
3DT-CM: A Low-complexity Cross-matching Algorithm for Large
Astronomical Catalogues Using 3d-tree Approach

Yifei Mu1,2 , Ce Yu1,2, Chao Sun1,2, Kun Li1,2, Yajie Zhang1,2, Jizeng Wei1,2, Jian Xiao1,2, and Jie Wang3
1 College of Intelligence and Computing, Tianjin University, Tianjin 300350, China; weijizeng@tju.edu.cn

2 Technical R&D Innovation Center, National Astronomical Data Center, Tianjin 300350, China
3 Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011, China

Received 2023 May 15; revised 2023 July 10; accepted 2023 July 31; published 2023 September 20

Abstract

Location-based cross-matching is a preprocessing step in astronomy that aims to identify records belonging to the
same celestial body based on the angular distance formula. The traditional approach involves comparing each
record in one catalog with every record in the other catalog, resulting in a one-to-one comparison with high
computational complexity. To reduce the computational time, index partitioning methods are used to divide the sky
into regions and perform local cross-matching. In addition, cross-matching algorithms have been adopted on high-
performance architectures to improve their efficiency. But the index partitioning methods and computation
architectures only increase the degree of parallelism, and cannot decrease the complexity of pairwise-based cross-
matching algorithm itself. A better algorithm is needed to further improve the performance of cross-matching
algorithm. In this paper, we propose a 3d-tree-based cross-matching algorithm that converts the angular distance
formula into an equivalent 3dEuclidean distance and uses 3d-tree method to reduce the overall computational
complexity and to avoid boundary issues. Furthermore, we demonstrate the superiority of the 3d-tree approach
over the 2d-tree method and implement it using a multi-threading technique during both the construction and
querying phases. We have experimentally evaluated the proposed 3d-tree cross-matching algorithm using publicly
available catalog data. The results show that our algorithm applied on two 32-core CPUs achieves equivalent
performance than previous experiments conducted on a six-node CPU-GPU cluster.

Key words: methods: data analysis – catalogs – techniques: miscellaneous

1. Introduction

Cross-matching plays a vital role in astronomical data fusion,
enabling the correlation of records from different catalogs. In
recent years, with the development of multi-messenger
astrophysics, more sky survey projects were implemented,
which provided multi-band astronomical catalog data. Addi-
tionally, advancements in observational precision and duration
have resulted in massive catalog data sets. For example, Gaia
DR2 (GAIA 2018) contains over 160 million sources, 2MASS
(2MASS 2006) holds about 470 million sources, and each data
release from version 12–17 of SDSS (SDSS 2022) has
collected more than 1.2 billion records of catalog objects.
Thus, efficient cross-matching algorithms are critical for
astronomical scientific computing using massive catalogs.

The differences in observation instruments and calibration
methods cause acceptable slight disturbance, and making it
untrivial to correlate the same celestial object in two different
catalogs. Cross-matching is the method used to correlate two
records within slightly different coordinates. The classic cross-
matching formula between two points is an angular distance
computation conducted from the Equatorial cosine theorem or
the haversine formula. When the angular distance is less than

the threshold determined by hyper-parameters, cross-matching
is considered successful. Cross-matching each record in catalog
A with each record in catalog B is the most apparent method
for cross-matching two catalogs, but it is time-consuming as
astronomical catalog size increases (Szalay et al. 2004).
To accelerate the cross-matching process in astronomical

data fusion, various methods have been employed to reduce
computation time, including data division (Gray et al. 2007)
(Gorski et al. 2005) (Szalay et al. 2007) and parallel computing
(Zečević et al. 2019) (Li et al. 2019) (Zhao et al. 2009). Index
partitioning methods have been particularly useful, but they
suffer from source leaking at the border of each area. To
address this issue, mixed indexing (Yu et al. 2020) and border
data redundancy methods (Jia & Luo 2016) (Zhang et al. 2023)
have been introduced.
Hardware structure has also been utilized to speed up the

cross-matching process, with various parallel computing
methods being employed (Zečević et al. 2019) (Zhang et al.
2023). However, few of these methods have focused on
improving the cross-matching algorithm itself. In this paper,
we propose a novel approach using kd-tree, a data structure
that efficiently handles dimensional spatial information. By

Research in Astronomy and Astrophysics, 23:105011 (11pp), 2023 October https://doi.org/10.1088/1674-4527/acee50
© 2023. National Astronomical Observatories, CAS and IOP Publishing Ltd. Printed in China and the U.K.

1

https://orcid.org/0009-0008-7599-566X
https://orcid.org/0009-0008-7599-566X
https://orcid.org/0009-0008-7599-566X
mailto:weijizeng@tju.edu.cn
https://doi.org/10.1088/1674-4527/acee50
https://crossmark.crossref.org/dialog/?doi=10.1088/1674-4527/acee50&domain=pdf&date_stamp=2023-09-20
https://crossmark.crossref.org/dialog/?doi=10.1088/1674-4527/acee50&domain=pdf&date_stamp=2023-09-20

converting the Equatorial distance computation into an
equivalent Euclidean distance computation, we demonstrate
that kd-tree can be used to accelerate the query process. We
show that performing the coordinate conversion leads to a
significant improvement in performance since kd-tree pruning in
Equatorial coordinate systems has high computational
complexity.

Our contributions can be summarized as follows. First, we
propose a novel 3d-tree based cross-matching algorithm and
parallelize it in a big-memory computer, achieving perfor-
mance comparable to that of index partitioning methods.
Second, we efficiently utilize the resources of our environment,
both in terms of memory and CPU, to achieve the best
performance within just 3 minutes, even with billions of
records. Lastly, we provide insights into why the performance
of our 3d-tree based algorithm is superior to that of the
traditional 2d-tree, as discussed in Section 3.2.

