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Abstract

Artificial intelligence methods are indispensable to identifying pulsars from large amounts of candidates. We
develop a new pulsar identification system that utilizes the CoAtNet to score two-dimensional features of
candidates, implements a multilayer perceptron to score one-dimensional features, and relies on logistic regression
to judge the corresponding scores. In the data preprocessing stage, we perform two feature fusions separately, one
for one-dimensional features and the other for two-dimensional features, which are used as inputs for the multilayer
perceptron and the CoAtNet respectively. The newly developed system achieves 98.77% recall, 1.07% false
positive rate (FPR) and 98.85% accuracy in our GPPS test set.
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1. Introduction

Pulsars are known as rotating neutron stars whose radiation
beam sweeps across the line of sight. The radio signals of these
pulsars are pulsed in a wide radio band, but they are dispersed
due to free electrons in the interstellar medium. Therefore,
signals at a lower frequency are more delayed. The signals are
received by a radio telescope and then converted to digital
signals after a series of signal conversions and digital
processes, and finally are stored in a digital file.

Astronomers recognize pulsar signals via searching the
periodicity (P) of pulses and the best dispersion measure (DM)
of many trials for the delay compensation of pulses detected at
different frequencies in the radio band. After data from many
frequency channels in a radio band are de-dispersed (De-DM)
and added together, one can find a possible period of a pulsar
after the signals are analyzed via the Fast Fourier Transform
(FFT) method. The analyses can be made in many packages.
The most popular pulsar searching software is PRESTO.5

When pulsar signals are recognized as a significant detection of
the periodical signal from the long de-dispersed data set, the
diagnostic plot can be produced via prepfold, the program
for folding the original signals around the most probable period
P and the DM. Therefore, the folded data produced by
prepfold are recorded in a pfd file with the features for
diagnostics, which consist of one-dimensional (1D) features:
the folded pulse profile based on the period and DM, the
change of signal-to-noise ratio (i.e., χ2) around the most

probable period and the change of signal-to-noise ratio around
the DM. There are also diagnostics expressed in the two-
dimensional (2D) features: the detected signal in the time-
versus-phase plot, or the frequency-versus-phase plot, or the
signal-to-noise ratio over the P-versus-P plot, see Figure 1 for
an example.
Because of radio frequency interference (RFI), many such

candidates are fake. In the past, astronomers had to pick out the
true pulsars from all the candidates manually. With the
development of new techniques, the data volume of pulsar
searches has become larger and larger, and manual selection
and viewing of pulsar candidates have become increasingly
difficult.
Previously, many methods were developed to speed up the

selection of candidates, such as summary interfaces approaches
and Semi-automated ranking approaches, which have been
summarized by Lyon et al. (2016). The identification of pulsars
by using artificial intelligence (AI) is very efficient, see Table 1
for a list. Eatough et al. (2010) used a 12:12:2 artificial neural
network (ANN) to evaluate twelve feature numbers of
candidates. Bates et al. (2012) followed the approach and
increased the feature number from 12 to 22. A similar approach
was followed by Morello et al. (2014) for the High Time
Resolution Universe (HTRU) survey. Zhu et al. (2014)
combined four methods of machine learning, including support
vector machine (SVM), ANN, convolutional neural network
(CNN) and logistic regression (LR) to form the Pulsar Image-
based Classification System (PICS) for recognizing pulse
profiles, DM-curves, time-versus-phase plots and frequency-
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versus-phase plots of pulsars. Wang et al. (2019a) changed the
CNN module of PICS into a 15-layer residual CNN, which
increased the depth of the network to improve accuracy and
avoid the vanishing gradient caused by the increasing depth.
Tan et al. (2018) developed an ensemble classifier consisting of
five different decision trees using mean value, standard
deviation, skewness and excess kurtosis extracted from the
pulse profile, DM-curve, time-versus-phase plot and frequency-
versus-phase plot. This approach was applied to radio pulsar
search in the Low-Frequency Array (LOFAR) Tied-Array All-
Sky Survey. A hybrid ensemble model combining Random
Forest and XGBoost with EasyEnsemble was trained and tested
on the HTRU data set (Wang et al. 2019b). Guo et al. (2019)
employed a Deep Convolution Generative Adversarial Net-
work (DCGAN) to generate more samples and learn features
and adopted SVM to classify the candidates. Lin et al. (2020)
designed a multi-input CNN which had a main input and an
auxiliary input and utilized a Transforming Image and Adding
Gaussian Noise (TIAGN) technique to augment data for

