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Abstract

Radio astronomy observations are frequently impacted by radio frequency interference (RFI). We propose a novel
method, named 2σCRF, for cleaning RFI in the folded data of pulsar observations, utilizing a Bayesian-based
model called conditional random fields (CRFs). This algorithm minimizes the “energy” of every pixel given an
initial label. The standard deviations (i.e., rms values) of the folded pulsar data are utilized as pixels for all
subintegrations and channels. Non-RFI data without obvious interference is treated as “background noise,” while
RFI-affected data have different classes due to their exceptional rms values. This initial labeling can be automated
and is adaptive to the actual data. The CRF algorithm optimizes the label category for each pixel of the image with
the prior initial labels. We demonstrate the efficacy of the proposed method on pulsar folded data obtained from
Five-hundred-meter Aperture Spherical radio Telescope observations. It can effectively recognize and tag various
categories of RFIs, including broadband or narrowband, constant or instantaneous, and even weak RFIs that are
unrecognizable in some pixels but picked out based on their neighborhoods. The results are comparable to those
obtained via manual labeling but without the need for human intervention, saving time and effort.
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1. Introduction

Sensitive radio telescopes receive not only radio signals from
the universe but also terrestrial radio frequency interference
(RFI), in addition to the thermal noise of their receiving
systems. RFI significantly affects radio astronomy studies,
including pulsar searching (Maan et al. 2021; Yuan et al. 2022)
and radio imaging (e.g., Leshem et al. 2000; Fridman &
Baan 2001; Offringa et al. 2010).

Cleaning RFI has always been a crucial step in data
processing for radio astronomy studies (e.g., Leshem et al.
2000; Kocz et al. 2010; Maan et al. 2021; Yuan et al. 2022).
Various methods have been proposed for RFI identification;
however, the threshold method is the most commonly used
approach. For instance, the SumThreshold (Offringa et al.
2010) is an RFI detection algorithm that fits the two-
dimensional surface of frequency-time data and marks data
points exceeding an iterative threshold along the X and Y axes
for frequency and time, respectively. Later, the scale-invariant
rank operator was developed and applied to data preceding the
original SumThreshold detection method (Offringa et al. 2012),
enabling automatic cleaning of weak RFI. Zeng et al. (2021)
employed the asymmetrically reweighted penalized least
squares smoothing (ArPLS) (originally proposed by Baek
et al. 2015) to fit and remove the baseline of time-integrated
spectra energy over all frequency channels and then identified

RFI channels from the standard deviation curve using the
SumThreshold method. This approach enabled one-dimen-
sional RFI identification along both the time axis and the
frequency axis on the frequency-time data through SumThres-
hold. Compared to SumThreshold alone, this strategy takes less
execution time, and it can identify RFI efficiently and
accurately. In Morello et al. (2019), it was assumed that RFI
often occurs in a narrow frequency band or in a short time
interval and rarely displays any dispersion. The authors utilized
the standard deviation, peak-to-peak difference, and absolute
Fourier transform value of the second bin to identify RFI, and
their method is called “CLFD.”
With the development of information technology, machine-

learning techniques have been increasingly applied to RFI
recognition in radio astronomy, such as principal component
analysis (PCA) (see, e.g., Zhao et al. 2013) and independent
component analysis (see, e.g., Dai et al. 2019). Recently, Yuan
et al. (2022) added a classifier to the PCA method for RFI
recognition in radio data. Additionally, there are techniques
that use convolutional neural networks (e.g., Akeret et al.
2017a, 2017b; Burd et al. 2018; Czech et al. 2018; Yang et al.
2020); however, they require a significant amount of data to
train them properly. The quality of the results from these
techniques is highly dependent on the quality of the
training data.
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Generally, the larger the receiving area of the radio
telescope, the higher the observation sensitivity. Commissioned
in September 2019, the Five-Hundred-Meter Aperture Sphe-
rical Telescope (FAST, Nan et al. 2011) is now the largest
single-aperture telescope over the world with extremely high
sensitivity, which has been used to search pulsars (e.g., Han
et al. 2021) and observe the spectral lines (e.g., Hong et al.
2022; Hou et al. 2022), even scan for radio images (e.g., Gao
et al. 2022). FAST has suffered the RFI problem during radio
astronomy observations (Zhang et al. 2022). A more efficient
and accurate RFI identification method is urgently needed for
all kinds of FAST data processing.

