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Abstract

In the neutral hydrogen (H I) galaxy survey, a significant challenge is to identify and extract the H I galaxy signal
from the observational data contaminated by radio frequency interference (RFI). For a drift-scan survey, or more
generally a survey of a spatially continuous region, in the time-ordered spectral data, the H I galaxies and RFI all
appear as regions that extend an area in the time-frequency waterfall plot, so the extraction of the H I galaxies and
RFI from such data can be regarded as an image segmentation problem, and machine-learning methods can be
applied to solve such problems. In this study, we develop a method to effectively detect and extract signals of H I

galaxies based on a Mask R-CNN network combined with the PointRend method. By simulating FAST-observed
galaxy signals and potential RFI impact, we created a realistic data set for the training and testing of our neural
network. We compared five different architectures and selected the best-performing one. This architecture
successfully performs instance segmentation of H I galaxy signals in the RFI-contaminated time-ordered data,
achieving a precision of 98.64% and a recall of 93.59%.
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1. Introduction

In recent years, a number of advanced radio telescopes and
arrays have been constructed, including the Five-hundred-
meter Aperture Spherical radio Telescope (FAST; Nan et al.
2011), the Australian Square Kilometre Array Pathfinder
(ASKAP; Johnston et al. 2008), and MeerKat (Booth &
Jonas 2012), among others. In the coming decade, the next
generation of radio telescope arrays, such as the Square
Kilometre Array (SKA; Dewdney et al. 2009), are anticipated
to be completed. The study of neutral hydrogen is one of the
primary scientific goals of these telescopes, and H I galaxy
surveys are key observations of them (Tolley et al. 2022). From
the H I galaxy survey data, we can examine the H I content and
mass function of the galaxies, gas accretion, the correlation
between H I and star formation, and the influence of the
environment on H I (Giovanelli & Haynes 2015). These
sensitive and precise instruments demand more sophisticated
observational techniques and signal-processing methods.

The H I Parkes All-Sky Survey (HIPASS; Meyer et al. 2004)
and the Arecibo Legacy Fast ALFA Survey (ALFALFA;
Giovanelli et al. 2005; Jones et al. 2018) are the most extensive
H I surveys completed so far. The “multifind” peak-finding

algorithm (Kilborn 2001) was employed to identify and filter
data signal peaks in the HIPASS data processing. This method
searches local maxima in data cubes and identifies potential
signals by setting a threshold. The ALFALFA survey used a
matched filtering algorithm (Saintonge 2007), which is
sensitive to wide and weak signals. Although these algorithms
have served these surveys successfully, they still exhibit some
shortcomings. The multifind result is sensitive to the
threshold, and has difficulty with overlapping signals, or
signals with unusual shapes and features. The matched filtering
algorithm also relies on assumptions about signal shapes,
necessitating adjustments to algorithm parameters based on
extensive experimentation and experience, it is prone to false
alarms and missed detections when encountering multiple local
maxima. The identification of radio frequency interference
(RFI) is also far from perfect for these algorithms. More
advanced and robust signal extraction methods are needed for
future H I surveys.
The RFI is always a challenge that radio astronomical

observations face. RFI sources can be artificial or natural, with
the former including digital television, mobile and satellite
communications, and so on (Fridman & Baan 2001). Efficient
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RFI mitigation algorithms that can identify the RFI are
essential for radio astronomical observations. Many automatic
RFI flagging algorithms have been developed, typically by
looking for unusually large deviations in the sample. For
example, the widely used Sum-Threshold method (Offringa
et al. 2010) searches the RFI of different possible time and
frequency spread by scanning the data with a sliding window,
and comparing the sum of the power of consecutive samples
with a blocksize-dependent threshold.

RFI mitigation and celestial signal extraction are two sides of
the same process. In past and present H I observations, the
usual practice is to first remove the various interferences,
including standing waves and RFI, through a pipeline, and then
extract the desired H I signal from the processed data.
However, the identification of RFI is not absolute, and the
extraction process still faces the influence of some interference.
Moreover, RFI often superimposes H I signals, causing
contamination and rendering the data unusable. Therefore, a
major challenge in the data processing of H I galaxy surveys is
to identify the extragalactic H I signals amidst a vast amount
of data.