solving the problem of training on a highly class-imbalanced
data set. Lin et al. (2020) proposed the Grid Search and
Recursive Feature Elimination for feature selection implement-
ing the GBoost algorithm, using 18 feature numbers for
candidate classification. Zeng et al. (2020) used a CNN to
extract features from pulse profile, DM-curve, frequency-
versus-phase plot and time-versus-phase plot, then concate-
nated these features horizontally or vertically for the input of
the next layer of the network. Balakrishnan et al. (2021) used
pulse profile, DM-curve, frequency-versus-phase plot and time-
versus-phase plot to train a semi-supervised generative
adversarial network. Yin et al. (2022) proposed an interesting
network of a residual convolutional autoencoder (RCAE)
combined with LR. It only needs to train the frequency-versus-
phase plots and time-versus-phase plots of non-pulsars. Zhao
et al. (2022) combined AdaBoost with the multi-input-CNN
(MICNN) to form a new framework, and he added a
convolutional block attention module (CBAM) to the MICNN.
It also uses four features: pulse profile, DM-curve, frequency-

Figure 1. An example plot produced by prepfold for the pulsar J1924+1932g discovered by the GPPS survey. Four key data sets are taken from the pfd file for
the AI program: (a) the time-versus-phase plot for the integrated pulse strength over all frequency channels for many subintegration durations along time; (b) the
frequency-versus-phase plot for the integrated pulse strength over all time against the many subbands in the observational band; (c) the pulsar pulse profile integrated
over all time and frequency channels against the pulsar rotation phase; (d) the curve for the best DM shown by the reduced χ2 against DM.
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versus-phase plot and time-versus-phase plot. The generative
adversarial network and ResNeXt (Xie et al. 2016) are applied
to pulsar candidate selection and the precision, recall and F1
score of 100% are obtained on the HTRU Medlat data set.

In the history of AI, convolutional architectures have always
dominated the field of Computer Vision (CV) since LeNet
(Lecun et al. 1998), AlexNet (Krizhevsky et al. 2012),
VGGNet (Simonyan & Zisserman 2014) and other models
made great achievements. The attention mechanism has been
extremely popular in Natural Language Processing (NLP) since
the Google Brain Team published their Transformer model
(Vaswani et al. 2017). Recently, the attention mechanism has
also become a research hotspot in CV. What is the difference
between CNN and attention? A convolutional layer has a
convolution kernel with fixed values for each input, and the
convolution kernel is convolved with each local region of the
input, and outputs a Feature Map. In other words, the
convolutional layer gives each local region of each input the
same weight. In contrast, the attention mechanism is designed
to assign different parts of different inputs different weights
inspired by a human brain’s tendency to focus on certain parts
and ignore others when reasoning about information. There are
three types of attention mechanisms in the CV: (1) Spatial
attention mechanism, such as non-local attention (Wang et al.
2017b), Spatial Transformer (Jaderberg et al. 2015); (2)
Channel attention mechanism, such as Squeeze-and-Excitation
Network (SENet) (Hu et al. 2017), Selective Kernel Network
(SKNet) (Li et al. 2019); (3) Mixed attention mechanism, such
as CBAM (Woo et al. 2018), Residual Attention Network

