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Abstract

In order to compute the free core nutation of the terrestrial planets, such as Earth and Mars, the Moon and lower degree
normal modes of the Jovian planets, we propose a linear operator method (LOM). Generalized surface spherical
harmonics (GSSHs) are usually applied to the elliptical models with a stress tensor, which cannot be expressed in
vector spherical harmonics explicitly. However, GSSHs involve complicated math. LOM is an alternative to GSSHs,
whereas it only deals with the coupling fields of the same azimuthal order m, as is the case when a planet model is
axially symmetric and rotates about that symmetry axis. We extend LOM to any asymmetric 3D model. The lower
degree spheroidal modes of the Earth are computed to validate our method, and the results agree very well with what is
observed. We also compute the normal modes of a two-layer Saturn model as a simple application.
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1. Introduction

Free core nutation (FCN) is a normal or eigenmode of the
rotating Earth, if only there is a fluid core which is elliptical
rather than spherical, and it is related to slight misalignment of
the rotation axes of the Earth’s fluid core and mantle. When
studying rotational normal modes, nutation or solid tides of
Earth, researchers usually start from an infinite set of coupled
ordinary differential equations (ODEs) along a radius that
governs the infinitesimal free elastic-gravitational oscillations of
a rotating, slightly elliptical Earth, as well as a set of boundary
conditions on displacement vector, stress tensor and gravity
potential, as described in Smith (1974). Earth is usually treated
as a slightly elliptical symmetrical oblate body, i.e., a rotating
symmetric model. The classical way to expand these equations
with such an oblate model is by means of generalized surface
spherical harmonics (GSSHs), which were proposed for
quantum mechanics originally (Edmonds 2016) and introduced
into the geophysics area by Phinney & Burridge (1973) (see also
Huang & Liao 2003 for corrections and comments), who
presented the expansions of any order tensors in GSSH
representation and computed the excitation of a point force.
Smith (1974) adopted this GSSH representation, and projected
all parameters from an elliptical domain onto an equivalent
spherical domain, and obtained notable results of Earth nutation
and wobble (Smith 1977). Along the way, a series of theoretical
studies on nutation and rotational modes of the non-rigid Earth
have been performed, e.g., Wahr (1981), Dehant & Defraigne
(1997), Schastok (1997), Huang et al. (2001, 2011), Rogister
(2001), etc. All these studies treated Earth as a rotating
symmetric oblate object and its flattening was small. However,

it is not easy to understand GSSH representation which involves
the knowledge of group theory, representation theory and Lie
algebra. Rochester et al. (2014) developed a linear operator
method (LOM) as an alternative to the combination of J-squares
and GSSHs, and used it in their subsequent studies of wobble/
nutation. In their view, the new combination has at least two
advantages: (1) using the familiar conventional Y;, removes any
need for the more complicated GSSH notation and (2) using the
operators facilitates writing the coefficients of the ODEs in a
much more compact form. However, their work only deals with
the coupling fields of the same azimuthal order m, as is the case
when the reference model is axially symmetric and rotates about
that symmetry axis.

We follow their way and develop LOM so that LOM can deal
with any asymmetric three-dimensional (3D) Earth (or other
planet) model rather than a slightly elliptical model. This method
does not rely on GSSHs or Wigner 3-j symbols, which makes it
easier for physicists and engineers.

To demonstrate and validate our method and code, we first
compute the lower degree normal modes of Earth, which agree
very well with what is observed. Then we compute the normal
modes of simple two-layer polytropic Saturn models which are the
non-rotating sphere, rotating sphere and rotating oblate planet.

2. Linear Operator Method
2.1. Background

Let P be a particle in reference domain Vj in hydrostatic
equilibrium, and r its position vector. The equilibrium density
field and gravitational potential field are denoted by p(r) and ¢(r)
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respectively, while u(r, f) signifies the infinitesimal Lagrangian
displacement vector of particle P at time .

The dynamic equation for infinitesimal elastic-gravitational
motion u for a rotating Earth model, in a steadily rotating
reference frame with constant speed €2, is given in Smith (1974)
(or Dahlen & Tromp 1998 for more information),

pD?u + 2pQ X Diu
= X (o xu) + V- S~ VY -u)
—pVo, — pu-VVé + V - [y(Vu)], )

where 7y is the equilibrium pressure, and ¢, is the incremental
gravitational potential induced by the mass redistribution due to
deformation which satisfies the Poisson equation,

V2p, = 4wGV - (pu). 2)

>
The stress tensor S¢ is the incremental elastic stress with

<—>f — — .
respect to the reference stress, S™ = —~I , where I is the
identity tensor, and is related to the displacement field by two
Lamé parameters (A, pt). For an isotropic medium,

§€ = AV - w)I + pu[Vu + (Va)'], 3)

where the rigidity © =0 in a liquid part.