In recent years, there has been much advancement in
machine learning (ML), and it has been applied to various
research directions in astronomy (Ball & Brunner 2010). In
particular, these techniques have been applied to radio
astronomical data processing tasks, such as RFI identification
and mitigation, celestial source detection and classification, and
the analysis of observational data, among others (Baron 2019).
Numerous deep-learning-based models have been applied to
identify and mitigate RFI, especially the Convolutional Neural
Networks (CNN) (Pinchuk & Margot 2022; Sun et al. 2022),
U-Net (Akeret et al. 2017a; Yang et al. 2020), and so on. Other
ML-based image-processing models have also been applied to
astronomy, such as the new source finder developed by Riggi
et al. (2023) based on the Mask R-CNN framework for
detecting and classifying sources in radio continuum images.

Mask R-CNN is a CNN-based object detection and instance
segmentation framework, which has achieved remarkable
results in the field of computer vision (He et al. 2017).
PointRend is a technique for improving image segmentation
results by adding a rendering approach on top of the existing
network, presenting fine-grained object boundaries through
adaptive point sampling and label estimation (Kirillov et al.
2020). This technique enhances segmentation quality, produ-
cing more refined edges.

Inspired by these works, we apply the Mask R-CNN model
and PointRend method to H I signal extraction in radio
telescope data processing, hoping to more accurately detect
and segment target objects in astronomical images. We develop
an H I galaxy-searching method based on the Mask R-CNN
model and the PointRend method. The model can directly
search for and identify H I galaxies in time-order data
contaminated by RFI, and can extract signals by segmenting

the data. Using FAST as an example, we simulated the
observed H I galaxies and potential RFI impacts, and then
trained, refined, and selected different architectures of Poin-
tRend Mask R-CNN models, ultimately achieving a good
performance in identifying galaxy signals.
The structure of this paper is as follows. Section 2 of the

paper introduces the machine-learning methods we used,
including the principles of Mask R-CNN and PointRend, the
network structure we employed, and the model evaluation
method. In Section 3, the data preparation process is
expounded. Section 4 presents the training and testing of the
networks, while Section 5 presents the final results of our
experiment. Section 6 provides further analysis and discussion
of the results. Finally, Section 7 summarizes the entire paper.

2. Method

2.1. Machine Learning Method: Mask R-CNN and
PointRend

In this study, we developed the Mask R-CNN network by
integrating it with the PointRend method to accomplish the
instance segmentation task of identifying H I galaxies in
astronomical observation data.
Mask R-CNN is an improved version of Faster R-CNN,

which is a classic two-stage object detection network. The
Faster R-CNN represents detected objects by generating
bonding boxes and corresponding class information (Ren
et al. 2015). Mask R-CNN adds a mask branch to the Faster
R-CNN network, which could generate the binary mask for
each detected object. The additional mask branch significantly
improves the network performance in instance segmentation
tasks.
The PointRend method is an innovative strategy that can be

integrated with various neural networks. By adding a
PointRend head to the network, it improves the accuracy and
resolution of image segmentation (Kirillov et al. 2020). After
obtaining a preliminary coarse mask through other networks,
PointRend generates some sampling points concentrated in the
areas where the segmentation results are uncertain, then adopts
a sub-network called PointRend head to predict the classifica-
tion of these points based on the input feature map. The
predicted information is then combined with the coarse mask to
generate a more precise mask.
Figure 1 shows the network structure of the model we used.

For single-channel two-dimensional data, the model first
obtains a feature map through the backbone network, which
serves as the input for the Region Proposal Network (RPN; Ren
et al. 2015) and the final PointRend Head. The RPN generates a
series of proposals from the input feature map, each with a
specific region where the target object might be located. Each
proposal is combined with the feature map to generate a series
of RoIs (Regions of Interest), which are then passed through
the RoI Align Layer (He et al. 2017) to obtain fixed-size feature
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maps of uniform size. There are two branches next. The branch
at the bottom of the structure diagram is the RoI head branch,
which has the same structure as the corresponding part of
Faster R-CNN. It first transforms the fixed-size feature map
into a series of smaller maps by going through convolutional
layers, and then obtains the class and bounding box informa-
tion through several fully connected layers. This branch
essentially completes the object detection of the input data.
The upper branch is the Mask branch. After passing the fixed-
size feature map through a series of convolutional layers, we
obtain a coarse mask.

Next is the PointRend part of the network. PointRend uses a
sampling strategy based on uncertainty to generate some
sampling points for refinement according to the coarse mask
information. The model employs an additional sub-network
called the PointRend Head, which receives the selected
refinement points and the high-resolution feature map gener-
ated at the beginning of the entire network as input, and
predicts the classification of each sampling point through a
series of MLPs (Multi-Layer Perception). Finally, the predicted
class information is combined with the coarse mask to obtain a
more accurate final precision mask. In each iteration, the sub-
network calculates the uncertainty of the class prediction for
each point, and selects a certain portion of points for updating
based on the uncertainty values. This means the selected points
are mainly located in the detailed areas of the segmentation
result (i.e., the edge areas and texture-complex areas),
which are the areas that need improvement the most in the
segmentation results.