(ResAttNet) (Wang et al. 2017a) and CoAtNet (Dai et al.
2021). So far, the attention mechanisms have not yet been
widely used to identify pulsar candidates.
The Five-hundred-meter Aperture Spherical radio Telescope

(FAST) is the largest single-dish radio telescope in the world
(Nan et al. 2011). We are carrying out a big pulsar searching
project, namely the FAST Galactic Plane Pulsar Snapshot
(GPPS) survey (Han et al. 2021), and up to now, this project
has discovered more than 500 pulsars.6 In the effort, millions of
pulsar candidates have been accumulated during the data
processing. We take these as training and testing of new AI
methods for pulsar selection. We compare the effectiveness of
three methods involving the attention mechanism in identifying
2D features of pulsar candidates: Vision Transformer (Doso-
vitskiy et al. 2020), ResAttNet and CoAtNet. We find that
CoAtNet proposed by the Google Brain Team tends to perform
better than others at discriminating the 2D features. Therefore
CoAtNet is chosen in this paper as the classifier for 2D features
of candidates.
This paper combines CoAtNet, MLP and LR to build our

new pulsar identification system. The remaining part of the
paper proceeds as follows: The overall structure of the pulsar
identification system is introduced in Section 2. The setting and
results of experiments about data pre-processing, selection of
data set and the option of model parameters are presented in
Section 3. Finally, conclusions are given in Section 4.

Table 1
Previous AI Approaches For Pulsar Identification

Method Recall FPR Accuracy F1 Reference

12:12:2 ANN 92% L L L Eatough et al. (2010)
22:22:2 ANN 85% L L L Bates et al. (2012)
6:8:2 ANN 99% 0.11% L L Morello et al. (2014)
SVM+ANN+CNN+LR 92% 1% L 96% Zhu et al. (2014)
GH-VFDT 92.8% 0.5% 98.8% L Lyon et al. (2016)

82.9% 0.8% 97.8% L
78.9% 0.1% 99.8% L

Ensemble method with five Decision Trees 98.7% 0.5% 99.2% L Tan et al. (2018)
SVM+ANN+ResNet+LR 98% L L 92% Wang et al. (2019a)
Random Forest+XGBoost 96.7% L 96.9% L Wang et al. (2019b)

92% L 91.8% L
DCGAN+DeepF+SVM 100% 0% L L Guo et al. (2019)
CCNN 98.16% L 94.76% L Zeng et al. (2020)
AdaBoost+Multi-input CNN 95.6% L L 96.2% Lin et al. (2020)
GS+RFE+GBoost 99% 0.102% L L Lin et al. (2020)
Semi-supervised GAN 99.4% 1.6% 98.9% L Balakrishnan et al. (2021)
Res-conv autoencoder 99% L 97.9% L Yin et al. (2022)
Ada-GBoost-MICNN 98.8% L 98% L Zhao et al. (2022)
GAN+ResNeXt 100% 0% 100% 100% Yin et al. (2022)

Note. Note that the recall, FPR, accuracy and F1 score are taken from the original references and should be interpreted with caution because they were obtained with
different data sets.

6 http://zmtt.bao.ac.cn/GPPS/GPPSnewPSR.html
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2. New Approach For Pulsar Candidate Identification

The flow chart of our newly designed system for pulsar
candidate identification using the machine learning method is
presented in Figure 2.

We extract 2D features and 1D features from a pfd file of
pulsar candidates for pulsar candidate identification. Feature
fusion is used to combine multiple feature information into a
feature. Two feature fusion ways have been made in our method.
First, the feature fusion is carried out for three inputs of 2D
image features (a, b, f), and the combined feature is fed into
CoAtNet; second, feature fusion is carried out for two inputs of
1D features (d, c), and the combined feature is fed into an MLP.

