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Abstract

Machine learning has become a crucial technique for classifying the morphology of galaxies as a result of the
meteoric development of galactic data. Unfortunately, traditional supervised learning has significant learning costs
since it needs a lot of labeled data to be effective. FixMatch, a semi-supervised learning algorithm that serves as a
good method, is now a key tool for using large amounts of unlabeled data. Nevertheless, the performance degrades
significantly when dealing with large, imbalanced data sets since FixMatch relies on a fixed threshold to filter
pseudo-labels. Therefore, this study proposes a dynamic threshold alignment algorithm based on the FixMatch
model. First, the class with the highest amount has its reliable pseudo-label ratio determined, and the remaining
classes’ reliable pseudo-label ratios are approximated in accordance. Second, based on the predicted reliable
pseudo-label ratio for each category, it dynamically calculates the threshold for choosing pseudo-labels. By
employing this dynamic threshold, the accuracy bias of each category is decreased and the learning of classes with
less samples is improved. Experimental results show that in galaxy morphology classification tasks, compared with
supervised learning, the proposed algorithm significantly improves performance. When the amount of labeled data
is 100, the accuracy and F1-score are improved by 12.8% and 12.6%, respectively. Compared with popular semi-
supervised algorithms such as FixMatch and MixMatch, the proposed algorithm has better classification
performance, greatly reducing the accuracy bias of each category. When the amount of labeled data is 1000, the
accuracy of cigar-shaped smooth galaxies with the smallest sample is improved by 37.94% compared to FixMatch.
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1. Introduction

Investigating the evolution of galaxies requires an under-
standing of galaxy morphology (Barchi et al. 2020). Galaxy
morphology is closely related to the formation process of
galaxies (Holwerda 2021). By studying the morphological
features of galaxies, we can delve into exploring the evolution
of the galaxies, the distribution of dark matter and the
measurement of cosmological parameters, providing valuable
information for our understanding of the cosmos (Parry et al.
2009; Wijesinghe et al. 2010; Salucci 2019). For example, the
spiral arm characteristics affect how giant molecular clouds
form within spiral arms and how their mass is distributed
(Bekki 2021).

Currently, there are many galaxy morphology classification
schemes, including a visual classification system based on the
visual characteristics of galaxies (Kartaltepe et al. 2015), a
model-based classification system based on the brightness
profiles of galaxies (Peng et al. 2002), a non-model-based
classification system based on structural parameters of galaxy
morphology (Lotz et al. 2004), and so on. A well-known visual
classification scheme for galaxy morphology is the Hubble
sequence. Galaxies are divided into three broad classes based

on their visual features: elliptical galaxies, spiral galaxies and
lenticular galaxies (Hubble 1979). These broad classifications
are further refined to achieve more detailed galaxy morphology
classification, leading to the development of additional
categories like irregular galaxies (Gallagher & Hunter 1984).
With the help of the Hubble sequence as inspiration, the Galaxy
Zoo decision tree’s design was able to classify galaxy
morphology in a more comprehensive way (Willett et al. 2013).

The classification of galaxies initially relied on visual
assessment (De Vaucouleurs 1959, 1964). However, the
amount of data on galaxies has grown tremendously as a
result of the ongoing development of sky surveys, including the
Sloan Digital Sky Survey (SDSS; York et al. 2000), the Hyper
Suprime-Cam (HSC; Miyazaki et al. 2012) survey, the Dark
Energy Survey (Abbott et al. 2005), the Euclid Space
Telescope (EST; Laureijs et al. 2011), and the Vera Rubin
Observatory Legacy Survey of Space and Time (LSST; Ivezié
et al. 2019). For example, the LSST can generate 36 TB of data
per night, totaling 500 PB over the course of its lifetime
(Farias et al. 2020). Faced with such a large volume of data, it
is challenging to complete the visual classification of
galaxies even utilizing citizen science projects like Galaxy
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Zoo (Willett et al. 2013). Consequently, it is becoming a best
choice to apply machine learning to classify galaxy morph-
ology (Reza 2021). For example, Gupta et al. (2022) proposed
an improved version of ResNet for galaxy classification. Li
et al. (2023) designed a multi-scale convolutional neural
network to extract multi-scale features from galaxy images
resulting in improved accuracy in galaxy classification. Fang
et al. (2023) introduced adaptive polar coordinate transforma-
tion to ensure consistent classification results for the same
galaxy image. Different machine learning methods have also
contributed to this field, such as those by Dunn et al. (2023),
Wu et al. (2022), Ghosh et al. (2022), Zhang et al. (2022), and
Wei et al. (2022). Among them, traditional supervised machine
learning necessitates a substantial amount of labeled data for
the classification of galaxy morphology (Zhu et al. 2019;
Barchi et al. 2020), and manual data labeling is time-
consuming and labor-intensive, increasing the learning cost.
Therefore, the use of semi-supervised approaches to completely
exploit unlabeled data and improve the performance of the
classification model has emerged as an important research field
in galaxy morphology classification.