By undergoing these processes for each RoI, we can
complete the instance segmentation of all targets in the input
data. All parts of the model participate in training. By
minimizing the loss function, the model updates the parameters
of each network through backpropagation. We define the multi-
task loss on each sampled RoI as

( )= + + +L L L L L . 1total cls box mask PointRend

Lcls is the classification loss defined as

( ) ( )= -L plog , 2ucls

where pu is the probability of an RoI belonging to the true class
label u (u ä {1, 2, L ,C}), calculated by the softmax function:
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where zi represents the score of the RoI belonging to the i-th
class for i ä {1, 2, L ,C}. Lbox is the bounding-box regression
loss, which describes the bounding-box branch’s ability to
localize objects during bounding-box regression, defined as:
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Figure 1. Schematic diagram of the PointRend Mask R-CNN model architecture.
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loss function:
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Lmask is described as the average binary cross-entropy per pixel
and describes the mask head’s ability to classify each pixel,
defined as
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where m2 is the total number of pixels in the mask (16× 16 in
our network), pi is the true value of the i-th pixel, and p̂i is the
predicted value of the i-th pixel.

The PointRend loss, LPointRend, calculates binary cross-
entropy only on the sampled points that need to be refined:

[ ( ˆ )
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+ - -
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p p
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1 log 1 , 6
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i i
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where Npoint represents the number of sampled points that need
refinement (set to 10 in our task), pi is the true value of the i-th
point, and p̂i is the predicted value of the i-th point. In addition,
the RPN network used in the model has its own loss function
and is trained independently during the training process.

2.2. Model Evaluation

In our PointRend Mask R-CNN network, we selected five
distinct backbones for obtaining feature maps and conducted a
comparative analysis to evaluate the impact of different
backbones on the network performance. Our choices are all
based on Residual Networks (ResNet; He et al. 2016), which is
a deep convolutional neural network. The ResNet introduces
residual connections to solve the problem of gradient vanishing
and explosion issues during the training of deep neural
networks.

In our selection, ResNet-50-FPN and ResNet-101-FPN are
Feature Pyramid Networks (FPN; Lin et al. 2017) based on 50-
layer and 101-layer residual networks, respectively. These
FPNs add a top-down pathway and lateral connections to the
original ResNet, enabling the network to better capture features
at different scales, and could improve object detection and
instance segmentation performance by leveraging multi-scale
features. ResNet-50-C5-Dilated and ResNet-101-C5-Dilated
are dilated convolutional networks based on 50-layer and 101-
layer residual networks, respectively, using dilated convolution
in the last convolutional layer (C5) (Yu & Koltun 2016). This
approach increases the receptive field size, thereby improving
the detection and segmentation performance for large-scale
objects. Our primary focus is on the ResNeXt-101-FPN
backbone. ResNeXt-101 is an improved 101-layer ResNet
network that employs grouped convolution on top of ResNet,

dividing the input channels into multiple groups and perform-
ing convolution operations within each group. This enhances
the network’s expressiveness and parameter efficiency, allow-
ing for improved performance with relatively low computa-
tional complexity (Xie et al. 2017). After combining with FPN,
ResNeXt-101-FPN should perform slightly better than ResNet-
101-FPN theoretically.
Generally, deeper network structures can usually learn more

diverse feature representations, thereby improving the accuracy
of instance segmentation. FPN can effectively capture multi-
scale feature information by integrating features from different
levels, resulting in better performance when dealing with
objects of varying sizes. Dilated convolution, by expanding the
receptive field of the convolution kernel, can better capture
information from large-scale objects. For our project, an FPN
with a deeper structure is theoretically more suitable.
We employed the precision, recall rate, and F1 score, which

are commonly used performance metrics for evaluating image
segmentation models (Forsyth & Ponce 2002), to evaluate our
method. The precision in this case is the proportion of true
galaxies among the samples classified as galaxies by the model,
reflecting the accuracy of the model in recognizing galaxies.