The rest of this paper is organized as follows: Section 2
provides background information of cross-matching and kd-
tree. Section 3 introduces our efficient 3d-tree method. Section
4 presents the evaluation of our work, and Section 5 concludes
this paper.

2. Background and Related works

2.1. Cross-matching Function

Position-based cross-matching is a method to calculate
distance of two celestial bodies and determine if it is less than
the error radius. In Equatorial Coordinate System, each record’s
position is represented in (α, δ) with ranges in [0, 360) and
[−90, 90]. Then using Equatorial cosine theorem (1) or
haversine formula (2), the angular distance between two
records is calculated. Table 1 summarizes the major notations
used in this paper.

Due to the differences of observational method, equipment
and condition, there are slightly disturbance in position of the
same object in different records. Thus, a distance threshold
based on the calibration errors and other considerations, also
called a search radius, is used to determine if two positions

correspond to the same celestial object.

⎛
⎝

⎞
⎠

() () ()a a
d d

d d q= -
+

+ -d
2

1A 1 2
2 1 2

2

1 2
2

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠


()

(() ()d d
d d

a a
q=

-
+

-

2

d

2arcsin sin
2

cos cos sin
2

A

2 1 2
1 2

2 1 2

2.2. Kd-tree

In computer science, a kd-tree (short for k-dimensional tree)
is a space-partitioning data structure used to organize points in
a k-dimensional space. These trees are useful for several
applications, such as multidimensional search operations (Wan
et al. 2019) involving a search key (e.g., range search shown in
Figure 1) and creating point cloud regions (Zhou et al. 2008)
(as shown in Figure 2). kd-trees are a special case of binary
space partitioning trees, and each node contains attributes listed
in Table 2 (Moore 1991).
The “dom-elt” field in a node of a binary tree represents the

domain-vector of the exemplar, while the “range-elt” field
represents the range-vector. The “dom-elt” component is an
index for the node, which divides the space into two subspaces
based on the splitting hyperplane of the node. All the points in
the “left” subspace are represented by the left subtree, while the
points in the “right” subspace are represented by the right
subtree. The splitting hyperplane is a plane that passes through
the “dom-elt” and is perpendicular to the direction specified by
the “split” field. Let “i” be the value of the “split” field. A point
is considered to be on the left of “dom-elt” only if its “ith”
component is less than the “ith” component of “dom-elt”. The
complimentary definition holds for the “right” field. If a node
has no children, the splitting hyperplane is not required.

2.3. Cross-matching Related Works

The original cross-matching method cost little time when
astronomical data are under small volume. With data volume
grows, large-scale cross-matching that involve all or a large
fraction of the sky cannot be performed on demand.

Table 1
Notations

Notation Description

(α, δ) (Right ascension, decl.) in Equatorial Coordinate System
(x, y, z) Corresponding position of (α, δ) in Euclidean Coordinate System
dA(O1, O2) Angular distance of objects O1 and O2 in Equatorial Coordinate System
dE(O1, O2) Euclidean distance of objects O1 and O2 in Euclidean Coordinate System
θA q = +r r3A 1

2
2

2 , to represent the threshold of error radius, where r1, r2 are the error radius of catalog 1 and catalog 2

θE To represent the threshold of error radius in Euclidean Coordinate
N, M Record number of catalog 1 and catalog 2
Narea The sky area number after using index partitioning method

2

Research in Astronomy and Astrophysics, 23:105011 (11pp), 2023 October Mu et al.

Contemporary cross-matching method facilitates index parti-
tioning method to decrease calculation complexity. Zone (Gray
et al. 2007) and the Hierarchical Equal Area isoLatitude
Pixelisation (Healpix) (Gorski et al. 2005) are mostly used
methods. The common idea of them is that, the whole sky is
partitioned into a fixed number of regions and each celestial
object in the same region are assigned to the same index or
indices. Therefore, only adjacent regions will be used to
perform cross-matching, which will reduce the computational
complexity.

Zones method is proposed facing demand of SQL. Its a way
of bucketing two-dimensional spaces (or 2+D spaces) to give
dynamically computed bounding boxes for queries. The basic
idea is to map the celestial sphere into zones, each zone is a
decl. stripe of the sphere with some fixed height as shown in
Figure 3 (left). Healpix is a hierarchical sky partitioning
developed at NASA to facilitate fast and accurate statistical and
astrophysical analysis of massive full-sky data sets. At level 0,
the sky is divided into 12 pixels. Then, at each successive level,
the pixels are divided into four new pixels like Figure 3 (right).

In terms of Zone method, Szalay et al. (2004) proposed and
implemented the zone-based cross-matching with some SQL
extensions in a single Microsoft SQL server. Nieto-Santisteban
et al. (2006, 2007) implemented a parallel zones algorithm on
multiple server and cross match of two million-record catalogs
was done under 20 minutes with eight servers. Kumar et al.
(2009) extended the parallel zone-based cross-matching to a
hybrid MySQL cluster and the optimized algorithm was able to
cross-match two catalogs with size of 3 million objects and
30551 objects respectively in seven seconds. Wang et al.
(2013) and Budavari & Lee (2013); Lee & Budavári (2013)
parallelized the zones algorithm on a single GPU and a single
node with multiple GPUs, respectively. With the aid of GPUs,

these methods completed cross-matching of million-scale
catalogs in a few seconds. For cross-matching partially
overlapping catalogs, Fan et al. (2013) optimized the original
zone algorithm by first filtering out irrelevant objects with sky
coverage information. AXS (Zečević et al. 2019) extended
Zones algorithm to adapt it for a distributed, shared-nothing
architecture. It is applied in cluster with 28 executors and using
spark to achieve less-than minute performance in billion degree
data sets.
Many works also employed HEALPix as the partitioning

scheme and performed cross-matching of two catalogs in
partitioned regions. Zhao et al. (2009) performed cross-
matching of SDSS DR6 (100 million objects) and 2MASS
(470 million objects) in 32 minutes on a single SQL server with
MPI. Pineau et al. (2011) used two hyper-threaded quad-core
CPUs to finish cross-matching of 2MASS (470 million objects)
with USNOB1 (1 billion objects) in 30 minutes. Jia et al.
(2015) took an indexed-loop join approach utilizing the
HEALPix index and cross-matched billion-record catalogs on
a seven node CPU-GPU cluster under 10 minutes. MASJ (Jia
& Luo 2016) proposed a GPU based algorithm to fully use the
performance of GPU in dividing healpix area and parallel

Figure 1. Range search in 2d-tree.