Currently, more and more semi-supervised algorithms are
being tried out in the analysis of astronomical data. For
instance, Ma et al. (2019) built an autoencoder based on the
VGG-16 network that was first trained on a lot of unlabeled
data to learn how to extract galactic features, and then fine-
tuned on a small amount of labeled data to learn how to classify
radio galaxies morphologically. Soroka et al. (2021) suggested
a semi-supervised approach based on active learning and
adversarial autoencoder models to address the issue of
classifying galaxy morphologies. Slijepcevic et al. (2022)
conducted semi-supervised research based on the radio galaxy
classification network of Tang et al. (2019) utilizing transfer
learning as the baseline, demonstrating the precision and
robustness of semi-supervised learning (SSL) in radio galaxy
classification. Ciprijanovié¢ et al. (2022) created the DeepAs-
troUDA method, a general semi-supervised domain adaptation
technique for astronomical applications that can find non-
overlapping classes in two separate galaxy data sets and even
find and cluster unidentified classes.

SSL enhances learning performance by incorporating
unlabeled data learning based on small sample supervised
learning (Berthelot et al. 2019). Today, deep semi-supervised
learning (DSSL), which combines SSL and deep learning, has
now emerged as the most effective method for SSL (Yang et al.
2022). According to DSSL schemes, they can be categorized
into three groups: consistency regularization-based SSL,
pseudo-labeling based SSL and semi-supervised deep learning
techniques combining the consistent regularization principle
with pseudo-labels. A pseudo-label is regarded as a prediction
label of unlabeled data by a model trained using trustworthy
labeled data, and furthermore, a pseudo-label with high
probability participates in the model’s training in the same
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way as the labeled data (Lee et al. 2013). Semi-supervised deep
learning techniques include MixMatch, ReMixMatch, Fix-
Match, etc., which combine consistency regularization and
pseudo-labels, becoming the most popular solution (Berthelot
et al. 2019; Sohn et al. 2020). Among various algorithms,
FixMatch simplifies the application of pseudo-labels and
unsupervised loss and has been shown to obtain the best
performance on basic test data sets.

Even if the FixMatch model performs at its best, this is only
possible with balanced and sufficient data quantities for each
category. Nevertheless, the training data in deep learning
applications are typically imbalanced, especially in the area of
astronomical data. For instance, the Galaxy Zoo 2 (GZ2) data
set cited in this article contains just a small number of cigar-
shaped galaxies. When confronted with imbalanced data sets,
the model tends to learn more features of classes with more
samples and fewer features of classes with fewer samples,
resulting in accuracy bias in a classification task, where the
majority class’ accuracy is higher and the minority class’
accuracy is lower. This problem is mostly caused by the
FixMatch model’s predetermined high threshold for SSL,
which ignores the learning progress of several classes. As a
result, models like FlexMatch (Hou et al. 2021), Adsh (Guo &
Li 2022) and Dash (Xu et al. 2021), which are based on the
FixMatch model, introduce dynamic thresholds that change
with the learning status. For example, FlexMatch proposes the
idea of curricular pseudo-labels, a curriculum learning
approach to leverage unlabeled data according to the models’
learning status, where the dynamic threshold is a nonlinear
mapping between the number of pseudo-labels for each class
whose confidence exceeds the threshold and the current
threshold. In order to improve learning for minority classes,
Adsh dynamically adjusts the thresholds by determining the
pseudo-label filtering ratio for each class. At the same time,
DARP (Kim et al. 2020), ABC (Lee et al. 2021), CReST (Wei
et al. 2021) and others optimize the issue of data imbalance in
SSL from the perspective of adjusting class distributions.
Despite a variety of semi-supervised studies, little attention has
been paid to the issue of imbalanced data distribution in
astronomical data, which can lead to accuracy biases of semi-
supervised tasks on different categories.

Therefore, this paper proposes a semi-supervised method
based on dynamic threshold alignment (DTA) to address the
issue of data imbalance in semi-supervised classification of
galaxies. By establishing a class-specific threshold that changes
dynamically with the learning state of each class, the DTA
method improves upon the fixed high threshold in the
FixMatch algorithm. By doing so, it is ensured that minority
classes receive a greater number of unlabeled learning samples
during the training stage, hence minimizing accuracy biases in
the classification task. We carried out experiments utilizing
galaxy images from the Galaxy Zoo Data Challenge Project on
Kaggle based on the GZ2 project (Willett et al. 2013) to
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Figure 1. The training process of unlabeled data in FixMatch. FixMatch applies both weak and strong data augmentation to the unlabeled data, which are then fed into
the model to obtain different prediction results. The prediction results from weak data augmentation are transformed into pseudo-labels using a fixed high confidence
threshold. The cross-entropy loss used for model training is made up of these pseudo-labels and the prediction outcomes from strong data augmentation.

measure these improvements. We compared the experimental
results of the FixMatch algorithm, several well-known semi-
supervised algorithms and the DTA algorithm under various
data quantities. The DTA algorithm performed better in most
situations.

The structure of this paper is as follows. Section 2 is the
method design, along with the evaluation metrics and the
design of the DTA algorithm. In Section 3, which describes the
experiment, the experimental data sets, platform, related data
augmentation, baseline network and comparison techniques are
introduced. Results and discussion are found in Section 4.
Section 5 concludes the paper by providing a summary.

2. Methodology

The DTA algorithm improves upon the fixed high threshold
used in FixMatch by setting an independent dynamic threshold
for each galaxy category. This avoids the issue of losing correct
pseudo-labels that can occur when relying on a fixed high
threshold for all classes in FixMatch. By utilizing a dynamic
threshold, DTA enhances the robustness of the model, reduces
accuracy bias and introduces more accurate pseudo-labels
during the training process.