( )=
+

Precision
TP

TP FP
, 7

where TP represents a correct segmentation (detection) that the
instance is classified as a member of the class while FP
represents an incorrect segmentation of such classification.
Precision belongs to [0, 1], and a higher value indicates that the
model is less likely to misidentify.
The recall rate in the present case is the fraction of identified

H I galaxies among all H I galaxies, representing the model’s
capability of detection. Recall belongs to [0, 1], and a higher
value indicates a stronger recognition ability. It is defined as

( )=
+

Recall
TP

TP FN
, 8

where FN represents an incorrect segmentation that the instance
is not classified as a member of the class.
The F1 score is the harmonic mean of the precision and the

recall, also belonging to [0, 1], providing a comprehensive
evaluation of both precision and recall performance. It can
serve as the standard for assessing the model, and a higher
value indicates the model has a better performance. It is defined
as

( )=
´ ´

+
F1

2 Precision Recall

Precision Recall
. 9

3. Mock Data

The PointRend Mask R-CNN is a supervised neural network
model that requires data for training and testing. For our
mission, the construction of data sets can be diverse. Referring
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to the FAST telescope, we simulated the H I galaxy signals it
could observe and the possible RFI effects it might encounter.

3.1. HI Galaxies Data Simulation

We generate the mock H I galaxies from the IllustrisTNG
magnetohydrodynamical (Weinberger et al. 2017; Pillepich
et al. 2018) simulation. It includes physical processes such as
gas cooling, star formation, stellar evolution, metal enrichment,
black hole growth, stellar winds, supernovae, and active
galactic nuclei (AGNs), and is consistent with current
observations. In this work, we use the TNG100-1 data set.
The box size for TNG100 is 75Mpc/h and mass resolution is
9.4× 105Me/h for the baryon particle and 5.1× 106Me/h for
the dark matter particle. The box size ensures that there are
enough galaxies as training sets and test sets, and the mass
resolution ensures that the structure of galaxies can be resolved.
The IllustrisTNG adopted the Planck 2015 cosmological
parameters (Ade et al. 2016), i.e., ΩΛ= 0.6911, Ωm= 0.3089,
Ωb= 0.0486, σ8= 0.8159, ns= 0.9667, and h= 0.6774, and
we adopt this model throughout the paper.

The total mass of atomic and molecular hydrogen for each
gas particle can be obtained directly from the TNG100 catalog.
However, these two parts are not separated in the simulation.
Diemer et al. (2018) has separated the molecular and atomic
hydrogen contents for galaxies in TNG100. However, we also
need to take into account the velocity of each gas particle to get
the spectral profile for each galaxy, which cannot be obtained
from the existing catalog. We calculate the H I mass for each
gas particle based on the method of Gnedin & Kravtsov (2011).
We refer readers to Deng et al. (2022) for details of the
calculation. Following Diemer et al. (2018) we consider only
galaxies with stellar mass or gas mass greater than 2× 108Me,
which are well represented by particles in this simulation.

We assume that the properties of H I galaxies do not evolve
significantly over the small redshift range considered in this
work, and only use the simulation snapshot at z≈ 0. The box is
split into two boxes with size 75× 75× 50 (Mpc/h)3 and
75× 75× 25 (Mpc/h)3. Then we stack the two boxes to form a

light cone volume as shown in Figure 2, where O is the
observer. We have a rectangular field of view and the orange
lines join the observer with the four corners of the field. We
choose this configuration to ensure sufficient redshift coverage
and field of view while avoiding the repeating of galaxy
samples. The redshift range of the light cone extends to
z≈ 0.05, and its angular area is approximately 28× 19 deg2.
We then deposit the gas particles into angular and frequency
grids, where the angular grid has a size of Δθ= 0 5, well
below the beam resolution of FAST, and the frequency grid has
a size of Δν= 0.02MHz, to suit the purpose of the galaxy
detection. The frequency of each gas particle is determined as
ν= ν21/(1+ z)/(1+ β), where ν21≈ 1420.4MHz is the rest-
frame frequency of 21 cm radiation, z is the cosmological
redshift, and β is the line-of-sight component of peculiar
velocity in units of the speed of light.
We calculate the brightness temperature for cell i in

frequency ν by

( )
( )

( )n
pn

n
q n

=
D

D D
T

c
A

h

k m

M

D z

3

32
, 10b

i

B p

i

A

2

21
3 10

2
HI

2 2

where c is the speed of light, A10≈ 2.85× 10−15 Hz is the
spontaneous emission coefficient of the 21 cm transition, mp is
the mass of the proton, kB is the Boltzmann constant, DA(z) is
the angular diameter distance, andDMi