Usually, all the physical field functions, like u(r, f), are
combinations of oscillations u(r, 1) = u(r, w)e’“’. We will
omit ¢/“’ parts in the following discussion. Then, these field
functions are expanded by spherical harmonics (SHs), vector
spherical harmonics (VSHs) or GSSHs. Here is an example to
expand a complex square-integrable tensor field of second order

<§)(t9, ¢) on the surface of a unit sphere in terms of GSSHs,
— —
Se@r)y = S(r, 0, @)
[o¢] n
=3 >0 ST 0, ¢)é.és, “

n=0m=—n
where « and (3 take one of (—, 0, + ) (Dahlen & Tromp 1998 for
more information).

Scalar and vector fields can be expanded in a similar way in
GSSHs. However, LOM does not have a unified form like
Equation (4), and the tensor is represented in #V,Y," (0, ¢),
ViY@, ¢), Vi[F x VY™ (0, ¢)], etc. There is no need to
represent stress tensor S in a stand-alone form, and it only

comes with the form7i - S or V - S in the dynamical equations
and the boundary conditions, which can be represented by LOM.

2.2. Overview of Three Basic Linear Operators
SHs are indeed a linear combination of cosf and sin fe*%.
The basic idea of LOM is to decompose Y, (6, ¢) to (cos §)F

and (sin fe*™?)" . cos § and sin fe**¢ are repeatedly used as three

Zhang & Huang

basic operators. If the actions of these three basic operators are
known, then any actions of SHs are also known.

In Appendix A.l1, cos@ is shown how to act on VSHs
R} (0, ¢), S, (0, ¢) and T, (0, ¢)), for instance

cos f x Srlzn(67 ¢) = d7(l’l, m) * Sn’il(e’ ¢)
+ ds(n, m) * S, (0, &) + do(n, m) x T (0, ¢). (5)

This cos 6% operator is enough to deal with rotating symmetric
(ellipsoid) models. In such kind of Earth models, all the
dynamical variables and parameters are independent of long-
itude ¢; thus we do not need to deal with (sinfe*®) .
Appendix A.2 presents the action of sin fe**. For instance,

sinfe® x S0, ¢) = dis(n, m) * S0, ¢)
+ dis(n, m) * S;11(0, ¢) + dig(n, m) x T, (0, ¢).
(6)

After the three basic operators’ actions are specified,
Y (0, ¢)’s action can be built up by them. In Appendix B.1,
we will discuss how to express the dot product of two VSHs.
The basic idea is to transform vectors into the form of three basic
operators. For instance, the dot product of S, (0, ¢) - \IIZ(G, ®)
(where 'IIZ(G, ¢) denotes any of Rf(e, o), Sf(@, @) or Tf(e, )
is complicated, so we can decompose S," (6, ¢) into

S0, ¢) = ---(cos O) (sin He*®)" ¥, cos O
+ ---(cos 0)! (sin BT )"~ 1 7 (sin feTi?). 7

Vicosf - b0, $) and Vj(sinhe®) - Wo(H, $) are easily
transformed to the combinations of Yf 6, ¢), while
cosf * Y0, ¢) and sinfe*® x Y°(0, ¢) are already known,
so S0, ) - WO, ) can also be easily represented as a
combination of the SHs.

In Appendix C we will discuss the divergence of a stress

ud
tensor. A tensor S is usually represented in a combination in
dyadic form

<
S=rwm+vrwut-, (8)

where the symbol ® means linking two vectors to make a dyad,
and it can be omitted for short. The divergence of a dyadic and
the dot product of a vector with a dyadic are easily obtained.
However, not all parts of a stress tensor can be written easily in
dyadic form by VSHs. Fortunately, only 7 - ? and V - <§) are
needed, which could be written in VSHs. When a part cannot be
written in dyadic form explicitly, we can follow this principle:
transform it to three basic operators’ form. For instance, to
compute lIlf(H, o) - IMY," (0, @), as Y, (0, ¢) is a combination
of (cos@)* and (sinfet?), the tensor Vi ViY)" (0, ¢) can be
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represented as below