2.1. Dynamic Threshold Calculation
2.1.1. Fixed Threshold in FixMatch

In order to filter reliable pseudo-labels, the FixMatch SSL
technique employs a fixed threshold. During training, pseudo-
labels and consistent regularization principles are used. For
labeled data, FixMatch trains a supervised model using cross-
entropy loss and weak augmentation. The generated supervised
model is then further trained on unlabeled data, with the
unlabeled data being subjected to weak augmentation, strong

augmentation and cross-entropy loss (Figure 1). According to
the consistent regularization principle, after both weak and
strong augmentations, the same unlabeled data should yield the
same model classification results. By lowering the cross-
entropy loss, FixMatch brings the strong augmentation
prediction results closer to the pseudo-labels and generates
pseudo-labels based on the weak augmentation prediction
results of unlabeled data.

In FixMatch, there are two types of loss functions:
supervised loss for labeled data and unsupervised loss for
unlabeled data. Suppose that FixMatch employs labeled data
{(xé, yb’)} with an amount of B and unlabeled data
uB{x;: b € (1,...,uB)} with a quantity of uB, where p is the
proportion of unlabeled to labeled data. The loss function of
FixMatch is defined as follows,

L = ﬁy + Auﬁu, (1)

where )\, is a constant scalar hyperparameter that denotes the
importance of unsupervised loss; £, indicates supervised loss;
and £, signifies unsupervised loss. Here the supervised loss £
is the standard cross-entropy loss of weakly augmented labeled
data compared to the true label, which is calculated as
expressed in Equation (2)

1 B
L= EZ H () f lax); 0), 2
b=1

where «af(-) represents weak data augmentation and
f (yloz(xlf); ) € [0, 1]* is the prediction probability of weak
augmentation of labeled data «(x)) by the model with
parameter 6. H( -, -) is the cross-entropy function.

The unsupervised loss £, for the unlabeled data with strong
augmentation is a standard cross entropy loss between the
pseudo-label ¥, and the predicted result yj calculated by
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FOIA); 0). Equations are listed as the following:

L, = Li T(max (g,) = DHG, 3, 3)
B,

Yy = (IAGE); 0), 4)

qp = f (Ylaxy); 0), ®)

¥y, = argmax (q,), 6)

where I[(-) is a filter function to ensure the reliability of pseudo-
labels; 7 stands for the threshold defined by FixMatch; ¢,
represents the prediction probability of the model f with
parameter 0; A(x;) and «a(x;) signify strong and weak
augmentation for unlabeled data, respectively; y,;' means the
unlabeled data’s pseudo-label in a form of one-hot probability
distribution which is produced by applying the function
argmax(-) to the probability prediction value g;,. Based on the
principle of consistent regularization, the FixMatch algorithm
obtains the unsupervised loss of the unlabeled data using the
cross-entropy loss with corresponding pseudo-label.

In the FixMatch algorithm, a fixed high threshold 7= 0.95 is
configured to ensure the reliability of pseudo-labels to screen
pseudo-labels with high prediction confidence. Yet, the high
threshold limits the number of pseudo-labels while maintaining
the validity of pseudo-labels. Especially in the early stage of
training, too high of thresholds lead to a loss of correct pseudo-
labels in a class with small sample size, further increasing the
training gap between a class with small sample size and the
class with the largest sample size, which is not conducive to the
robustness of the model. The loss of accurate pseudo-labels
must therefore be minimized by implementing a new dynamic
threshold semi-supervised approach that does not rely on a
predetermined high threshold during training.

2.1.2. Dynamic Threshold Alignment Algorithm

The main premise of the DTA technique is to consider the
influence of the number of labeled data in each class on the
learning effect while assuming a uniform distribution of
different classes within a batch. As a result, by examining the
percentage in the class with the most data, we may infer the
proportion of reliable pseudo-labels in other classes. The
algorithm could dynamically determine the threshold for
filtering pseudo-labels in each category based on the inferred
proportions of pseudo-labels in each class, making up for the
shortcoming of utilizing a fixed threshold in the FixMatch
algorithm.

In Figure 2, the practical flow of the algorithm is displayed.
First, the predicted results of the unlabeled data are grouped by
class, and the confidence of the predicted class is stored in an
array and sorted in descending order. Then, based on the fixed
high threshold of the majority class, the reliable pseudo-label
ratio of the majority class is determined and the reliable
pseudo-label ratios of other classes are calculated based on the
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class distribution of the labeled data. Finally, based on the
reliable pseudo-label ratios of each class, reliable pseudo-labels
are assigned from high to low confidence in the sorted
prediction arrays. The confidence corresponding to the partition
position is the new threshold.

(1) Reliable pseudo-label ratio calculation

The DTA approach first establishes a predefined high
threshold 7 for the majority class, assuring the reliability of
the pseudo-label screening. Based on this, the ratio of pseudo-
labels with confidence higher than the threshold in the
unlabeled data predicted as the majority class by the model
can be calculated, i.e., the reliable pseudo-label ratio of the
majority class, as shown in the following equation,

M
length(A) = Y- T(argmax (f(yla(xf); 0) = 0), (7
i=1
_ PG = 0lag): 6) > )
p length (Ag)

, ®)

where p is the pseudo-label ratio of the majority class; M is the
total number of unlabeled data; Ziﬁil I(f (y = Ola(xy); ) = )
is the number of pseudo-labels in the unlabeled data predicted as
the majority class with confidence higher than the threshold; Aq
stores the confidence of the unlabeled data predicted as the
majority class, and the confidences in A, are arranged in
descending order. Length(Ag) is the number of unlabeled data
predicted as the majority class.