During FAST pulsar observations, the raw data are recorded
in the searching mode for a given observation time, e.g., 15
minutes, with a given number of frequency channels, e.g., 4096
or 2048 channels covering the observation band of
1.0–1.5 GHz. The data are folded according to the previously
given period of a pulsar for a given length of integration time

(e.g., 30 s, which is called a “subintegration” or “subint” for
short) and also dedispersed for all frequency channels
according to a previously given dispersion measure (DM) of
the pulsar using the package DSPSR (van Straten &
Bailes 2011). Sometimes the frequency channels can be
reduced by combining a few channels into one. The pulsar-
folded data are stored as a special FITS file (i.e., PSRFITS,
Hotan et al. 2004) for all subints and frequency channels, in the
form of a three-dimensional data cube. The three coordinate
axes represent frequency (channel number), observation time
(number of subints), and pulse profile values given for a
number of bins for the period of a pulsar. All types of RFI may
emerge in the data. For example, in Figure 1, broadband RFI
often appears at the first few subints and subint No.20; many
channels suffer from narrow-band RFI; some channels in the
middle band between 1.16 and 1.3 GHz are affected by strong
RFI from satellites; and occasionally some instantaneous RFI
appears in some channels.
It would be beneficial to automatically classify RFI-affected

folded pulsar data into different classes and label them
automatically. Therefore, we have developed a new method
that innovatively uses the algorithm of conditional random
fields (CRFs, Lafferty et al. 2001) to optimize the label of each
pixel according to the classification of connected pixels. The
structure of this paper is as follows: In Section 2, we briefly
introduce the RFI features of FAST observation data. The
algorithm flow, method details, and data-processing methods
are introduced in detail in Section 3. The results and discussion
are presented in Section 3.3. Conclusions are given in
Section 4.

2. Experimental Data and RFI Features

FAST is an extremely sensitive radio telescope with 19-
beam L-band receivers that cover a frequency band of
1.0–1.5 GHz. The signals within this 500 MHz band are
recorded for 2048 channels, with a sampling time of 49.152 μs.
The data used in this paper are all taken from the FAST
Galactic Plane Pulsar Snapshot (GPPS) survey (Han et al.
2021). For each frequency channel, the original sampled data
are folded according to a given pulsar period and a mean profile
is obtained for each channel every 10 s for a subintegration,
resulting in a total of 90 subints in this 15 minutes observation
session. On each side of the FAST observation band, 128 of the
2048 frequency channels are removed due to low receiver gain,
leaving only data for 1792 channels. Therefore, for each cross-
pixel of 1792 channels× 90 subints, there are a series of data
for a folded-pulse profile, although the signal-to-noise ratio of
this pulse profile integrated for 10 s depends on the pulse
strength in such a narrow frequency channel.
If a channel is affected by RFI in a given subint, the mean or

standard deviation (rms) of the folded profile in this subint
would be unusually different from those of unaffected pixels.

Figure 1. An example of folded pulsar data observed by FAST, specifically
from FAST tracking data for PSR J1859+0430 with 90 subints of 10 s each
over 1792 frequency channels covering the band of 1.03125–1.46875 GHz
(after 128 channels on each side of the band been chipped off due to a low
gain). The image values represent the root mean square values of folded pulsar
profiles for all pixels in the two-dimensional array of subints and frequency
channels. There are several types of RFI present in this data: (1) constant
broadband RFI in the middle band between 1.16 and 1.30 GHz caused by
satellites; (2) instantaneous wide-band RFI over the whole observation band
due to some reasons, such as the first and last subints and subint No.20; (3)
broadband RFI appearing for some minutes; (4) constant narrowband RFIs in
some bands; (5) occasionally some instantaneous RFI in some channels (not
marked in the figure).
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An image of the mean or rms could show bright spots or deep
holes for these RFI-affected pixels. As shown in Figure 1 for a
15-minute observation session of PSR J1859+0430, there are
various RFI features, some shown as wide-band interference,
some only affecting a narrow frequency band, some appearing
for a short time but with high intensity in a few channels, and
some lasting for a long time and also present in many bands.
Therefore, the RFI features could be recognized on a two-
dimensional image of rms values (or mean values).