Then, we take the outputs of the CoAtNet and MLP as the
inputs of the model implemented using the LR method. Our
method is named “CoAtNet-MLP-LR.” The specific details of
data processing by using “CoAtNet-MLP-LR” are introduced
in Section 3. In this section, we want to describe the network
architecture and theory of CoAtNet, MLP and LR.

2.1. CoAtNet

In the field of machine learning, the capacity and general-
ization ability of a model are critical factors for its success. The
model capacity of a machine learning model refers to its ability

to learn complex patterns from data, while the generalization
ability refers to how well the model performs on unseen data. A
critical issue for a model to have high generalization capacity is
to avoid overfitting, a phenomenon in which a model
memorizes the training data, leading to poor performance on
new, unseen data. A Google Brain study (Dai et al. 2021)
concluded that the convolutional module has better general-
ization, while the attention module has higher model capacity.
To address this trade-off between model capacity and general-
ization, they proposed a novel model called CoAtNet, which
marries the depthwise convolution and attention mechanism.
By combining the generalization capacity of depthwise
convolution with the model capacity of Transformer, CoAtNet
is expected to achieve better performance on both capacity and
generalization.
The depthwise Convolution block proposed by Mobile-

NetV2 (Sandler et al. 2018)—MBConv is illustrated in
Figure 3, which includes three steps: (1) expanding the
channels of input using convolution with kernel size 1× 1;
(2) applying a convolution with kernel size 3× 3 and pad 2; (3)
compressing output channels using a convolution with kernel
size 1× 1. Each step is followed by an activation function,
where GeLU (Hendrycks & Gimpel 2016) is used in our work.
Depthwise convolution has a lower computational cost and

Figure 2. The flow chart for the pulsar candidate selection and evaluation system. The inputs come from the pfd file, including (a) the 64 × 64 frequency-versus-
phase plot; (b) the 64 × 64 time-versus-phase plot; (c) the normalized pulsar pulse profile over 512 bins; (d) the normalized reduced χ2 array for 512 DM steps. These
data sets can have different sizes. Others are the converted data sets, such as (e) the normalized reduced χ2 array calculated for 4096 DM steps; (f) the plot is reshaped
by the normalized reduced χ2 array which has length 4096 bins but is in two-dimensions. The features are fused and fed to the CoAtNet and an multilayer perceptron
(MLP), and the outputs are further evaluated in terms of the LR for the final score.
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smaller parameter size, and its inverted residual bottleneck
design helps improve recognition accuracy.

In the Transformer block, CoAtNet replaces the self-
attention mechanism with the relative-attention mechanism,
which is a natural mixture of depthwise convolution and
attention with minimum additional cost. The self-attention
mechanism is the core of the famous Transformer model. It
trainsmatrix WQ, WK, WV and multiplies the input X to get
matrix Q, K, V. Then it realizes “dynamic weight” for different
input X by the following formula

Y
QK

d
Vsoftmax . 1

T

K

( ) ( )=

CoAtNet is a deep neural network architecture comprising
five vertically arranged stages, denoted by S0, S1, S2, S3 and
S4. While S0 uses a standard convolution block, S1 to S4 can
adopt either an MBConv block or a Transformer block, with
the former always preceding the latter. As such, CoAtNet offers
five possible variants: (1) C-C-C-C; (2) C-C-C-T; (3) C-C-T-T;
(4) C-T-T-T; (5) T-T-T-T (i.e., ViTREL). According to a Google
Brain experiment, the variants can be ranked as follows by
model capacity: C-C-T-T ≈ C-T-T-T > ViTREL > C-C-C-
T > C-C-C-C; for the generalization, the ranking is: C-C-C-C
≈ C-C-C-T � C-C-T-T > C-T-T-T ? ViTREL. To achieve a
balance between model capacity and generalization capacity,
we chose to experiment with the C-C-C-T, C-C-T-T and C-T-
T-T variants on our data set. Our experimental results indicate
that the C-C-C-T variant is the most effective, as further
detailed in Section 3.