The ratio of the number of each class in the labeled data to
that of the majority class, as well as the reliable pseudo-label
ratio of the majority class, can be used to compute the reliable
pseudo-label ratios of each class, as shown in the following
equation

_ « NI
pi=p NIO] )
where p; is the reliable pseudo-label ratio of class i; p is
obtained from Equation (8) as the reliable pseudo-label ratio of
the majority class and N[i] is the number of members in class i;
NI[O0] is the number of members in the majority class in the
labeled data.

(2) Dynamic threshold calculation

Using the reliable pseudo-label ratios of each class obtained
from Equation (9) and the confidence of the model’s prediction
on the unlabeled data, the new threshold of each class can be
calculated using the following equation

new_7, = A.[length(A.)*p,], (10)

M
length(A.) = ) T(argmax (f (yla(x); 0)) = ¢),  (11)

i=1
where A, is an array that stores the confidence of the unlabeled
data predicted as class ¢, and the confidence is sorted in
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Figure 2. The workflow of the DTA algorithm. In order to generate pseudo-labels, first sort the data according to the prediction probabilities of each category for the
unlabeled data; then, set a high threshold and determine the percentage of reliable pseudo-labels for the category with the highest number; then, determine the
threshold for other categories based on this percentage; and finally, obtain pseudo-labels for other categories.

descending order. Length(A.) is the number of unlabeled data
predicted as class c.

The DTA algorithm uses Equation (10) to determine the
dynamic threshold new_7, for each class by determining the
pseudo-label screening ratio for each class. When the model
has high confidence in the pseudo-labels of the minority class
and the dynamic threshold new_7, is higher than the majority
class threshold 7y, new_7, will be set as 7y so as to introduce
more correct pseudo-labels in the state of better model learning.

The DTA algorithm is able to choose trusted pseudo-labels
with relatively low confidence but high intra-class confidence
by applying dynamic and independent thresholds for each
class, minimizing the learning bias brought on by imbalanced
data during training.

2.2. Framework for Semi-supervised Classification Using
DTA Algorithm

The DTA technique is employed in this semi-supervised
training procedure to create dynamic thresholds for selecting

trustworthy pseudo-labels for the unlabeled data. The frame-
work for semi-supervised training is illustrated in Figure 3.
Weak data augmentation is used to create an initial supervised
model in the early phases of model training. The supervised
loss is the sole loss included in the total loss at this point
because the DTA algorithm is focused on training the
supervised model. When the labeled data reach a good
initialization state, namely, the supervised loss is less than
the appropriate threshold, the training of unlabeled data is
introduced and pseudo-labels are generated for the unlabeled
data based on the initial model.

The DTA algorithm’s pseudo-label screening must meet two
requirements: first, the model prediction confidence must be
higher than the threshold; second, the model predicted
probability of the matching unlabeled data must have less
information entropy. Information entropy is an indicator used
to measure uncertainty. Uncertainty decreases with increasing
information entropy, and increases with decreasing information
entropy. When pseudo-labels are analyzed using information
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Figure 3. Semi-supervised training flow diagram with the DTA algorithm. The training of unlabeled data is added during the semi-supervised training process when
the labeled data achieve a good initialization state, that is, the supervised loss is lower than the corresponding threshold (threshold_L;). When screening potential
pseudo-labels, information entropy is also included. Pseudo-labels can only be chosen as reliable labels when both of these factors are satisfied, i.e., when the

information entropy is low and the confidence level is high.

entropy, the lower the information entropy is, the higher the
certainty of the model on the pseudo-label. The DTA algorithm
adds the information entropy restriction to the screening of
pseudo-labels to boost the certainty of the labels. When training
additionally includes unlabeled data, the total loss comprises
both supervised loss and unsupervised loss, and the computa-
tion method is the same as Equation (1). The DTA algorithm’s
unsupervised loss computation looks like this

b

uB
L.= }LB}; I(max (g,) > 74 and E < info_7)H
x (¥, fOIA(x); 0)), (12)

where max (g,) is the max confidence of the pseudo-label, 7y
is the confidence threshold of the class corresponding to the
pseudo-label Y/, E}, is the information entropy of the model’s
prediction probability for the pseudo-label and info_7 is the
information entropy threshold.

2.3. Evaluation

Equations (13)—(16) outline the procedure for calculating the
assessment metrics for binary classification tasks, which

include accuracy, precision, recall and Fl-score. In these
equations, TP represents true positive, FP means false positive,
TN signifies true negative and FN corresponds to false
negative.

TP + TN

accuracy = . (13)
TP + FP + TN + FN

precision = L (14)

TP + FP
recall = L (15)

TP + FN

Fl — o  _Precision X recall (16)

precision + recall

For the multi-classification task of galaxy morphologies,
accuracy is the ratio of the number of correctly predicted
samples to the total number of samples, and it measures the
overall accuracy of the model’s prediction. Precision, recall,
and F1-score are calculated by taking the non-weighted average
of the metrics for each class, known as macro_precision,
macro_recall, and macro_F1 respectively. The calculation
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Figure 4. Examples of GZ2 images depicting different types of galaxies.

equations are as follows:

c
macro_precision = iz precision;, (17)
i=1
l C
macro_recall = EZ recall;, (18)
i=1
1 C
macro_F1 = EZ F1;, (19)
i=1

where C represents the number of galaxy classes.