HI is the H I mass in cell
i. We ignored the velocity dispersion inside the gas particle in
our calculation, which may smooth the spectrum but cannot be
obtained from the simulation. The spectrum of one simulated
galaxy is shown in Figure 3. Its peak flux is about 8 mJy and
the line width is about 1 MHz with a characteristic “double
horn” profile. It is consistent with our knowledge about the H I

profile in low redshift galaxies (Saintonge 2007).
We model the beam of the FAST as a Gaussian function with

σ= 0.518λ/(300 m), though the real beam may have a more
complicated dependence on the frequency. The 19 beams are
rotated 23°.4 w.r.t the configuration given in Jiang et al. (2020),
to achieve a more uniform coverage in the drift scan. We place
the angular center of the grids at the zenith, and assume the sky

Figure 2. The configuration of the light cone by stacking two boxes. The size of two boxes is shown in the figure, O is the observer and the orange lines join the
observer with the four corners of the field of view. The redshift range of the light cone extends to z ≈ 0.05, and its angular area is approximately 28 × 19 deg2.
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is surveyed with the rotation of the Earth. The scan produces
strips along the R.A. (right ascension) direction. According to
Jiang et al. (2020), the 19 beams cover over 25′ in the direction
of decl. (declinations), so by repeatedly scanning different
declinations with a separation of ¢10 , the whole available
angular area (which is approximately 28× 19 deg2) is
surveyed. We set the time resolution as 1.00663296 s and
frequency resolution as 0.02MHz.

Based on the sensitivity of the FAST, we dropped the
galaxies with fluxes below 5 mJy. Additionally, when training
with data from a single beam, we also removed those galaxies
that could be observed by other beams but were not visible to
the specific beam we use. Ultimately, we obtained 4495 H I

galaxies. These galaxies include both bright and faint ones,
with varying shapes, and produce different brightness levels in
the time order data, essentially covering various scenarios
encountered in real observations. Figure 4 illustrates a piece of
simulated H I galaxy signals, containing only galaxy signals
without RFI, allowing us to label each galaxy easily and
conveniently.

3.2. RFI Simulation

There are a number of software packages that can be
employed for simulating RFI. The HIDE (HI Data Emulator) is
a software package for simulating H I observation data, and it
could also generate mock RFI (Akeret et al. 2017b; Yang et al.
2020). The Hera_sim (Kerrigan et al. 2019) is a Python
software package developed for simulating the Hydrogen
Epoch of Reionization Array (HERA) data, which can also
generate RFI data (Sun et al. 2022). We integrated and adapted
these two software packages to simulate RFI. We considered

several types of RFI, including narrowband RFI, broadband
RFI, and “clump” RFI.
Broadband RFI is instantaneous and intense, typically

originating from sources such as lightning and transmission
cables, generally covering many frequency bands and mani-
festing as “bright lines” spanning numerous frequencies in
time-ordered data. Narrowband RFI is usually caused by digital
television, satellite communications, and mobile communica-
tion. A typical narrowband RFI appears as a long-lasting and
narrow frequency spread signal, presenting as intermittent
stripes in time-ordered data. Another type of RFI, with a
frequency spread and appearance time similar to galaxies, may
stem from harmonics of satellite communications and certain
short-term electromagnetic wave emissions. It exhibits a stain-
like clump shape in time-ordered data and is more prone to
confusion with galaxies. Ultimately, we successfully simulated
these types of RFI. We then generated system noise following
the method in Jiang et al. (2020) and added it to the data.
Figure 5 shows a segment of the mock RFI and noise data,
displaying different types of RFI.

4. Model Training and Testing

With the mock data generated above, we trained our network
model. We divided the data set into a training set, a validation
set, and a test set with a 3:1:1 ratio, then we trained and tested
the PointRend Mask R-CNN model with five different
backbones.
We set the batch size to 16, and the maximum number of

iterations to 50,000. Each training sample generates classes,
bounding-boxes, and mask predictions after training. The
network also parses the classes and bounding-boxes informa-
tion from the true mask, which serves as the ground truth. By
calculating and minimizing the loss function value according to
the method presented in Section 2.1, the model parameters are
updated through backpropagation, thereby training the model.
We employed the SGDM (Stochastic Gradient Descent with
Momentum, Qian 1999) method to update the parameters,
which could help accelerate convergence, and set the
momentum as 0.9 (Sutskever et al. 2013).
The base learning rate was set as 0.0005. We utilized a

learning rate warmup strategy (Goyal et al. 2018), in which the
learning rate will increase gradually and linearly from a lower
value to the preset base learning rate during the initial stage of
training. This strategy helps the model converge more stably in
the early training phase and reduces the risk of gradient
explosion. We also employed a multi-step learning rate decay
strategy (Krizhevsky et al. 2012), decaying the learning rate at
the 10,000th and 30,000th iterations by multiplying the preset
decay factor (set as 0.6) with the current learning rate. This
strategy assists in fine-tuning the model parameters during the
later stages of training, providing more precise adjustments as
the training progresses, thereby enhancing the model’s