Vi Vil(cos §)* (sin fe*i9)! ]
= Vi[(sin Be*?) « k % (cos )*~! ¥V cos 0]
+ Vil(cos @)% x [ * (sin fet®) =1 V(sin fet?)]
=---ViVicos O + ---Vi(sin feT®) @ V;cos b
+---Vicosf ® Vicosf + -V, Vi(sin fe*i)
+---Vicos§ @ Vi(sin fe*®) + ... Vi(sin fe*?)
®V(sin fe*i?). ©)

The second, third, fifth and sixth terms in the above equation are
dyadics. The dot product of a vector and a dyad is

Th(0, ¢) - vi @ vy = [F2O, ¢) - vi]va. (10)

ViVicos @ and V;Vj(sin fet®) cannot be written in VSH form
explicitly, so they are transformed into a spherical coordinate
basis, for instance,

ViVicos 6 = sin@ * 0f — cos 0 (00 + (}(}) an

Moreover \112(6, @) - ViVicos is easy to be transformed to
VSHs. So, \Il(bl(ﬂ, @) - ViiY," (0, ¢) can be written in VSHs.

The cross product of two VSHs is discussed in Appendix B.4
using a method similar to dot product. The abstract forms of the
final dynamic equations are listed in Appendix D. All the useful
and fundamental formulae are attached in appendices. We hope
this paper can be a useful manual for those who are challenged
by complex maths and want a more straightforward approach.

The LOM uses three kinds of relations: the recursion relations
of Legendre functions, the relations transforming
u=ur-+ ugé + uw% to VSHs and the Leibniz rule reducing
complex composition to the three basic operators.

In this paper, c,(n=0, 1, 2---) are coefficients. ¢, Uis the
reciprocal of ¢,. M,(n=0, 1, 2, ---) are linear maps which
satisfy

M, [x ¢] = M, W] s

where 1 and ¢ are SHs or VSHs, and x; is a constant number.
The symbol * denotes the algebraic product of a scalar field (or
an algebraic constant) with a tensor, a vector or a scalar. The
symbol X signifies a cross product of two vectors. The symbol -
means a dot (or inner) product of two vectors.

12)

2.3. Equation Expansion

The displacement field u
coordinates by VSHs

is represented in spherical

o0 n
w=>y > Sy+T, (13)
n=0m=-n
with
St =[u"# + v;'V1Y," = u,"R) + v"S,", (14)
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m __ m m
T, =—w,'r x Y,

5)

where u,", v;' and w," are functions of r only. S," is a spheroidal
oscillation, and T," is a toroidal oscillation. Suppose that a
normal mode has the eigen angular velocity w, and its
displacement field is

u(t) = u(w)e™. (16)

We will omit w in u(w), and just use u for short. Dropping terms
higher than the first order in u, Equation (1) becomes

Wi — 2iwQy X u+ Vo, + V- -g) —gV-u

1 —
+—V.§=0.
Po

7)

To compute the normal modes, we should know how vector u
is operated on. As u is expanded in the VSHs, we just need to
know how VSHs are operated on. There are six terms in the
above equation. The first term w?u is trivial because it is just the
u with a coefficient. The second term 2iw€2y X u shows that we
should deal with the cross product of €2, (which is Z) and u,
which is studied in Appendix B.4. The third term V¢, is a
gradient of SHs. The gradient in spherical coordinates is

V =70, + 1v1. (18)
r
V, is the surface gradient on a unit sphere
_ ¢
Vi = 00y + ——0y. 19)

sin

So, the gradient of the SH Y (0, ¢) is r~'S!" (0, ¢).

The fourth term of Equation (17) is V(u - go), which is the
gradient of a dot product. The dot product of two VSHs is
discussed in Appendix B.2, and the gradient of an SH is just
discussed above.

The fifth term is goV - u, which is the product of g, and the
divergence of u. The divergence of a VSH is discussed at the
beginning of Appendix C.

The sixth term is pLOV . ?, which is the divergence of the

—>
stress tensor S¢,

V.S =V (MY oI+ u[Va + (Yo'l (20)
This derivation is pretty complex, and we discuss this term in
Appendix C.