3. Experiment
3.1. Data Preparation

The data used in this study are derived from GZ2, which is
publicly available through the Galaxy Zoo Data Challenge
Project on Kaggle.” The data set contains 61,578 galaxy images
from the SDSS Data Release 7 (DR7) and provides 37
parameters that describe galaxy morphology. The values of
these parameters range from O to 1 and represent the probability
distribution of galaxy morphology across 11 classification tasks
in the GZ2 decision tree (Willett et al. 2013). A higher value
indicates a stronger agreement among volunteer classifiers
regarding the given galaxy’s features, suggesting more reliable
results.

To simplify the classification task, five types of galaxies,
including completely round smooth, in-between smooth
(between completely round and cigar-shaped), cigar-shaped
smooth, edge-on, and spiral galaxies, were screened by Zhu
et al. (2019) based on the sample cleaning and selection criteria
of Galaxy Zoo. Examples for each category are depicted in
Figure 4. Following the sample cleaning and selection criteria
outlined by Zhu et al. (2019), we filtered the aforementioned
five types of galaxies, to select reliable manual labels. The
specific galaxy data selection criteria are shown in Table 1. The
selected data set consists of 28,793 clean galaxy image

3 hups: //www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge

Table 1
Clean Samples Cleaning and Selection Criteria
Short
Name Class-name Tasks Thresholds Number
0 Completely round 701 Jimootn = 0.469 8436
smooth
707 ﬁ()lnp]ctely round 2 05
1 In-between smooth 701 Jimootn = 0.469 8069
107 fin between > 05
2 Cigar-shaped 101 Somoon = 0.469 579
smooth
107 f;:igar—sllaped > 05
3 Edge-on 701 Sreatures yaisk = 0430 3903
702 fedge—(m,ye.\ > 0.602
4 Spiral 701 Sreatures /disk = 0-430 7806
702 ﬁedge—on,no > 0.715
104 fspiml.yes > 0.619
Total 28,793

Note. The first column lists the galaxy class code; the second, the galaxy class
name; the third, the classification tasks in the galaxy decision tree; the fourth,
the frequency threshold for choosing clean samples of galaxies; and the fifth,
the number of clean samples found after screening.

samples, with each sample image having dimensions of
424 x 424 x 3 pixels.

Within each category, the screened clean samples were split
into training and testing sets in a 9:1 ratio. To evaluate the
performance of the DTA method with varying labeled data
sizes, six unique labeled data sets were constructed as
presented in Table 2.

3.2. Data Augmentation

Weak and strong data augmentation were applied to the
unlabeled data whereas weak data augmentation was only
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Table 2
Various Sized Labeled Datasets
Completely In- Cigar-
Round between shaped
Total Size Smooth Smooth Smooth Edge-on  Spiral
100 30 28 2 13 27
250 75 70 5 33 67
500 148 140 10 67 135
1000 294 280 20 135 271
2500 735 700 50 338 677
5000 1467 1401 100 677 1355

Note. The size of the labeled data set is shown in the first column, and the
numbers for each of the five types are shown in the next five columns.

applied to the labeled data during the semi-supervised training
process.

3.2.1. Weak Data Augmentation

In this experiment, galaxy images were subjected to a variety
of weak data augmentations, as depicted in Figure 5, including
rotation, cropping, flipping, altering image properties, scaling
and translation. In the first step, the image was randomly
rotated from 0° to 360° and randomly vertically and
horizontally flipped with a probability of 50%. To extract the
galaxy morphology data contained in the image’s center and
remove extraneous background information surrounding the
galaxy, the image was arbitrarily center-cropped to a size of
s X § x 3 with jittered size in the second phase, where s € [160,
240]. The image’s brightness, contrast, saturation and hue were
all randomly altered with an offset range of 0-0.2 in the third
step. The image was then translated horizontally or vertically
by 0-2 pixels and resized to 98 x 98 x 3 pixels. To meet the
training requirements of the model, simple center-cropping and
scaling were applied to the galaxy images in the validation set.

3.2.2. Strong Data Augmentation

In order to prevent missing important morphological features
in galaxy images, we eliminate the procedure of random image
cropping from the FixMatch algorithm for strong data
augmentation. Similar to weak data augmentation, the strong
data augmentation procedure primarily involves larger adjust-
ments to the galaxy images. The galaxy images are flipped and
rotated in the initial step, and then the images are subjected to
larger-scale jittering for center cropping in the following stage,
which results in a randomly selected s x s X 3 size, where
s € [160, 280]. The third stage involves randomly adjusting the
images’ hue, saturation, contrast and brightness using an offset
that ranges from O to 0.4. The images are finally resized to
98 x 98 x 3 pixels and moved 0-6 pixels either horizontally or
vertically.
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3.3. Implementation Details

Using Python 3.8.5 and Pytorch 1.7.1, the SSL of galaxy
classification based on the DTA algorithm was implemented in
this study. A computer with 16 GB of RAM and 16 GB of
VRAM was employed for the experiments, and Conda was
utilized for GPU acceleration. To confirm the effectiveness of
the DTA algorithm, numerous comparative experiments were
carried out. Three types of comparative experiments are
included in this study: SSL, imbalanced SSL and supervised
learning. For the comparison analysis, relevant algorithms were
chosen. FixMatch, MixMatch and ReMixMatch are semi-
supervised algorithms, while Adsh, DARP and FlexMatch are
imbalanced semi-supervised algorithms.