Figure 2. Diagram of 3d-tree, where each plane separates its space into two
subspaces and the point cloud is divided into regions.

Table 2
Kd-tree Attributes

Field Name Field Type Description

Dom-elt Domain-vector A point from k dimension space
Range-elt Range-vector A point from 2*k dimension space
Split Integer The splitting dimension
Left Kd-tree A kd-tree representing those points to the

left of the splitting plane
Right Kd-tree A kd-tree representing those points to the

right of the splitting plane

3

Research in Astronomy and Astrophysics, 23:105011 (11pp), 2023 October Mu et al.

cross-matching. It uses 12 GPU to accelerate cross-matching
process and achieve minutes degree speed-up under billions of
records. HLC2 (Zhang et al. 2023) also presented an efficient
cross-matching framework under CPU-GPU architecture.
When applying cross-matching algorithm in database system,
Han et al. (2016) used Q3C index method in PostgreSQL
database and provided four different cross match functions.
Boehme et al. (2023) made use of probabilistic cross-
identification method (Budavári & Szalay 2008) to cross-
match LoLSS with other surveys at higher frequencies.

While most methods above using index partitioning and
highly parallel architecture did not change the cross-matching
algorithm itself, where cross-matching is considered as one by
one comparison calculation. In this aspect, Bai et al. (2018)
used machine learning method in cross-matching and achieved
91.9% accuracy. Shi et al. (2019) facilitated Hungarian
algorithm to cross-match in crowded regions of the sky.
Pineau et al. (2011) proposed 2d-tree based cross-matching
method and achieve about 30 minutes in cross-matching
2MASS and USNOB1 under 24 threads. In this paper, we
propose a superior approach using a 3d-tree under multi-
threading, achieving comparable performance to multi-GPU
methods, and show the advantages of kd-tree based cross-
matching in algorithm.

2.4. Spherical Distance Calculation

The minimum distance from a query point to a circle
(latitude or longitude circle) is used to prune in 2d-tree. Its easy
for the latitude circle, which is the latitude difference, but more
complex for the longitude circle. There are two methods to
compute it.

As shown in Figure 4, to calculate the minimum distance
from point A to eNOB, we can first use spherical cosine
theorem. Assuming point B is the intersection whereAB is the
minimal angular distance from A to eNOB. The ∠ANB is the
longitude difference of A and B while ∠B is a right angle. By
calculating a system of equations as shown in Equation(3), we
can obtain the angular distance of AB as Equation(4).

 


 




⎧
⎨⎩

()

· · ·= + 

=
3

cos AB cos AN cos BN sin AN sin BN cos ANB

cos AN cos AB cos BN

  ()= + AB arccos cos AN sin AN cos ANB 42 2 2

Second, we can use the analytic geometry method. Point A is

considered as a vector
¾
OA and the normal vector of eNOB is

calculated. The complementary angle of the angle between
these two vectors is the angular distance ofAB. In this case, we
should transform the (α, δ) into (x, y, z) and use Equation(5).



() · () () · ()
() ()

(· ·) ()

a d a d
a a

p

= =
= =

= - +

x y

x y

x x y y

cos sin , sin sin

cos , sin

AB
2

arccos 5

1 1

2 border 2 border

1 2 1 2

3. Efficient 3d-tree Design for Large Catalogue

3.1. 3d-tree Cross-matching Algorithm

In this paper, we consider cross-matching as a process where
every record in catalog B makes a query in the whole catalog A
to find several spatially nearest points and build a kd-tree on
catalog A to to accelerate this type of query. This way, the

Figure 3. Zone(left) (Gray et al. 2007) and Healpix(right) (Gorski et al. 2005) index partitioning schematics.

4

Research in Astronomy and Astrophysics, 23:105011 (11pp), 2023 October Mu et al.

complexity of the entire algorithm turns to building and
querying the kd-tree, which will be further discussed in
Section 3.2.

To use kd-tree, we should first determine k. The eigen
dimensions of the sphere is two, which means we can use k= 2
to build and query the 2d-tree. For example, we can use
Equatorial coordinate, which is widely used in astronomy and
previous works in cross-matching, to compute angular distance
(Equations(1), (2)). Compared with 2d-tree on the plane, we
demonstrated that the 3d-tree is better concerning about the
feature of tree pruning and computer calculation, which is
discussed in Section 3.3.

Traditional cross-matching is based on Equatorial coordinate
system. To use 3d-tree in cross-matching algorithm, we should
represent records in 3d Euclidean space and create an equivalent
3d cross-matching formulate. First, every point in Equatorial
coordinate can be easily transformed into corresponding
Euclidean coordinate using Equatorial coordinate transformation.

Second, the 3d-Euclidean distance and haversine distance
are one-to-one correspondence. In geometry, the 3d-Euclidean
distance between two points represents a chord length of the
sphere, whose corresponding arc length is the angular distance
(sky sphere is a standard ball), as shown in Figure 5. So, we can
use Equation(6) to get an equivalent distance formula under 3d
Euclidean coordinate.
The same transformation can be done to the threshold θA,

with domain area of dA/2 in [0,π], where the sine function is
monotonically increasing, and by using the inequality theorem.
Then, we can get θE and the cross-matching function in 3d
Euclidean coordinate like Equation(8).