2.2. Multi-layer Perceptron

A multi-layer perceptron is a type of fully connected
feedforward ANN that consists of an input layer, an output
layer, and one or more hidden layers. The input layer receives
the input features, and each feature is connected to each
artificial neuron node in the first hidden layer, resulting in a
fully connected network. If we assume that the input feature is
X= [x1, x2, ... , xn] and the first hidden layer has m artificial
neuron nodes (a1, a2, ... , am), the output of the input feature X

after passing through the jth neural node is

⎜ ⎟
⎛
⎝

⎞
⎠

h g w x b . 2j
i

n

i j i j
1

· ( )å= +
=

Here, function g is the activation function, which introduces
nonlinearity and enhances the learning ability of the neural
network. The parameters wij, bj are learned by the back-
propagation algorithm during the training process. In our work,
we use the Log Loss Function, i.e., Cross-Entropy Loss
Function, as the loss function. Then, the gradient of the loss
with respect to each parameter can be calculated by the chain
rule. For instance, in a simple MLP with one hidden layer, the
outputs of the hidden layer H and the output layer O can be
computed as follows:

H g W X B , 31 1 1( · ) ( )( ) ( ) ( )= +

O g W H B . 42 2 2( · ) ( )( ) ( ) ( )= +

If the loss between the predicted output O and true labels Y is
denoted by L(Y, O), the gradient of W can be computed as
follows:

W
L

O
g H, 52 2· · ( )( ) ( )D =

¶
¶



W
L

O
g W g X. 61 2 2 1· · · · ( )( ) ( ) ( ) ( )D =

¶
¶

 

The neural network parameters are iteratively updated based
on their gradients, allowing for fast and nonlinear learning.
While the prediction accuracy of neural networks is generally
high, it may be slightly lower than that of more advanced
methods such as SVMs, which require more computationally
expensive matrix calculations. In our pulsar identification task,
we found that the frequency-versus-phase plot was the most
important 1D feature. To identify this feature, we employed the
simple and fast MLP algorithm. However, for 2D features, we
used a relatively more complex algorithm. Specifically, the
MLP block in our pulsar candidate identification system
consisted of four hidden layers, with 2048, 4096, 1365 and
455 neuron nodes, respectively.

Figure 3. Detailed operation in the MBConv block.
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2.3. Logistic Regression

LR is a classification algorithm that predicts the probability
of an event taking place. For the case of one or more
independent variables and a single binary dependent variable,
the model predicts the probability of a positive class as

p y X
e

1
1

1
. 7i i

WX Wi 0
( ∣ ) ( )

( )
= =

+ - +

The parameter is estimated using maximum likelihood estima-
tion, and it is not possible to find a closed-form solution that
maximizes the likelihood function, so it must be searched using
an iterative process. The goal of maximizing the log-likelihood

L W y p y pln ln 1 ln 1i i i i( ) [ ( ) ( )]= å + - - is equivalent to
minimizing the cost function with regularization term r(W)

C y p y p r Wln 1 ln 1 . 8
i

n

i i i i
0

[ ( ) ( )] ( ) ( )å - - - - +
=

3. Experiments and Results

3.1. Data Set

The FAST GPPS survey project has accumulated tens of
thousands of candidates including pulsars, their harmonics and
fake candidates. We select some of them to form a data set,
which is divided into a training data set and a testing data set.
The training data set determines the upper limit of how well the
model can learn, and the test data set is the standard to judge
the performance of the model. The ratio of positive and
negative samples (i.e., true pulsars and RFI) in all our training
sets is approximately 1:1.

Experiments show that the data sets for the model are very
important, which must be large enough and include different
types of real pulsars including drifting, nulling, scattering,
binary, intrinsic wide pulse and so on. The detected pulsar
harmonics with multiple peaks are excluded from the data set.
We include some pulsars with multiple peaks in the data set to
ensure this type of pulsar can be identified.