The EfficientNet-G3 deep neural network created by Wu
et al. (2022) served as the foundational network in this study. It
is a lightweight deep neural network with fewer parameters that
is effective at classifying galaxy morphologies. The low
parameter count of EfficientNet-G3 can prevent model over-
fitting in SSL with little labeled data.

EfficientNet-G3 was trained using a batch size of 16 for
50,000 iterations as the baseline network for all experiments.
The ratio of unlabeled data to labeled data during the training
process was 7:1. The coefficient of )\, unsupervised loss was
set to 1. The threshold for loss_7 of supervised loss was set to
0.2, and the threshold for info_7 of information entropy was set
to 0.4. In the experiments, a stochastic gradient descent (SGD)
optimizer with a learning rate of 0.001 and an exponential
moving average (EMA) approach with a decay rate of 0.999
were both utilized. The threshold 7 for the class with the
largest number of samples was set to 0.95.

4. Results and Discussion
4.1. Results of DTA Algorithm and Baseline Network

Efficient-G3 was our baseline network for both the
supervised and semi-supervised method. The results of the
supervised learning and DTA algorithm for galaxy classifica-
tion are compared in Table 3. As shown in Table 3, when there
are 100 labeled data samples, the DTA algorithm outperforms
supervised learning in accuracy by 12.8% and Fl-score by
12.6%. Even with limited labels, SSL is still accurate to 91.8%.
It can be concluded that the DTA method considerably
enhances the performance of galaxy classification by introdu-
cing unlabeled data when there is a limited amount of labeled
data available. The performance of supervised classification
gradually improves as the quantity of labeled samples rises,
eventually producing results comparable to those of semi-
supervised classification.

The trends in accuracy and Fl-score with regard to the
quantity of labeled samples are depicted in Figures 6 and 7,
respectively. For supervised learning, its performance is
significantly affected by the number of tags. Due to the fact
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Figure 5. Flowchart of data enhancement. The image is initially randomly rotated and flipped. Then, a jittered central crop of variable size is applied to the image. The
brightness, contrast, saturation and color of the cropped image are then altered. Finally, the image is resized to 98 x 98 x 3 pixels and subjected to horizontal or

vertical translation.

Table 3
Comparisons of DTA Algorithm and Supervised Method (EfficientNet-G3) Utilizing Various-sized Labeled Datasets

Size of Labeled Data Set Supervised Method

DTA Semi-Supervised Method

F1 Accuracy Precision Recall F1 Accuracy Precision Recall
100 0.693 0.79 0.695 0.693 0.819 0.918 0.857 0.802
250 0.764 0.856 0.768 0.761 0.815 0.924 0.865 0.801
500 0.829 0.906 0.852 0.816 0.888 0.938 0.904 0.875
1000 0.851 0.927 0.892 0.831 0.884 0.945 0.929 0.862
2500 0.874 0.945 0.906 0.857 0.888 0.949 0.92 0.87
5000 0.904 0.955 0.914 0.895 0.89 0.956 0.917 0.873
that SSL may fully utilize unlabeled data, its performance is 050
typically consistent. There is a slight but not appreciable '
improvement in performance when labeled data increase from 92.5
500 to 5000.
— 90.0 1
9
g 87.5
4.2. Comparison of DTA Algorithm with Other Semi- e-n
Supervised Algorithms S aso0d
We chose six popular SSL algorithms for the experiment, 2.5 4
including FixMatch, MixMatch, ReMixMatch, Adsh, Flex- : = Superised
Match and DARP, for comparison. The comparative exper- 80.0 7 —— DTA
imental results, as shown in Tables 4 and 5, respectively, ‘ ‘ ; : : r
. . 100 250 500 1000 2500 5000
display the accuracy and F1-score of each model in the galaxy ke siza

classification task. As shown in Figures 8 and 9, a visual
comparison of the results has been provided for a more intuitive
understanding. Overall, the DTA algorithm exceeds all other
examined algorithms in terms of accuracy and Fl-score on
most data scales.

When the labeled data size is 100, the MixMatch algorithm
has the best accuracy and Fl-score, but as the galaxy data
volume keeps increasing, the Fl-score of MixMatch drops
sharply. Figure 10 presents the recall rates of MixMatch on
each galaxy category under different data scales. MixMatch
adopts an aggressive data augmentation strategy, thus

Figure 6. Changes in accuracy of Supervised Learning and DTA with size of
the labeled data set. The horizontal axis represents the size of the labeled data
set, while the classification performance accuracy is represented by the
vertical axis.