The PSRCHIVE package (Hotan et al. 2004; van Straten
et al. 2012) is widely used for analyzing folded pulsar data. The
first step is typically to use the “paz -r” command to
automatically recognize and clean RFI in the data. This process
involves applying a median filter algorithm to identify
frequency channels affected by RFI in the two-dimensional
plane of frequency channels and pulse phases. However, this
method may not be effective for weak RFI or broadband RFI
that persists for an entire pulsar period or several periods. If
better RFI cleaning is desired, the data must be manually
processed using the interactive “psrzap” command, which
displays a two-dimensional image with the subint index on the
horizontal axis and frequency channels on the vertical axis (see
Figure 1). For pixels affected by RFI that cannot be
automatically removed, particularly short-duration broadband
interference or satellite interference, various interactive com-
mands and parameters can be applied within the “psrzap”
module to remove residual RFI shown in the image (see
Figure 2). However, note that manually marking RFI pixels is a
very time-consuming process.

3. Procedures for Auto RFI Cleaning

We have developed an auto-clean RFI package for folded
pulsar data using the CRF algorithm in two steps: (1) simple
classification for initial labels; (2) CRF optimization of all pixel
labels. For the two-dimensional rms image of folded pulsar
data with subint (x-axis) and frequency (y-axis) axes, we first
obtain the distribution of rms values for all pixels (see
Figure 3). The initial RFI labels are assigned to pixels with
exceptional values in the distribution. The CRF-based
algorithm (Lafferty et al. 2001) is then iteratively applied to
optimize all pixel labels for marking RFI. The procedures are
outlined in Figure 4.

3.1. Initial Labels

The CRF algorithm (Lafferty et al. 2001) requires a prior as
input to the “class network” for optimal data segmenting and
labeling. It is easy to identify obvious RFI-affected pixels from
normal pixels based on quantitative statistical characteristics
that are desired in the CRF algorithm. The rms of the folded
profile for an RFI-affected pixel would be significantly
different from that of normal pixels; therefore, the rms values

Figure 2. The cleaned data obtained by “paz -r” in panel (a), the result obtained
by the “CLFD” in panel (b), and by the manually interactive tool “parzap” in
panel (c). Some RFIs cannot be removed through “paz -r” or “CLFD”
automatically, and have to be cleaned manually.
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can be used as input for the CRFs and are adaptive to
observation data. However, the non-smooth bandpass may
cause rms variation. If this occurs, the bandpass can be fitted
using asymmetrically reweighted penalized least squares
smoothing (ArPLS) (see Baek et al. 2015).

To correct for the gain curve of the band and “baseline” of
rms values, we normalize the image of rms values of folded
pulse profiles (see Figure 3). The rms distribution of “normal
data” follows a Gaussian distribution, which is classified as
“background noise.” We fit the distribution with a Gaussian
function and categorize pixels within ±2σ of the distribution
peak as “normal” pixels in the initial labels, where σ is the
width of the fitted Gaussian. Pixels with very high rms values
(>3σ from the peak) are assigned to the RFI-affected category.
However, pixels outside ±2σ of the peak may not be RFI-
affected, while some pixels within ±2σ may still be RFI-
affected. Figure 5(a) shows the “segmentation”-cleaned result
according to the histogram threshold of ±2σ from the peak.

A simple threshold for “segmentation” cannot differentiate
between RFI-affected pixels and normal ones. Therefore, a
subsequent step is necessary to optimize the labeling result. If a
larger threshold (e.g., ±3σ) is used, some RFI-affected pixels
will be missed in the initial labels, but if a smaller threshold is
used, more normal pixels will be misjudged as RFI-affected.