A model with higher model capacity can capture more
details of features in training data, but it is easier to overfit in
the case of an insufficient amount of training data set. As a
result, the generalization ability of the model is worse (i.e., the
model performs well on the training data set but not on the
testing data set). We experimented with training data of
different sizes (2000, 6000, 8000, 12,000, 16,000), in order to
find out how the data volume size affects the model capacity of
our model. The experimental results are shown in Table 3.

The inputs of our pulsar candidate identification system are
the pulse profile, reduced χ2 values of DMs, frequency-versus-
phase plot and time-versus-phase plot. Human experts identify
pulsars based on the pulsar diagnostic plots and the above
features are mainly taken into account. These features are
extracted from a pfd file, and the pulse profiles are normalized

and resized to 512 bins, the reduced χ2 values of DMs are
calculated to 512 bins and normalized, and the frequency-
versus-phase plots and time-versus-phase plots are reshaped to
64× 64 2D arrays.
Past research using AI methods to identify pulsars usually

used separate models to judge each feature individually. We
experimented with feature fusions in the stage of data
preprocessing and obtained better results than the results of
judgment with independent features. The purpose of feature
fusion is to combine multiple feature information into a feature
that is easier to distinguish than the original feature. The feature
fusion work as follows: When pulsar profile data are extracted,
normalized and resized to 512 bins, it will combine with the
normalized reduced χ2 array length 512 to form a 1D merged
array with length 1024. We also calculate the reduced χ2 values
to 4096 bins and reshape the 1D array to a 64× 64 2D array.
Then the frequency-versus-phase array, the time-versus-phase
array and the 2D array of reduced χ2 values are combined to a
“multi-channel image,” and each 2D feature is regarded as a
“single channel image,” which, like an RGB image, consists of
three channels of red, green and blue.
Without feature fusion, multiple features are predicted

separately, and then the predicted results are synthesized to
form the final predicted score. But in our system, the ANN
model can capture the relationship between profile and reduced
χ2 values, and the CoAtNet model can capture the relationship
between the frequency-versus-phase plot, the time-versus-
phase plot and the 2D array of reduced χ2 values. In fact, it
is easy to imagine that judgment with feature fusion is closer to
human judgment thinking. Human experts often combine
details of the frequency-versus-phase plot, the time-versus-
phase plot and the DM-curve on the diagnostic plots to
determine whether a candidate is a pulsar. In order to verify the
effectiveness of feature fusion, comparative experiments are
conducted, and the experimental results are shown in Table 4.

3.2. Performance Evaluation

Recall, FPR and accuracy are usually used to evaluate the
performance of models for machine learning classification
tasks. Recall is the ratio of true positives (TP) to the sum of TP
and false negatives (FN)

Recall
TP

TP FN
, 9( )=

+

while FPR is the ratio of false positives (FP) to the sum of FP
and true negatives (TN)

FPR
FP

FP TN
. 10( )=

+
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Accuracy is the ratio of the sum of TP and TN to the sum of
TP, TN, FP, and FN

Accuracy
TP TN

TP TN FP FN
. 11( )=

+
+ + +

In our experiments, we define recall as the ratio of correctly
identified pulsars to the total number of true pulsars in the data
set. The FPR refers to the ratio of the number of false
candidates identified as pulsars to the total number of false
candidates in the data set. Accuracy is the proportion of all
candidates correctly identified in the data set to the total
number of candidates. The training goal of our AI model is to
maximize recall while minimizing the FPR.

It is worth noting that our recognition system produces a
score between 0 and 1, with a candidate being classified as a
pulsar if its score exceeds a threshold value. In all experiments
of this paper, we set the threshold value at 0.5. However, to
minimize the risk of missing any potential pulsars, a more
conservative threshold of 0.1 is adopted in the practical
application of the GPPS project. Any candidate with a score
greater than 0.1 is classified as a pulsar and subsequently
undergoes manual inspection.