introducing more noise to the training set. For most categories
with abundant samples, they are less affected by the noise,
while for minority categories with fewer samples, the noise
leads to a significant performance drop in classification. As the
galaxy data volume rises, the classification accuracy gap
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Table 4
The Classification Accuracy of the DTA Algorithm and other Semi-supervised Algorithms with Different Sizes of Labeled Dataset with Highest Values in Bold
Datasets DTA(ours) FixMatch MixMatch ReMixMatch Adsh FlexMatch DARP
100 0918 0.916 0.937 0.886 0911 0912 0.918
250 0.924 0.917 0.932 0.919 0.902 0.917 0.917
500 0.938 0.934 0.932 0.927 0.935 0.931 0.93
1000 0.945 0.937 0.928 0.933 0.926 0.943 0.938
2500 0.949 0.941 0.934 0.939 0.936 0.948 0.942
5000 0.956 0.942 0.936 0.936 0.939 0.951 0.951
Table 5
Classification Fl-scores of the DTA Method and other Semi-supervised Algorithms for Different Sized Labeled Datasets with Highest Values in Bold
Datasets DTA(ours) FixMatch MixMatch ReMixMatch Adsh FlexMatch DARP
100 0.819 0.746 0.859 0.776 0.766 0.773 0.787
250 0.815 0.786 0.781 0.809 0.804 0.813 0.81
500 0.888 0.814 0.816 0.837 0.856 0.813 0.833
1000 0.884 0.79 0.747 0.807 0.857 0.854 0.858
2500 0.888 0.852 0.751 0.845 0.873 0.887 0.84
5000 0.89 0.831 0.754 0.815 0.859 0.9 0.883
90 - -7 95
r— it S —
-
v
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Figure 7. Changes in F1-score of Supervised Learning and DTA with size of
the labeled data set. The horizontal axis represents the size of the labeled data
set, while the classification performance Fl-score is represented by the
vertical axis.

between minority and majority categories enlarges, and the
recall rate for the least populated cigar-shaped smooth galaxies
shows a downward trend, reaching O recall rates at scales of
1000, 2500 and 5000. Therefore, although MixMatch performs
the best at a data volume of 100, it does not generalize well to
other data scales for galaxy morphology classification. This
problem is caused by the MixMatch algorithm itself, which
adds a lot of noise to the training set by using different random
data augmentations on the same unlabeled data. Because the
training strategies of MixMatch and ReMixMatch rely heavily
on data augmentation, and their predictions need to be fused

Figure 8. Accuracy changes with the size of labeled data sets for seven semi-
supervised methods. The horizontal axis represents the size of the labeled data
set used during model training, and the vertical axis represents the classification
performance accuracy. Different lines signify different algorithms.

from multiple random augmentations of the same image, we
keep the original data augmentation methods for MixMatch and
ReMixMatch. All of the other algorithms employed in the
study used the same data augmentation technique for the
comparative analysis.

When the labeled data size is 250, DTA achieves the highest
Fl-score and its accuracy is second only to the MixMatch
algorithm. At a data size of 5000, DTA’s F1-score is 1% lower
than that of FlexMatch, but its accuracy reaches the highest at
95.6%. Across all data scales, DTA’s accuracy and Fl-score
are higher than those of FixMatch, ReMixMatch, Adsh, and
DARP algorithms. Meanwhile, the accuracy of DTA and
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Figure 10. Variation in the MixMatch algorithm’s recall rate for various galaxy
categories at various labeled data sizes. Different lines indicate various galaxy
categories.

FlexMatch steadily increases as labeled data size grows, which
closely relates to the change of F1-score, and DTA’s accuracy
outperforms that of FlexMatch at all scales. As a result, DTA is
a semi-supervised algorithm with good generalizability for
classifying galaxy morphology.

4.3. Visualization Analysis of DTA Algorithm and Other
Algorithms

As the algorithm designed in this article is based on the
FixMatch algorithm, the fixed threshold is optimized to a
dynamic threshold to address the performance deterioration
brought on by data imbalance. Therefore, our primary interest
is investigating how dynamic thresholds affect classification
improvement. Figure 11 shows the confusion matrices on the
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validation set for DTA and other algorithms when the labeled
data size is 1000. In the confusion matrix, the proportion of
accurate predictions is represented by the diagonal line where
the true labels and predicted labels coincide, and the proportion
of inaccurate predictions is represented by the other values in
the confusion matrix. The confusion matrix of FixMatch in
Figure 11 illustrates that FixMatch exhibits a classification
accuracy bias in galaxy classification tasks, with the least cigar-
shaped smooth galaxies performing poorly. With 82.76% of
cigar-shaped smooth galaxies misclassified as edge-on galaxies
and 6.9% misclassified as in-between smooth galaxies, cigar-
shaped smooth galaxies are frequently mistaken for the more
common edge-on and in-between smooth galaxies. Among
them, edge-on galaxies are disk-shaped galaxies seen from the
side, some of which have a bulge at the center, and cigar-
shaped smooth galaxies are a subtype of early-type galaxies,
which are smooth and have small ellipticities. To avoid
misclassification of cigar-shaped smooth galaxies and edge-on
galaxies, this study conducted cleaning and filtering of the
samples to obtain clean samples and ensure the correct use of
manually labeled categories during model training. FixMatch
works badly in classifying cigar-shaped smooth galaxies,
which we ascribe to the small amount of learning samples
that are available for this category (only 1/6 of the edge-on
galaxies). Additionally, since edge-on galaxies and cigar-
shaped smooth galaxies both have elliptical shapes, the two
categories may be mistaken for one another if the model has
insufficient training data.