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

· ·

· ·

·

()

p
d a

p
d a

p
d

= -

= -

= -

x r

y r

z r

sin
2

cos

sin
2

sin

cos
2

6

() ()= *d d2 sin 2 7AE

⎛

⎝
⎜

⎞

⎠
⎟

() () ()

· ()

q= - + - + -

=
+

d x x y y z z

r r
2 sin

3

2
8

E 1 2
2

1 2
2

1 2
2

E

1
2

2
2

Using the above formula, we can construct 3d-tree on
catalog A and perform cross-matching on 3d-tree. To construct
a 3d-tree from data in catalog A, we use the Algorithm 1. The
pivot-choosing procedure we manage involves rotation options
of each k= three-dimension, which is suitable for the spherical
points. Then we perform range-searches in the 3d-tree as
described in Algorithm 2 for each record in catalog B. The
results of range-searches are the cross-matching results of
catalog A and B.

Algorithm 1. Building a 3d-tree for catalog A

Input: data set, for all records in catalog A, of type exemplar-set
Output: 3dt, of type 3d-tree
1 if data set is empty then
2 return the empty 3dtree
3 end
4 Call pivot-choosing procedure which returns two values:
5 ex ¬ the medium member of data set
6 split ¬ the splitting dimension
7 ¬d domain vector of ex
8 data set’ ¬ data set with ex removed
9 ¬r range vector of data set
10 { ∣ }¬ ¢ Î ¢ ¢datasetLeft d dataset d dsplit split

11 { ∣ }¬ ¢ Î ¢ ¢ >datasetRight d dataset d dsplit split

12 ¬dtLeft3 recursively build 3d-tree for data setLeft
13 ¬dtRight3 recursively build 3d-tree for data setRight
14 ¬ < >dt d r split dtLeft dtRight3 , , , 3 , 3

Figure 4. AB is the minimal angular distance from query point A to a
border eNOB

Figure 5. One angular distance in standard ball corresponded with a certain
chord length.

5

Research in Astronomy and Astrophysics, 23:105011 (11pp), 2023 October Mu et al.

Algorithm 2. Range searching in a 3d-tree for a record in
catalog B

Input: 3dt, of type 3d-tree
Input: target, for a record in catalog B, of type domain vector
Input: hr, of type hyperrectangle in 3d-tree
Input: dist, for the error radius, of type double precision floating point
Output: result, for the cross-matching results, of type domain vector array
1 if 3dt is empty then
2 exit
3 end
4 ¬s split field of dt3
5 ¬ -pivot dom elt field of dt3
6 if ()target pivot distdistance , then
7 (result pivotpush back. _)
8 end
9 cut hr into two sub-hyperrectangles left-hr and right-hr through pivot and

perpendicular to dimensions
10 if distance (target,left-hr) � dist then
11 recursively call range searching with parameters:
13 (3 dtLeft, target, left-hr, dist)
13 end
14 if distance (target,right-hr) � dist then
15 recursively call range searching with parameters:
16 (3 dtRight, target, right-hr, dist)
17 end

3.2. The Benefit of Kd-tree Method than Traditional
Method

Using an index partitioning based cross-matching algorithm,
the best complexity is o(Narea) and the worst complexity is
O(M ∗ N). For example, when two catalogs are from

observations pointed to totally different sky area, the T(n) =
(Narea) ∗UnitTime. However, when two catalogs records
belong to one sky area, T(n)= (M ∗ N) ∗UnitTime. Narea is a
hyperparameter that needs to be determined by the user and has
an uncertainty.
The average time complexity is around Θ(M ∗ N/Narea), but

it cannot be guaranteed due to the differences in data
distribution and index partitioning method. If the index
partitioning method cant effectively reduce regional records,
the complexity will not decrease either. As a result, the
calculating time fluctuations can be high and depend on index
partitioning method and the chosen Narea hyperparameter.
To avoid or decrease the worst situation, index partitioning

based cross-matching method try to use as large an Narea

argument as possible. However this brings up another question,
boundary leakage. The larger the Narea argument, the higher the
leakage percentage grows. To address this problem, an
additional method is needed to cancel the boundary leakage
problem, which is an external cost that is not cheap. When a
record is confirmed to be in the boundary, it is copied into the
neighboring region, and this increases cross-matching times in
this area and management overhead, making it difficult to
analyze and unstable. As a result, the Narea parameter cannot
grow to big. In practice, the Narea parameter is chosen by
experience or experimentation.
The kd-tree algorithm is not affected by the distribution of

data or index partitioning method. It automatically adapts the
input data distribution and divides it according to the median
number of certain dimensions. The complexity of it is
determined and stable. To build a kd-tree, the complexity is

()Q *N Nlog , and making a range search has ()* -O k N1 k
1

complexity. As a result, cross-matching using kd-tree method
has a complexity of ()* * -O M k N1 k

1
, which is algorithmically

superior than the traditional method. The average complexity of
kd-tree cross-matching is related to the result of cross-matching
process. If the average cross-matching number is Q, then the
average complexity is ()Q * * *M Q k Nlog which is
independent of index partitioning method or hyperparameters.

3.3. The Benefit of 3d-tree than 2d-tree

To perform kd-tree in the cross-matching algorithm, the
instinct option is to use Equatorial coordinate with R.A. and

Figure 6. An example of pruning in 2d-tree cross-matching algorithm. Green
points are in 2d-tree and black points are query point. Near the north pole, the
query circle (red oval) span across two boarder of 2d-tree which cause
inefficient prune.

Table 3
Calculation Time of Different Operation Type among Three Methods

Operation Type 2d-tree 3d-tree
Method 1 Method 2

Trigonometric 4 4 0
Exponential 1 0 0
Multiplication 4 4 3

6

Research in Astronomy and Astrophysics, 23:105011 (11pp), 2023 October Mu et al.

decl. and build a 2d-tree for search. However, it is not the best
choice. There are two main reasons why we perform a
conversion from the traditional cross-matching formula in
Equatorial Coordinate System into a new formula under
Euclidean Coordinate space, and to convert the 2d-tree into
3d-tree.