3.2.1. Finding the Most Suitable Variant

From Section 2, we know that the MBConv block or
Transformer block can be used for the four stages of CoAtNet,
so there are five CoAtNet variants: C-C-C-C, C-C-C-T, C-C-T-
T, C-T-T-T and T-T-T-T. Considering the balance of the model
ability and generalization ability, we choose the C-C-C-T
variant, C-C-T-T variant and C-T-T-T variant to experiment on
the fused 2D feature in our data set. These models were trained
on a training set that consisted of 6333 pulsar samples and
6148 RFI samples, and their parameters were saved for testing.
We evaluated these models on a test data set containing diverse
types of pulsar and RFI samples, and their performance metrics
are displayed in Table 2; each performance metric of the C-C-
C-T CoAtNet performed better than the other variants. This
result indicated that the CoAtNet with C-C-C-T architecture is
the most suitable variant for our data, so we use it to build our
pulsar identification system.

3.2.2. The Model Capacity of Our Model

We trained five models using five training data sets with sample
sizes of 2000, 6000, 8000, 12,000 and 16,000, and then used the
same test data set to evaluate their performance. To assess the
performance of these models, we utilized a test data set consisting
of 6320 true pulsar samples and 5717 RFI samples, and measured
their recall, FPR and accuracy. As affirmed in Table 3, increasing
the sample size in the training data set improved the model’s
performance, with the best accuracy reaching about 98.85% on
the GPPS test data set. However, we observed that the model’s
accuracy tends to plateau when the training data set size exceeds
12,000, indicating that the proposed model requires a substantial
amount of input data, with a minimum of 12,000 samples
necessary to achieve optimal performance.
To compare the proposed method with existing methods, we

trained two other methods, namely PICS and PICS_res, using the
same training data sets with different sample sizes and evaluated
their performance on the test data set. Figure 4 shows that the
proposed method outperformed the other two methods in terms of
identification accuracy, especially when trained on a sufficient
amount of data. Our experimental results demonstrate that as the
size of the training data set increases, the proposed method
outperforms the other two methods, indicating its stronger model
capacity. Specifically, when the amount of training data is
increased by the same amount, our method exhibits a faster
increase in accuracy compared to the other two methods. These
findings suggest that the proposed method can effectively benefit
from a larger training data set and has a higher potential for
improving performance with additional training data. In summary,
our results indicate that sufficient training data are crucial for
achieving high identification accuracy, and the proposed method
has a stronger capacity to utilize larger training data sets than the
other two methods.

3.2.3. The Usefulness of Feature Fusion

We conducted a pair of control experiments to demonstrate
the effectiveness of feature fusion. Experiment I involved
training five models using the pulse profile 1D array with
length 512 bins, the 1D array of reduced χ2 values with length
512 bins, the 64× 64 frequency-versus-phase 2D array, the

Table 2
The Performance on Recall, FPR and Accuracy Rate for Three CoAtNet

Variants, Trained Using the Same Data Set

Recall False Positive Rate Accuracy

C-C-C-T 98.75% 1.31% 98.72%
C-C-T-T 98.15% 2.99% 97.61%
C-T-T-T 94.84% 4.29% 95.26%

Note. The CoAtNet variant C-C-C-T is the best.

Table 3
Performance Metrics For Different Sizes of Training Samples

Size of Training Sample 2000 6000 8000 12,000 16,000

Recall in training(%) 99.36 99.97 99.92 100 100
Recall in testing(%) 87.28 96.82 98.05 98.81 99.24

FPR in training(%) 2.96 0.0 0.12 0.0 0.0
FPR in testing(%) 3.08 1.45 0.96 1.12 1.61

Accuracy in training(%) 98.19 99.98 99.9 100 100
Accuracy in testing(%) 91.86 97.64 98.52 98.85 98.84
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64× 64 time-versus-phase 2D array and the 64× 64 reduced
χ2 values 2D array. The predicted results of these models were
then synthesized using LR. In experiment II, we trained ANN
models using the combined 1D feature, trained the CoAtNet
model using the combined 2D feature and synthesized the
predicted results of the two models using LR. The identification
results with and without feature fusion are presented in Table 4,
demonstrating an increase in the final test accuracy from
97.68% to 98.85% with feature fusion.

