to μ. When taking into account the
perturbing parameters, we have found that there are upper and
lower limits of μ for achieving stability of non-collinear
equilibrium points. The stability region for μ depends on the
perturbing parameters.
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