Figure 3. The spectrum of one of our simulated galaxies. The peak flux is
about 8 mJy and the line width is about 1 MHz with a characteristic “double
horn” profile.
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performance. Both strategies have been widely used in deep
learning. Weight decay was employed as a regularization
technique to prevent overfitting and enhance the model’s
generalization capabilities, with the weight decay coefficient
set as 0.0001. This is also a widely applied strategy
(Goodfellow et al. 2016).

For the backbone of our main concern, ResNeXt-101-FPN,
Figure 6 demonstrates the variations of the loss function values
on the training and validation sets during the training process.
As one can see, the loss function exhibits a decreasing trend
and eventually converges on the training set. On the validation
set, the loss function also displays a general decreasing and
converging trend. Although slight oscillations in the loss
function values on the validation set appear after 12,000 steps
and intensify after 32,000 steps, the function values do not have
an increasing trend, indicating that our model does not exhibit
significant overfitting. Such oscillations are normal and can be
attributed to the inherent randomness in the optimization
process, and this intensification in the later stages of training
may be related to the size of the validation set and the batch
size settings. In our mission, if the model experiences
underfitting, it may not effectively learn and recognize various
galaxy signals within the data, resulting in a low recognition
capability. In contrast, in the case of overfitting, the model

could become overly focused on the features within the current
training data, leading to a decline in generalization performance
on new data. To minimize the occurrence of both underfitting
and overfitting, we monitored the model’s performance on the
validation set and ensured that the oscillations are within an
acceptable range. Ultimately, we chose the network trained to
32,000 steps as our model. Similar phenomena were observed
in the training processes of the networks with other backbones,
and we also selected the final model for each backbone at the
training step where the loss function had relatively converged
on the training set and before the intensification of oscillations
on the validation set.
After training, we tested the model using the test set and

calculated the model evaluation metrics according to the
method in Section 2.2. The model was trained on NVIDIA
GeForce RTX 2080 Ti GPU.

5. Results

For the training results of the PointRend Mask R-CNN
model with different backbones, we calculated their precision,
recall, and F1 score respectively, as shown in Table 1.
The ResNet-50-C5-Dilated and ResNet-101-C5-Dilated

backbones performed well in terms of precision, but their

Figure 5. A piece of simulated TOD data of RFI, with the horizontal axis representing time, the vertical axis representing frequency, and the color representing the
antenna temperature value. Narrowband RFI manifests as discontinuous horizontal lines with width, broadband RFI appears as thin vertical lines and stain-like RFI
presents large and small radiating spots.

Figure 4. A piece of simulated TOD data of H I galaxies, with the horizontal axis representing time, the vertical axis representing frequency, and the color representing
the antenna temperature value. As one can see, there are three galaxies present in the figure.
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recall is quite poor, leading to a low F1 score. The F1 score for
the ResNet with FPN is generally better than that of the C5-
Dilated ResNet. Moreover, the performance of ResNeXt-101-
FPN is slightly better than that of the ResNet-50-FPN and
ResNet-101-FPN, which is consistent with our expectations.
Ultimately, we selected ResNeXt-101-FPN as the backbone for
our model.

Figure 7 illustrates some examples of galaxies correctly
recognized by the model, with the yellow lines delineating the
regions determined by the model’s output mask, and the green
lines representing the ground truth. In Figure 7(a), there is a
bright RFI spot on the right side, with one galaxy contaminated

by broadband RFI, but the model still accurately identifies all
the two galaxies, successfully detects multiple targets. From
Figure 7(b), one can see that our model can also effectively
discern galaxy data contaminated by narrowband RFI.
When a bright galaxy is encountered, as illustrated in

Figure 7(c), our model does not simply identify the “bright”
regions, but also captures the faint areas at the edges of the
galaxy data, indicating that the model has learned the
characteristics of H I galaxies during training. From an
image-processing perspective, the high gradient at the edges
of such bright galaxies could easily lead to overfitting during
training, but our model does not exhibit this issue. Figure 7(d)

Figure 6. Loss function values of the model with the ResNeXt-101-FPN backbone during the training process. The upper panel illustrates the variation of loss
function values on the training set, while the lower panel shows the variation of loss function values on the validation set. The horizontal axis represents the training
iteration steps, and the vertical axis indicates the function values. As can be seen, the loss function eventually converges on the training set. On the validation set, the
loss function also exhibits a decreasing and converging trend. However, slight oscillations occur after 12,000 steps and intensify after 32,000 steps. Ultimately, we
chose the model trained up to 32,000 steps.