3.3. Comparison with Other Methods

We have searched all the papers in Table 1. Among them, the
methods proposed by Eatough et al. (2010); Bates et al. (2012)
and Morello et al. (2014) were found to be easily reproducible but
outdated. In the remaining papers, the methods PICS (Zhu et al.

2014), PICS_res (Wang et al. 2019a), CCNN (Zeng et al. 2020)
and SGAN (Balakrishnan et al. 2021) are provided with codes.
The code of PICS AI and its upgrade PICS_res can be
downloaded from https://github.com/zhuww/ubc_AI, and they
are easy to train using our own training set. The code of CCNN
and SGAN can be downloaded from https://github.com/xrli/
CCNN/ and https://github.com/vishnubk/sgan respectively, but
we met some difficulties when re-training our training data set.
To ensure a valid and meaningful comparison between two

or more methods, it is imperative to train them using the same
training set and evaluate their performance on the same test set.
In our comparative analysis, the re-trained PICS and re-trained
PICS_res have undergone this type of rigorous evaluation. In
addition, we use the GPPS test data set to test the re-trained
PICS model and the re-trained PICS_res model, and also test
the re-trained PICS model and the re-trained PICS_res model.
The assessment result of our method and other methods are
shown in Table 5. We can see that the comparison between
these retrained models and our approach is fair and valid, and
our method achieves 98.77% recall, 1.07% FPR and 98.85%
accuracy; it shows improvement on each performance evalua-
tion metric. The models without re-training here are for
reference only.

4. Conclusions

We applied CoAtNet, a new deep learning algorithm for
image classification, and developed “CoAtNet-MLP-LR” for
pulsar candidate identification, combined with the feature
fusion method. Then, larger training and testing sets are
selected and a series of experiments are conducted, and it is
found that the C-C-C-T CoAtNet is more suitable for pulsar
identification. Our method “CoAtNet-MLP-LR” has a stronger
model capacity and requires a larger amount of training data to
fully utilize its model capacity; the training data set should

Figure 4. The recall, FPR and accuracy in test data set of PICS, PICS_res and
our method using five training sets of different sizes.

Table 4
The Accuracy For Pulsar Candidate Identification by Using Fused Features or

Individual Features Via Methods in “CoAtNet-MLP-LR”

Input Feature Method Accuracy

(c): 1D profile MLP 88.62%
(d): 1D DM curve MLP 92.96%
(c)+(d): fused 1D feature MLP 95.33%

(b): 2D frequency-phase plot CoAtNet 98.31%
(a): 2D time-phase plot CoAtNet 91.90%
(f): 2D DM plot CoAtNet 92.81%
(a)+(b)+(f): fused 2D feature CoAtNet 98.47%

(a) → CoAtNet; (b) → CoAtNet; (f) → CoAt-
Net; (c) → MLP; (d) → MLP

LR 97.68%

(c)+(d) → MLP ; (a)+(b)+(f) → CoAtNet LR 98.85%

Note. Feature fusion can give a higher accuracy.
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contain about 10,000 samples. Based on a large amount of
training data, we get a well-trained result with about 98%
accuracy. Our feature fusion plan is useful in pulsar
identification, which increases the accuracy from 97.68% to
98.85%. Through the results of the comparative experiments in
Table 5, our model performs best on the test set of GPPS
project, and the identification accuracy can reach 98.85%,
demonstrating that it is superior to other methods.

5. Code Available

The code of our pulsar identification system “CoAtNet-
MLP-LR” is available in a GitHub repository.7
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