3.3.1. Pruning Efficiency

Pruning is crucial in kd-tree and determines the performance
of the searching process. When using Equatorial coordinate, the
cross-matching process is equivalent to a cone search on a
sphere. To perform a cone search on a sphere, one can make a
disk with radius r around a point P(α, δ) and thus make an
Equatorial circle.

When using 2d-tree on a sphere, the sphere is stretched into a
rectangle with R.A. in [0, 2π) and decl. in [−π, π]. On the
Equator, the shape of the search cone is exactly a circle, but near
the poles, the cone is similarly stretched into an oval like Figure 6.
In this case, pruning near the poles can cause a big problem
because they cannot be pruned due to the span of the oval. This
significantly decreases the efficiency of pruning in kd-tree.

On the contrary, using a 3d-tree is a good alternative to avoid
this issue. In a 3d-tree, the search is described as searching a
ball from P(x, y, z) with radius r. This ball will not be stretch,
and the pruning efficiency will remain stable everywhere,
which is the guarantee of the low complexity of 3d-tree cross-
matching algorithm.

3.3.2. Calculation in One Prune

Under kd-tree, every time it decides to prune into a sub-kd-
tree, a target-node computation is needed to determine whether
the search circle (or ball) overlaps with the sub-kd-tree range.
So if the UnitTime of this target-node computation is reduced,
the whole efficiency of kd-tree based cross-matching algorithm
is improved. Considering the trigonometric and exponential
operations are much more expensive than multiplication and
addition operations in computer, the UnitTime in 3d-tree
should be much less than that of 2d-tree.
The comparison of different operation time among these

three methods is shown in Table 3. In 2d-tree, the distance from
the target to the sub-kd-tree border is geometrically a big circle
through the poles or a small circle parallel to the Equator. To
achieve it, the minimum distance from the point to the circle as
described in Section 2.4 is calculated. In contrast, using
Euclidean method, we can simply use Equation(9) without
doing trigonometric operation. The last experimental result in
4.2 is consistent with the theoretical analysis, where 3d-tree
shows 41.0% speed up in one prune.

() () () ()= - + - + -d x x y y z z 91 border
2

1 border
2

1 border
2

3.4. Accelerate in Multi-thread

The construction of 3d-tree is straightforward and the key
operation is to choose the median number as dividing point. For
every non-leaf node, it records six boundaries of the region to

Figure 7. Multi-thread build process in 3d-tree, where each node fold two threads to find medium number of a certain dimension in sub-trees.

7

Research in Astronomy and Astrophysics, 23:105011 (11pp), 2023 October Mu et al.

enable rapid pruning during searches. To parallelize it with
multiple threads, we folk two threads in the upper layers of tree to
handle its left-sub-tree and right-sub-tree, as shown in Figure 7.

The search operation involves searching from the root node
and comparing the distance from target point to its child tree
region. The distance is 0 when the point is in this region and the
minimal Euclidean distance from the point to the cuboid
boundary. If the distance is larger than the threshold, this child
tree is cut, and the leaf node it reaches is the cross-matching
success point. Because each query point has no relation with
others, we can simply divide them into subsets, and each thread
handle one subset, as shown in Figure 8.

3.5. Comparison with Cone Search

A cone search is used to find all records that lie within a
certain radius of a given longitude/latitude. It can be
considered a form of cross-matching, where catalog A serves
as the reference catalog, catalog B contains only one search
record, and the error radius serves as the given radius. The
traditional pairwise-based cross-matching algorithm is not used
in cone search process because, first its optimization methods
aim to provide parallelism in cross-matching each region. It
does not consider the granularity and maintenance the cross-
matching results of each record. Second, when using static
index partitioning methods, cross-matching can have boundary
problem and boundary data redundancy method (Jia & Luo
2016) is used to avoid it. The redundancy method use the error
radius as redundancy radius, and if the given radius is large, the
unnecessary data redundancy in catalog A (records unrelated
with the search point) will cause the redundancy procedure to
be less efficient than cone search in RMDB.

In the 3d-tree cross-matching algorithm, catalog A constructs
a 3d-tree data structure and each record in catalog B makes a

cone search in 3d-tree with the error radius. Therefore it is
actually a set of cone searches in catalog B. In this aspect, the
3d-tree cross-matching algorithm can be used as a cone search
algorithm without an extra cost. The difference is that, cross-
matching algorithm only maintain location and number
information, while cone search requires more attribute columns
to perform data analysis. Cone search mostly depends on
RMDB (e.g., Koposov & Bartunov 2006) with using spatial
search tree. 3d-tree is also a good choice to replace it.

4. Experiment

In this section, we first describe the experimental setup and
then present our experimental results.

4.1. Experiment Setup

We conducted our experiments on a Huawei TaiShan 200
Server, which is a multi-processor and big-memory computer. It
features a Kunpeng 9205220 processor with dual processors of
32-cores and 2.6 GHz processor specifications. Each core
integrates 64 KB L1 ICache, 64 KB L1 DCache and 512 KB
L2 Cache. L3 Cache capacity is 24MB 64MB (1MB/Core).
Meanwhile, we equipped the server with 192 GB memory

Table 4
Datasets

Dataset Description (degree) File Size Number of Objects

2MASS α ä [0°, 360°]
δ ä [−89°. 9928, 89°. 9901)

7.02 GB 470,992,970

WISE α ä [0°, 360°]
δ ä [−89°. 9946, 89°. 9983)

11.14 GB 747,634,026

SDSS α ä [0°, 360°]
δ ä [−17°. 7573, 84°. 9799)

18.34 GB 1,231,051,050

Figure 8. Multi-thread query process in 3d-tree, where each thread handles n

N
records and keeps its own results.