Table 1
Precision, recall and F1 score of our PointRend Mask R-CNN network with different backbones.

Backbone Precision Recall F1 Score

PointRend Mask R-CNN ResNet-50-FPN 96.15% 94.93% 95.54%
ResNet-50-C5-Dilated 100% 65.38% 79.07%
ResNet-101-FPN 92.68% 97.43% 95.00%
ResNet-101-C5-Dilated 98.14% 67.94% 80.29%
ResNeXt-101-FPN 98.64% 93.59% 96.05%
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Figure 7. Examples of the H I galaxies correctly recognized by our model. These images are all plotted by part of our final simulated TOD data, with the horizontal
axis representing time, the vertical axis representing frequency, and the brightness representing the value of the antenna temperature. In the images, a brighter (whiter)
pixel represents a higher temperature at that point, with the brightest areas reaching about 3 K. Yellow lines delineate the galaxy contour determined by the model’s
output mask. The green lines represent the ground truth, which is the galaxy contour in our simulated TOD data. Other bright areas in the images correspond to various
RFI and noise.
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presents a typical situation where a galaxy and an easily
confused RFI portion overlap. As can be seen, after sufficient
training, the model can effectively handle such cases.

The RFI contamination is more intense in Figure 7(e),
affecting almost half of the galaxy’s signal, yet the model still
recognizes the galaxy, demonstrating its strong identification
capability. Figure 7(f) shows that the model can successfully
identify faint galaxies with lower signal-to-noise ratios. Both
Figures 7(a) and (f) contain more than one H I galaxy target,
highlighting the necessity of performing instance segmentation
for galaxies.

Considering the diverse morphology of galaxies and the
variety of RFI patterns, our model demonstrates strong
generalization capabilities, indicating that it can successfully

accomplish the task of instance segmentation for finding H I

galaxies in RFI-contaminated data.
We present the different recognition results of the same

example using different backbones as well, with the outcomes
of various models marked with distinct color contours. Figure 8
shows a rather faint galaxy, with the two ResNet models using
C5-Dilated failing to detect the target. In contrast, ResNet-50-
FPN produces a false detection, possibly due to the influence of
some faint galaxies with a low signal-to-noise ratio in the
training data set, leading the model to misinterpret random
noise fluctuations as galaxies. Figure 9 displays a galaxy
contaminated by broadband RFI, with ResNet-101-C5-Dilated
still missing the target, while ResNet-101-FPN produces a false
detection. These examples illustrate that, in some cases, galaxy

Figure 8. An example from the results of our model with different backbones. The presentation of these images is the same as in Figure 7, and each image represents
the recognition results of the model with the corresponding backbone. Specifically, the green lines represent the galaxy contour determined by the ground truth, while
the yellow, blue, and pink lines represent the galaxy contour determined by our model with ResNeXt-101-FPN, ResNet-50-FPN and ResNet-101-FPN backbones,
respectively.
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recognition can be quite challenging, and models may have
limitations and areas for improvement.

6. Discussion

6.1. Construction of the Dataset

In fact, to accomplish the task of finding galaxies through
instance segmentation, there are various ways to construct a
data set. One of the most direct methods is to label galaxies in
the actual telescope observational data and use the label masks
as the ground truth. This approach has two execution strategies:
one is to use manual labels (similar to the process in many
other instance segmentation tasks). Although simple and direct,
this requires a certain amount of human labor for labeling and
is not easily scalable. And manual labeling is always required

each time when applying this machine-learning method to a
new telescope. The second strategy is to use existing methods
(e.g., template function method used by ALFALFA) for
labeling, but this will cause a certain degree of “distortion”
in the ground truth. This is because the recall and accuracy of
existing methods are not 100%, which can lead to machine-
learning models becoming “similar to existing methods” after
training.
Besides using real observational data, another way to

construct a data set is to simulate data, such as using simulated
galaxy data with real RFI, using real galaxy signals with
simulated RFI, or using both simulated galaxy data and
simulated RFI with noise background, etc.
In our work, we used simulated galaxy data and simulated