To address the issue of limited learning samples for cigar-
shaped smooth galaxies, as shown in Figure 12 (left), the DTA
algorithm dynamically adjusts the pseudo-label confidence
threshold for each category during the SSL process. The
threshold for cigar-shaped smooth galaxies is significantly
lowered. As a result, as shown in Figure 12 (right), more
pseudo-labeled learning samples of cigar-shaped smooth
galaxies are introduced during the model training process,
thereby improving the classification performance for cigar-
shaped smooth galaxies. The proposed DTA algorithm
significantly increases the biased classification issue in
FixMatch, as seen in the confusion matrix of DTA in
Figure 11 by improving the accurate classification rate of
cigar-shaped smooth galaxies by 37.94%. Along with improve-
ments in cigar-shaped galaxy classification, there have also
been advancements in the classification accuracy of in-between
smooth galaxies. The above analysis demonstrates that the
DTA algorithm has a more unbiased classification accuracy.

When comparing the DTA algorithm’s classification perfor-
mance with that of other algorithms across different galaxy
categories, as affirmed in Figure 11, the DTA algorithm
outperformed all other algorithms, with a classification
accuracy of 48.28%, in the minority class of cigar-shaped
smooth galaxies. The DTA algorithm also performed well on
other categories of majority galaxies, such as completely round
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Figure 11. Confusion matrices on the validation data set for DTA and other methods. The predicted proportions are represented by the percentages in the matrix. Each
galaxy category, completely round smooth, in-between smooth, cigar-shaped smooth, edge-on and spiral galaxies, is designated by the coded values 0—4.

smooth galaxies, where its classification accuracy was higher
than that of the ReMixMatch, Adsh and DARP algorithms,

of supervised learning, MixMatch, Adsh and DARP algo-
rithms, reaching 97.18%; for spiral galaxies, where it was

reaching 96.45%; in-between smooth galaxies, where it was
higher than that of all comparison algorithms, reaching
93.93%; and edge-on galaxies, where it was higher than that

12

higher than that of supervised learning and Adsh algorithms,
reaching 95.01%. As a result, across all galaxy categories, the
DTA algorithm can obtain good classification performance.
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Comparison of the number of pseudo-labels for cigar-shaped smooth galaxies
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Figure 12. The dynamic threshold and quantity of pseudo-labels vary across iterations. The left graph shows the DTA algorithm’s threshold modifications for various
training iterations for different galaxy classifications. The horizontal axis represents the number of iterations in the experiment, while the vertical axis signifies the
confidence threshold of pseudo-labels. Different lines represent different types of galaxies. The right graph compares the quantity of pseudo-labels generated by the
FixMatch algorithm vs. the DTA algorithm for cigar-shaped smooth galaxies. The vertical axis indicates the quantity of pseudo-labels utilized for cigar-shaped smooth
galaxies throughout the model training process, while the horizontal axis indicates the quantity of experimental iterations.

We created a graph showing the change of thresholds versus
the number of iterations to explore deeper into the effect of
dynamic thresholds on the number of various types of pseudo-
labels. The dynamic threshold adjustments in the DTA method
are displayed in Figure 12 (left). Different lines represent
different kinds of galaxies, and the vertical axis signifies the
filtering threshold of pseudo-labels. In the early stages of semi-
supervised training, the DTA algorithm lowers the threshold for
cigar-shaped smooth galaxies, which introduces more learning
samples (Figure 12 right). The model’s performance has
increased as a result of more training samples being included.
Analysis reveals that the DTA technique is based on the
distribution of samples in various categories, dynamically
altering thresholds to make the training samples of each
category effectively balanced, enabling the accuracy of each
category to be balanced.

5. Conclusions

This study addresses how SSL is used to classify galaxies
and proposes the DTA algorithm to deal with the issue of data
imbalance. The DTA algorithm implements dynamic thresh-
olds as opposed to the constant threshold of the FixMatch
algorithm to improve learning of minority classes in semi-
supervised training. Based on the distribution of labeled data,
the DTA algorithm calculates the classification performance of
each type of galaxy data. The DTA algorithm aligns the
classification performance of each category of galaxy data with
the most prevalent class, and each class’s dynamic threshold is
established by the total amount of added pseudo-labels. The
experimental results demonstrated that the DTA method
outperforms supervised learning and other well-known semi-

supervised algorithms like FixMatch and MixMatch in terms of
enhancing classification performance and lowering classifica-
tion accuracy bias for various classes. Since there are a lot of
unlabeled data in large sky survey projects, the proposed DTA
technique is very important for the application of galaxy
morphology classification.

The DTA algorithm differs from other semi-supervised
algorithms like DARP, ABC and Adsh in that it does not need
to take the distribution of unlabeled data into account,
preventing the interference brought on by incorrectly estimat-
ing the distribution of unlabeled data during semi-supervised
training. The DTA algorithm considers how the distribution of
labeled data affects the accuracy of fictitious labels for
unlabeled data. By taking into account the distribution of
labeled data and the percentage of trustworthy pseudo-labels of
the most prevalent class, the dynamic threshold for each class is
determined.

Although the DTA algorithm considerably enhances the
classification performance of classes with only a few samples,
the accuracy of classes with small samples is still inferior to
that of classes with more samples due to the limited number of
samples. In order to achieve the same learning effect for classes
with a small number of samples as for the class with the most
samples, we will therefore concentrate on promoting the
learning of classes with a small number of samples in our future
work, such as by introducing a Generative Adversarial
Network.
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