3.2. RFI-labeling Based on the CRFs

We use the two-dimensional rms data as an image and
optimize RFI labeling using the CRF algorithm (Lafferty et al.
2001). This algorithm is a specific type of graphical model that

minimizes the defined energy functions, making image segmen-
tation and pixel classification more accurate by predicting results
from the model obtained from prior distribution estimation.
According to Lafferty et al. (2001), the CRFs are defined on

the random variables of pixel values = ¼{ }x x x x, , , n1 2 and
their corresponding class variables w w w w= ¼{ }, , , n1 2 . A
crucial term in CRFs is the “clique c,” which is defined as a
subset of the pixel set. A clique c can represent either a unary
clique composed of a single pixel or a multivariate clique
composed of some connected pixels. The CRF algorithm
calculates a conditional probability distribution P(ω|x). How-
ever, it is challenging to directly solve the probability of CRFs.
According to the Hammersley–Clifford theory, the random
fields and the Gibbs distribution are equivalent. It is more
convenient to calculate the Gibbs distribution for the CRFs
using the following equation:

åw w w= - = -
Î

( ∣ ) ( ( ∣ )) ( ∣ ) ( )P x
Z
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Z
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1
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1
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c C
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⎛
⎝

⎞
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Figure 3. The distribution of rms values of the folded pulse profiles for all
pixels in the two-dimensional image for subints and channels. The green curve
represents the fitted Gaussian function to the distribution, and dotted lines
indicate the Gaussian width of ±2σ from the distribution peak, which is used as
the threshold for initial RFI labels. It is clear that pixels with extreme values are
influenced by RFI, but some data outside ±2σ may not be RFI-affected and
some data within ±2σ may be affected.

Figure 4. Flowchart for automatic RFI cleaning. The input data set is a two-
dimensional rms image of folded pulsar data with subint (x-axis) and frequency
(y-axis) axes. The output is the data with proper labels identifying RFI-affected
pixels in the weight.
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where Z is a normalized constant, Vc(ω|x) is the potential
defined on the clique c, and c is one type clique in the clique set
C. Meanwhile, U(ω|x) is the energy function of CRFs, which is
a summation of the potentials of all types of cliques in the
clique set C. For ease of notation, we will omit the conditioning
x throughout the rest of this paper and use Vc(ω) to denote
Vc(ω|x) and U(ω) to denote U(ω|x).

To obtain fine-grained results for the pulsar data image, we
adopt fully connected CRFs (Krähenbühl & Koltun 2011) and
its implementation, denseCRF,4 to optimize the pixel labels
based on the data characteristics. In this case, the clique set C is

defined as a complete graph G. However, in practice, only the
unary and pairwise terms in the clique set C are considered for
computing the potentials. The energy function can be expressed
as:

å å åw w w w w= = +
¢Î

¢( ) ( ) ( )
( )

( ) ( )U V V
i i

V
,

, . 2
c C

c
i

i i i1 2

The unary term in our model represents the potential energy for
each pixel when it is labeled ωi, given a specific conditional
observation. To calculate the unary potential energy for pixel i
with label ωi, we first obtain the mean and standard deviation of
the image for each category of pixels, using the initial labels
obtained from Section 3.1 as a guide. We then apply the
Bayesian conditional probability formula to calculate the
probability that each pixel belongs to each category, and take
the negative logarithm of this probability as the unary potential
energy value (i.e., the real value less than 1.0) in Equation (2).
The second term in Equation (2) is the pairwise potential

function. This function takes into account the correlations
between connected pixel points on the graph GG, which we
define as follows:

w w m w w l l= +¢ ¢ ¢ ¢( ) ( )( ( ) ( )) ( )f f f fV k k, , , , , 3i i i i a a i i s s i i2