RFI. The reason is, first, the differences between our simulated

Figure 9. Another example from the results of our model with different backbones. The presentation of these images is the same as in Figure 7, and each image
represents the recognition results of the model with the corresponding backbone. The meaning of lines in different colors is the same as in Figure 8, and the red lines
represent the galaxy contour determined by our model with ResNet-50-C5-Dilated as the backbone.
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galaxy signals and the real galaxy signals are minimal, so it is
feasible to use simulated galaxy data as a substitute for real
galaxy data. Second, it is difficult to search for and label
galaxies directly in the TOD data, which is also the reason why
we used simulated RFI. It is challenging to separate “pure” RFI
without astronomical source signals from real data. Since the
galaxy and RFI data are separately simulated, we can
accurately and conveniently label them, which greatly assists
us in our subsequent work.

It is worth mentioning that the construction of the data set is
very flexible. For example, if we want the model to have the
ability to identify galaxies among specific RFIs, we can add
these particular RFIs (either simulated or real signals) to the
original data, allowing the model to “learn” the ability to
identify this type of RFI as interference. Furthermore, by
adjusting the proportion of faint sources and bright sources in
the data set, the model can be more inclined to identify faint or
bright source signals. The data set construction method
depends on the researcher, but all operations should be
performed while ensuring the data is as realistic as possible.

6.2. Model Generalization and Potential Improvements

Although our simulation can obtain observational data for all
19 beams of the FAST telescope for H I galaxies, we only used
data from one beam for the final training. This is because, in
practice, though the response of different beams to the same
signal is actually one of the bases for distinguishing galaxies
and RFIs, we have not found a convenient way to simulate the
same RFI received by different beams. Using the same RFI
data for all beams may cause some errors.

To further train the model, multi-beam data (e.g., FAST’s
19-beam) can be used, inputting different beam data as
different channels of two-dimensional data into the network.
This allows the model to learn the response information of all
beams for the same source and better search for galaxy signals.

In addition, in the real observational data, besides RFI, other
influences such as standing waves and bandpass of the system
will have an impact on the search results, which means that the
real data may be more complex than our simulations and
require better detection capability of the model.

Owing to the model’s excellent generalization ability, one
can also attempt to apply our network to the detection and
extraction of signals from other astronomical sources. In fact,
the PointRend Mask R-CNN can effectively perform instance
segmentation tasks for numerous categories, while in our work
it has only been used for a two-class (galaxies and interference)
instance segmentation task. So our network can also be applied
to data generated in other stages of telescope data processing
for object detection and signal extraction (e.g., Riggi et al.
2023).

Additionally, when training the model, the weights of the
different components in the total loss function can be adjusted

to give the model a stronger “inclination.” For instance,
increasing the weights of the Lcls and Lbox components in the
total loss function can make the model more inclined toward
accurate recognition rather than precise segmentation. For a
further saying, new network structures can be explored and
incorporated into our model to enhance its capabilities for other
missions.
It should be noted that, limited by the accuracy of the

numerical simulation, we currently consider galaxies with
relatively high H I fluxes. Whether our models can perform
better for galaxies with lower masses (galaxies fainter than
those in our data set) needs to be further investigated. Finally,
we will apply our model to real observational data in our
subsequent work, trying to perform galaxy searches in real data
and comparing the results with other traditional methods.

7. Conclusion

In our work, we constructed a Mask R-CNN network
integrated with the PointRend method, aiming to find and
extract galaxy signals in radio telescope observational data
contaminated by RFI. We simulated the galaxy signals
observed by the FAST and the potential RFI impact as
realistically as possible, and built a data set based on this
simulation for training and testing our network. We compared
five different network architectures and chose the best-
performing one, ultimately achieving precision and recall of
98.64% and 93.59%, respectively. This demonstrates that our
network can successfully accomplish the instance segmentation
task of H I galaxy signals in TOD data.
Moreover, thanks to the high-precision detailed performance

of the PointRend method, our network can achieve more
accurate segmentation when dealing with complex and subtle
galaxy structures in astronomical images. We discussed the
construction methods of the data set and the possible general-
izations and improvements of the model, believing that our
network has excellent extensibility and can be applied to other
scenarios.
For the extraction of H I galaxy signals, although existing

search algorithms have achieved some success in previous
projects, there are still some drawbacks and challenges in
practical applications. Our bold attempt to find galaxy signals
using a deep neural network is an innovative application of
machine-learning methods to this task, which helps to provide
more reliable basic data for subsequent astronomical analyses
and lays a better foundation for the next step of scientific
research.
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