8

Research in Astronomy and Astrophysics, 23:105011 (11pp), 2023 October Mu et al.

capability to meet the demand of 3d-tree. The operation system
used was Ubuntu 22.04.1 LTS arm64 and the gcc version was
11.3.0. The -O3 optimization option was enabled in compilation.

To evaluate our implementation, we used three real-world data
sets, namely Sloan Digital Sky Survey (SDSS)(DR12), Two
Micron All Sky Survey (2MASS), and Wide-field Infrared Survey
Explorer (WISE). All of them are point source catalogs observed
by optical telescopes. The detailed description of each data set is
listed in Table 4. 2MASS and WISE (WISE 2013) are two million-
record catalogs. SDSS is one of the largest and most detailed
astronomical surveys, with the twelfth data release (SDSSDR12
2015) containing 1.2 billion records used in our evaluation.

Table 5 lists an overview of the nine test cases designed for
our evaluation. Three of them (T1–T3) are self-matching cases
on the same catalog, while the remaining cases (T4–T9) are
cross-matching cases on two different catalogs. In our
experiments, the error radius r1 and r2 were set as one arc
second, which is commonly used in astronomical observations.

We conducted five experiments to demonstrate the
performance of 3d-tree cross-matching algorithm. We ran each
experiment ten times and reported the best run. The variation

among all runs was less than 10%. The results of 3d-tree cross-
matching algorithm have the same precision as those of the 2d-
tree and traditional methods.

4.2. Results

First, to demonstrate the progressive performance of kd-tree
based cross-matching algorithm and verify its complexity, we
conducted experiments on self-cross-matching execution time
using different volumes of data of SDSS, as shown in Figure 9.
The results show the execution time of both 3d-tree and 2d-tree
based cross-matching algorithms displays a linear increasing
trend with the increase in data volume in both building and
cross-matching procedures.
Second, to demonstrate the scalability and find the best

performance under our hardware environment, we conducted
an experiment using different thread number in building and
cross-matching procedures. As shown in Figure 10, the
execution time decreases quickly with the increase in thread
numbers, and stabilizes stable near 64–128 threads where it

Figure 9. Total execution time increase linearly with data volume growth
under 3d-tree method while the slope of 2d-tree is larger. The execution time of
2d-tree between 9.6 × 108 and 1.2 × 109 are similar because the cross-
matching results here are few.

Figure 10. Execution Time of different procedures under multi-thread. Best
thread number is 128 in our environment.

Table 5
All Test Cases and Corresponding Computational Time are Presented (Time in seconds)

Test Case Catalogue A Catalogue B 3d-tree 2d-tree

Building Time Cross-matching Time Total Time Building Time Cross-matching Time Total Time

T1 2MASS 2MASS 35 16 61 28 89 125
T2 WISE WISE 107 38 169 85 315 417
T3 SDSS SDSS 150 118 305 128 1003 1161
T4 2MASS WISE 29 219 270 30 232 283
T5 WISE 2MASS 107 17 152 84 129 236
T6 2MASS SDSS 31 25 88 28 107 159
T7 SDSS 2MASS 156 5 202 131 54 221
T8 WISE SDSS 103 56 203 83 307 427
T9 SDSS WISE 146 191 385 145 405 589

Note. Building time represents the time cost of building 3d-tree on catalog A, cross-matching time represents the time cost of range searching for all records in catalog
B and total time includes all time cost of the program.

9

Research in Astronomy and Astrophysics, 23:105011 (11pp), 2023 October Mu et al.

achieves the best scalability of our environment (64 cores in
total). The building procedure achieves 12× speed-up and the
cross-matching procedure achieves 60× speed up compared to
that of single thread.

Third, Figure 11 shows the examined time cost in I/O,
building and cross-matching procedures. The I/O time of both
methods depends on data volume and number of cross-matching
results, and takes 18.9% in 3d-tree on average. When using 2d-
tree, the main expenses occur in cross-matching which takes
54.7%–86.4% of the total execution time (except for case 7
where catalog B is an order of magnitude smaller than catalog
A). While in 3d-tree, it only takes 30.6% on average. In the
building procedure, 2d-tree performs better than 3d-tree because
of fewer dom-elt and border contents. Because of this feature,
using smaller catalog in building and larger catalog in range
searching is sufficient in 3d-tree. Notice that the cross-matching
time of test cases involving WISE data set is longer than others,
because the object density of WISE is larger than other data sets,
which requires more time to prune in 3d-tree.

Fourth, we compared the performance of 2d-tree and 3d-tree
methods with other cross-matching methods as shown in
Table 6. It shows great speed-ups compared to the former six
cross-matches and has no boundary problem. The last two
cross-matches perform on high-performance computing archi-
tecture. Zečević et al. implements cross-matching on CPU
cluster of 28 nodes, and Jia & Luo implements it on Multi-GPU
cluster with 12 GPUs used. The 3d-tree cross-matching

algorithm has a comparable performance with the last two
cross-matches using only multi-core CPU. Meanwhile, we
compared 2d-tree and 3d-tree methods with the Multi-GPU
method (Jia & Luo 2016) in Figure 12 and selected the same
data sets and test cases. It shows that 3d-tree method obtain
approximate performance than GPU method within lower
equipment requirements and even better in five test cases,
demonstrating the algorithmic superiority of 3d-tree. The kd-
tree algorithm also can be used in GPU and distributed
architecture to further increase the calculation efficiency.
Finally, we have identified the main reason of performance gap

between 2d-tree and 3d-tree methods in Figure 13. The pruning
time of 2d-tree is 48.0% more than that of 3d-tree and the
computational time in one prune is more than 41.0% on average.

Figure 11. Time cost in three procedure of 2d-tree(left) and 3d-tree(right).