where m w w = w w¢ ¹ ¢( ) [ ], 1i i i i to introduce a penalty between
pixels that belongs to the different labels. λa and λs are weights
for the appearance kernel ka and smoothness kernel ks. These
two kernels measure the rms similarity and the positional
similarity of pairwise pixels. The kernels are defined as
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This appearance kernel ka is used to penalize the case where
pixels of different classes have a similar appearance. On the
other hand, the smooth kernel ks is designed to penalize the
case where the pixels of different classes have a close location.
Once the energy function is defined, the original problem can

be transformed into an optimization problem. As shown in
Equation (1), maximizing the conditional probability is
equivalent to minimizing the energy function U. The energy
function can be optimized using the limited-memory BFGS
algorithm (i.e., the L-BFGS method; see Liu & Nocedal 1989).
In our implementation, we terminate the optimization process
after five iterations, which generally leads to an ideal
segmentation output. The final output is a set of labels that
indicate which pixels are affected by RFI.
Finally, after the classification labels for all pixels are

obtained, a post-cleaning procedure is performed to identify
frequency channels that have only a small fraction (i.e., less

Figure 5. Comparison of RFI labeling results using the ±2σ threshold based on
the distribution of rms values and the final optimized pixel category labels
using the CRFs.

4 https://github.com/HiLab-git/SimpleCRF
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than 10%) of remaining pixels. These channels are marked out,
as the vast majority of pixels in such channels are likely
affected by RFI. Even pixels with a normal rms value may not
be completely safe from RFI in such cases. In previous manual
pulsar-folded data processing, these pixels were often identified
and removed.

As shown in Figure 5(b), the final segmentation results
obtained through pixel-optimization labeling by the CRFs
exhibit more accurate RFI recognition. Some of the non-RFI
pixels that were incorrectly labeled as RFI are restored, and real
RFI-affected pixels with low rms values are now accurately
labeled. Compared to the results obtained from automatic
PSRCHIVE cleaning, as shown in Figure 1(b), our method
significantly improves RFI recognition and cleaning accuracy.

3.3. Discussion and More RFI-cleaning Experiments

To avoid the impact of gain variation over time in a radio
telescope, we perform RFI recognition on the two-dimensional
rms values rather than the mean values of folded pulsar data.
We fit the rms distribution using a Gaussian function around
the peak, which allows for the adaptive selection of an
appropriate initial segmentation threshold. We name this new
algorithm “2σCRF.” During the CRF label optimization phase,
we consider the connected pixel values and labels rather than
just independent pixel values. This approach enables us to
effectively identify all types of RFI, including broadband
interference and weak RFI, by taking into account the
relationship between pixels.

We believe that this new algorithm is applicable to all folded
pulsar data obtained with any radio telescope. For ultra-wide-
band observations that exhibit very different rms values in the
lower and upper parts of the observation band, the algorithm
can be applied separately to different parts of the band,
allowing for accurate labeling of all RFI-affected pixels.

In the 2σCRF algorithm, some parameters must be set
properly. During the initial labeling phase, the threshold can be
set to ±3σ or even ±1σ, but we have found that a threshold of
±2σ from the rms distribution peak provides the best results. In
the CRF label optimization phase, the maximum number of
iterations (MaxIterations) must be defined. We use five
iterations as the default, but have found that using 10 iterations
does not significantly improve performance and is more time-
consuming.

The appearance kernel weight λa, smoothness kernel weight
λs, and standard deviations ξ1, ξ2, ξ3 must also be set properly.
These parameters control the similarity between related pixels.
A higher appearance kernel weight λa penalizes pixels with
similar appearances in different classes, resulting in smoother
segmentation results. Similarly, a higher smoothness kernel
weight λs penalizes pixels with similar locations in different
classes. A larger standard deviation increases the neighborhood
of the pixel affected by nearby pixel labels. In our

implementation, we set λa= 3, λs= 20 for different kernels,
with ξ1= 1, ξ2= 10, ξ3= 1 as the standard deviations. These
values were found to work best for FAST pulsar observation
data. However, new parameters may need to be tested and
selected for data obtained from other telescopes. To more
accurately identify RFI-affected data for different observations,
we offer command line options for input parameters that can be
fine-tuned.
In general, the effectiveness of an RFI-cleaning algorithm