Table 6
Performance Comparison with other Methods

Cross-matcher Record Number Time Cost

Zhao et al. (2009) 470,992,970 × 100,106,811 32min
Du et al. (2014) 470,992,970 × 100,106,811 23min
Soumagnac & Ofek (2018) 470,992,608 × 563,908,224 53 min
Pineau et al. (2011) 470,992,970 × 1,042,618,261 30 min
Riccio et al. (2019) 1,000,000 × 10,000,000 800 s
Zhang et al. (2023) 467,555,800 × 102,890,000 260 s
Zečević et al. (2019) 1,692,919,135 × 747,634,026 226 s
Jia & Luo (2016) 747,634,026 × 1,231,051,050 229s
3d-tree cross-matching 747,634,026 × 1,231,051,050 203s

Figure 12. Multi-thread build process in 3d-tree, where each node fold two
threads to find medium number of a certain dimension in sub-trees.

Figure 13. Multi-thread build process in 3d-tree, where each node fold two
threads to find medium number of a certain dimension in sub-trees.

10

Research in Astronomy and Astrophysics, 23:105011 (11pp), 2023 October Mu et al.

This finding confirms the analysis of the two weaknesses of the
2d-tree cross-matching algorithm discussed in Section 3.3.

5. Conclusions

In this paper, we presented a cross-matching algorithm that
is based on 3d-tree, which we developed by converting the
algorithm into a kd-tree problem. This approach achieved good
performance in many data sets and is algorithmically superior
to traditional cross-matching methods. Additionally, it demon-
strates great scalability in a multi-thread environment and does
not have a source leakage problem because we did not use any
data division method. We also compared the performance of
the 3d-tree approach with the 2d-tree method and measured the
performance gap between them.

The experiments were conducted on a single computer with
64 cores. To further accelerate this method using better
equipment, data division method can be adapt to achieve less
building tree time and better concurrency. Additionally, many
high-performance computing architectures (e.g., Garcia et al.
2008; Patwary et al. 2016) can support kd-tree well. However,
one problem with the 3d-tree method is the huge memory cost
during building. So finding a less memory-intensive algorithm
could further improve the performance of cross-matching.

Acknowledgments

This work is supported by the National Key Research and
Development Program of China (2022YFF0711502), the National
Natural Science Foundation of China (NSFC) (12273025 and
12133010). Data resources are supported by China National
Astronomical Data Center (NADC), CAS Astronomical Data
Center and Chinese Virtual Observatory (China-VO).

ORCID iDs

Yifei Mu https://orcid.org/0009-0008-7599-566X

References

2MASS 2006, 2MASS Data Access, https://irsa.ipac.caltech.edu/Missions/
2mass.html

Bai, Y., Liu, J.-F., & Wang, S. 2018, RAA, 18, 118

Boehme, L., Schwarz, D. J., de Gasperin, F., Roettgering, H. J. A., &
Williams, W. L. 2023, A&A, 674, A189

Budavari, T., & Lee, M. A. 2013, Xmatch: GPU Enhanced Astronomic Catalog
Cross-Matching,Astrophysics Source Code Library, ascl:1303.021

Budavári, T., & Szalay, A. S. 2008, ApJ, 679, 301
Du, P., Ren, J., Pan, J., & Luo, A. 2014, SCPMA, 57, 577
Fan, D., Budavári, T., Szalay, A. S., Cui, C., & Zhao, Y. 2013, PASP, 125, 218
GAIA 2018, GAIA Data Release 2, https://cosmos.esa.int/web/gaia/dr2
Garcia, V., Debreuve, E., & Barlaud, M. 2008, in 2008 IEEE Comp. Soc. Conf.

Comput. Vis. Pattern Recognition Workshops (Piscataway, NJ: IEEE), 1
Gorski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759
Gray, J., Nieto-Santisteban, M. A., & Szalay, A. S. 2007, CoRR, abs/cs/

0701171
Han, B., Zhang, Y.-X., Zhong, S.-B., & Zhao, Y.-H. 2016, RAA, 16, 178
Jia, X., & Luo, Q. 2016, in Proc. 28th Int. Conf. Sci. and Statistical Database

Management (New York: ACM), 1
Jia, X., Luo, Q., & Fan, D. 2015, in 2015 IEEE 21st Int. Conf. Parallel and

Distributed Syst. (ICPADS) (Piscataway, NJ: IEEE), 617
Koposov, S., & Bartunov, O. 2006, adass, 351, 735
Kumar, V. S., Kurc, T., Saltz, J., et al. 2009, in 2009 IEEE Int. Symp. Parallel

& Distributed Processing (Piscataway, NJ: IEEE), 1
Lee, M., & Budavári, T. 2013, adass XXII, 475, 235
Li, B., Yu, C., Li, C., et al. 2019, PASP, 131, 054501
Moore, A. 1991, An introductory tutorial on kd-treesTechnical Report No. 209,

Computer Laboratory, University of Cambridge
Nieto-Santisteban, M., Thakar, A., Szalay, A., & Gray, J. 2006, adass,

351, 493
Nieto-Santisteban, M. A., Thakar, A. R., & Szalay, A. S. 2007, in The 2007

NASA Science Technology Conference (NSTC2007) (Baltimore, MA:
Johns Hopkins University)

Patwary, M. M. A., Satish, N. R., Sundaram, N., et al. 2016, in 2016 IEEE Int.
Parallel Distributed Proc. Symp. (IPDPS) (Piscataway, NJ: IEEE), 494

Pineau, F.-X., Boch, T., & Derriere, S. 2011, adass, 442, 85
Riccio, G., Brescia, M., Cavuoti, S., et al. 2016, in IAU Symp. 325, 12

(Cambridge: Cambridge Univ. Press), 327
SDSS 2022, SDSS Data Release, https://sdss4.org
SDSSDR12 2015, SDSS Data Release,Data Access for SDSS DR12