should be evaluated based on its execution speed and
recognition accuracy. We evaluated the execution time of the
2σCRF package, including the time required for RFI-pixel
marking and reading/writing a new FITS data file. The
execution time was obtained as the average value from 10 runs
using the same data. As shown in Table 1, the CRF label
optimization process is very fast and takes only a few seconds,
which is not significantly longer than the execution times of
“paz -r” and “CLFD.” Additionally, the 2σCRF package does
not require any further manual interactive processing, which
can take a much longer time. Overall, the execution speed and
accuracy of the 2σCRF algorithm make it a highly effective
tool for RFI cleaning.
To evaluate the accuracy of RFI recognition, we used the

results of cleaned pulsar data from the manually interactive
“psrzap” as the ground truth template. We tested the algorithms
using five data sets of FAST pulsar observations (see an
additional example in Figure 6), and the results of quantitative
evaluations are listed in Table 2. The table contains the
accuracy of proper classification and the rate of mis-identifica-
tions. The overall accuracy of an algorithm is defined as the
percentage of properly classified pixels (both “noise” and “RFI-
affected”) over the number of all pixels. The fraction of normal
pixels misclassified as RFI pixels is expressed as f(N−>R), and
the fraction of RFI pixels misclassified as normal pixels is
expressed as f(R−>N). Our results show that the 2σCRF
algorithm consistently provides more accurate labeling than
both “paz -r” in PSRCHIVE and “CLFD.” The last column of
the table is the signal-to-noise ratio for the final averaged pulse
profile, all improved due to RFI removal. For pulsars with

Table 1
The Execution Time of Different Automatic Methods for RFI-cleaning. Our

Own Method 2σCRF is marked in bold

Method Steps Execution Time
(s)

“paz -r” (in PSRCHIVE) all 4.15 ± 0.66
CLFD all 4.88 ± 0.47
2σCRF all 6.55 ± 0.62
2σCRF-1 Initial labels 4.05 ± 0.10
2σCRF-2 CRF optimization 0.37 ± 0.00
2σCRF-3 read/write file 1.98 ± 0.63
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strong RFIs, such as the data set for PSR J1913+3732, the
SNR could be significantly improved. However, for the data of
a weak pulsar with a low signal-to-noise ratio, the improvement
is limited, e.g., PSR J1859+0430, depending on the properties
of RFIs.

4. Conclusion

We present a novel approach for mitigating RFI in pulsar
observations. Our algorithm utilizes the CRF method for the
first time, making it adaptive for pulsar folding data. We use a
threshold of ±2σ from the peak of the rms distribution for

initial labeling, and then apply the CRF model to optimize
labeling. By utilizing this Bayesian-based technique, our new
algorithm can effectively eliminate all types of RFI in the data
automatically, including both narrow-band and wide-band RFI,
constant or instantaneous. Experimental results presented in
Section 3.3 demonstrate that the new algorithm provides results
that are very close to the best results obtained manually, while
saving significant time and manpower.
While our new RFI-cleaning algorithm can achieve ideal

RFI-labeling results for current FAST pulsar observation data,
there is still room for improvement in two aspects. First, it may

Figure 6. RFI recognition results for a 15-minute observation of PSR J1913+3732 obtained using the FAST are shown. The data, which is “cal-affected,” consist of
all types of RFIs in the full frequency channel in subint No. 0–110. The original data is presented in panel (a), the result obtained using “paz -r” is shown in panel (b),
the result obtained using “CLFD” is shown in panel (c), and the result obtained using the 2σCRF algorithm is shown in panel (d). The 2σCRF algorithm proves to be
the most effective at RFI recognition.
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be necessary to investigate if the segmentation results of RFI-
affected pixels still depend on the selection of thresholds and
parameters. Second, there is an issue with variable rms in very
ultra-wide band broadband observations. To address this issue,
the algorithm should be carried out independently and
automatically for different frequency ranges.
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