Overview, https://sdss4.org/dr12/data_access/
Shi, X., Budavari, T., & Basu, A. 2019, ApJ, 870, 51
Soumagnac, M. T., & Ofek, E. O. 2018, PASP, 130, 075002
Szalay, A. S., Fekete, G., O’Mullane, W., et al. 2004, arXiv:cs/0408031
Szalay, A. S., Gray, J., Fekete, G., et al. 2007, arXiv:cs/0701164
Wan, S., Zhao, Y., Wang, T., et al. 2019, Fut. Gen. Comput. Syst., 91, 382
Wang, S., Zhao, Y., Luo, Q., Wu, C., & Xv, Y. 2013, in IEEE 9th Int. Conf.

e-Sci. (Piscataway, NJ: IEEE), 326
WISE 2013, WISE Data Access, https://irsa.ipac.caltech.edu/Missions/

wise.html
Yu, C., Li, K., Tang, S., et al. 2020, MNRAS, 496, 629
Zečević, P., Slater, C. T., Jurić, M., et al. 2019, AJ, 158, 37
Zhang, Y., Yu, C., Sun, C., et al. 2023, MNRAS, 519, 6381
Zhao, Q., Sun, J., Yu, C., et al. 2009, in ICA3PP 2009 (Berlin: Springer),

604
Zhou, K., Hou, Q., Wang, R., & Guo, B. 2008, ACM Trans. Graph., 27, 126

11

Research in Astronomy and Astrophysics, 23:105011 (11pp), 2023 October Mu et al.

https://orcid.org/0009-0008-7599-566X
https://orcid.org/0009-0008-7599-566X
https://orcid.org/0009-0008-7599-566X
https://orcid.org/0009-0008-7599-566X
https://irsa.ipac.caltech.edu/Missions/2mass.html
https://irsa.ipac.caltech.edu/Missions/2mass.html
https://irsa.ipac.caltech.edu/Missions/2mass.html
https://irsa.ipac.caltech.edu/Missions/2mass.html
https://doi.org/10.1088/1674-4527/18/10/118
https://ui.adsabs.harvard.edu/abs/2018RAA....18..118B/abstract
https://doi.org/10.1051/0004-6361/202245669
https://ui.adsabs.harvard.edu/abs/2023A&A...674A.189B/abstract
http://www.ascl.net/1303.021
https://doi.org/10.1086/529158
https://ui.adsabs.harvard.edu/abs/2008ApJ...679..301B/abstract
https://doi.org/10.1007/s11433-013-5161-y
https://ui.adsabs.harvard.edu/abs/2014SCPMA..57..577D/abstract
https://doi.org/10.1086/669707
https://ui.adsabs.harvard.edu/abs/2013PASP..125..218F/abstract
https://www.cosmos.esa.int/web/gaia/dr2
https://doi.org/10.1086/apj.2005.622.issue-2
https://ui.adsabs.harvard.edu/abs/2005ApJ...622..759G/abstract
https://ui.adsabs.harvard.edu/abs/2007cs........1171G/abstract
https://ui.adsabs.harvard.edu/abs/2007cs........1171G/abstract
https://doi.org/10.1088/1674-4527/16/11/178
https://ui.adsabs.harvard.edu/abs/2016RAA....16..178H/abstract
https://ui.adsabs.harvard.edu/abs/2006adass..15..735K/abstract
https://ui.adsabs.harvard.edu/abs/2013adass..22..235L/abstract
https://doi.org/10.1088/1538-3873/ab024c
https://ui.adsabs.harvard.edu/abs/2019PASP..131e4501L/abstract
https://ui.adsabs.harvard.edu/abs/2006adass..15..493N/abstract
https://ui.adsabs.harvard.edu/abs/2006adass..15..493N/abstract
https://ui.adsabs.harvard.edu/abs/2011adass..20...85P/abstract
https://doi.org/10.1017/S1743921316013120
https://www.sdss4.org
https://www.sdss4.org/dr12/data_access/
https://doi.org/10.3847/1538-4357/aaf00a
https://ui.adsabs.harvard.edu/abs/2019ApJ...870...51S/abstract
https://doi.org/10.1088/1538-3873/aac410
https://ui.adsabs.harvard.edu/abs/2018PASP..130g5002S/abstract
http://arXiv.org/abs/cs/0408031
http://arXiv.org/abs/cs/0701164
https://doi.org/10.1016/j.future.2018.08.007
https://irsa.ipac.caltech.edu/Missions/wise.html
https://irsa.ipac.caltech.edu/Missions/wise.html
https://irsa.ipac.caltech.edu/Missions/wise.html
https://irsa.ipac.caltech.edu/Missions/wise.html
https://doi.org/10.1093/mnras/staa1413
https://ui.adsabs.harvard.edu/abs/2020MNRAS.496..629Y/abstract
https://doi.org/10.3847/1538-3881/ab2384
https://ui.adsabs.harvard.edu/abs/2019AJ....158...37Z/abstract
https://doi.org/10.1093/mnras/stad067
https://ui.adsabs.harvard.edu/abs/2023MNRAS.519.6381Z/abstract
https://doi.org/10.1145/1457515.1409079

	1. Introduction
	2. Background and Related works
	2.1. Cross-matching Function
	2.2. Kd-tree
	2.3. Cross-matching Related Works
	2.4. Spherical Distance Calculation

	3. Efficient 3d-tree Design for Large Catalogue
	3.1.3d-tree Cross-matching Algorithm
	3.2. The Benefit of Kd-tree Method than Traditional Method
	3.3. The Benefit of 3d-tree than 2d-tree
	3.3.1. Pruning Efficiency
	3.3.2. Calculation in One Prune

	3.4. Accelerate in Multi-thread
	3.5. Comparison with Cone Search

	4. Experiment
	4.1. Experiment Setup
	4.2. Results

	5. Conclusions
	References