There are so many symbolic computations in this work that it
exceeds a human’s ability. Mathematica, Maxima and Maple are
good software for symbolic computation, however they cannot
meet our requirements. So, we write software to do these special
symbolic computations in Common Lisp.
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2.4. Simple Instances

We will give two instances to demonstrate this method. The
first is to expand the governing Equation (17) with a very simple
>

u. The second instance is to expand V - S¢.
2.4.1. The First Instance

Suppose the displacement vector has a very simple form

u = uySy, ey

for which u is a constant. The first term in Equation (17) is

Zhang & Huang

By Equation (G6), ds and dg in Equation (25) are
ds(2,0) = —2d1(2, 0) — d5(2, 0)

de(2, 0) = —2d,(2, 0) — d4(2, 0). (26)
By Equation (G4), d3 and d,4 in Equation (26) are
d3(2, 0) = c3(2, 0) * 2 % c4(2, 0)e5 (3, 0)
ds(2,0) = c3(2, 0) * 2 x c5(2, 0)c3 (1, 0)
—3(2, 0)2¢;7'(1, 0). 7

By Equation (G2), d, and d, in Equations (25) and (26) are

_ 0
Wi = WSy, (22) (2, 0) = 32, 0)c4(2, 0)e5 '3, 0)
The second term in Equation (17) is —2iw82q X u, and assuming d>(2, 0) = ¢3(2, 0)cs(2, 0)e5 (1, 0). (28)
Q, = Z, it then becomes
iy X U = —2iwE X U = —2iwig? X 820 23) By Equations (E3), (E4) and (ES), we can get
1/2 _ oy 172
(1, 0)=(—1)° 2+1 d-0! = 0.4886025119029199
4 (1 +0)!
T !
12T (5 _ oyt T2
c3(2,0)= (—1)0( 2 *42 + 1) [g n 8;' ] = 0.6307831305050401
T !
12T (2 _ ot /2
c(3,0)= (*1)0( 2 *43 + 1) [g n 8;' ] = 0.7463526651802308
T !
2—-0+1
c(2,0)=—— =10.6
W 0=
240
c5(2,0)=—— = 04. 29
5(2, 0) 241 (29)

By Equation (HS), Z x 520(0, ¢) becomes

2 x 8§90, ¢) = —d7(2,0) * Ty (0, ¢) — dg(2, 0) * T5_,(0, ¢)
+dy(2,0) * S0, ¢) — i * 0 % c;(2)RY(, ¢),
=—d;(2,0) * TY(0, ¢) — ds(2, 0) = T (0, ¢)

+do(2, 0) * SY(0, ¢).
(24)

By Equation (G8), the coefficients d;, dg and dy are

d7(2,0) = aQ)[di(2, 0)e; (2 + 1)
+ds(2, 0)] = c(2)[di(2, 0)¢; ' (3) + ds(2, 0)]
ds(2,0)=c1(2)[d2(2, 0)e;'2 — 1)
+de(2, 0)] = c1(2)[d2(2, 0)c; (1) + de(2, 0)]
do(2,0)=—ix0 % c(2) = 0.
(25)

Then d,, d», d3, d4, ds and dg in Equations (28), (27) and (26)
become

di(2, 0) = 0.5070925528371101
d>(2, 0) =0.5163977794943224
d3(2,0)=1.014 185 105 674 220 2
ds4(2, 0) = —1.5491933384829668
ds(2, 0) =—2.0283702113484403

de(2,0)=10.516 397 779 494 322. (30)
By Equation (E1), ¢,(n) becomes
1 1
a)= m = g
(== 2 =2
= =36+ D 31)

a3 1
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By Equations (30) and (31), d; and dg in Equation (25) are

d7(2,0)=0.676 123 403 782 813 5
dg(2,0)=0.258 198 889 747 161 1.

Then Z x S20 (0, ¢) in Equation (24) becomes

2 x 890, ¢) = —0.6761234037828135 * T (6, ¢)
— 0.2581988897471611 * T (8, ¢).

(32)

(33)
Finally the second term in Equation (17) becomes
—2iw x u = 1.3522468075656267iwuo Ty
+ 0.5163977794943223iwu, T} . (34)
Suppose
1= 010130, 9), (35)

and ¢¢ is a constant, then the third term V¢, becomes
_ 0 0 L] 0
Vo, = EWIOYZ 0, &)}F + 7V1{¢10Y2 0, o)}

6 Vi) (0, @) _ 610 g
r 6 ro

1
=0+ —ViY;(0, ¢) =
"

(36)

0
In the above equation, N5 6.9) SY is the definition of S from
Equation (A3).

If we suppose g, = g,7, then

A 1 A
u- gy =uoSy - {gf} = Mogog{vlyzo} F=0. (37
The fourth term becomes
V(u-g,) =0. (38)
The fifth term is
—g,V u=—g,V - {uS}. (39)
Also by Equation (C3)
V- {uoS9) = —22¥p, (40)
r
and the fifth term becomes
—gV - u = 21RO 41)
r

The sixth term is pretty complex, if we suppose pg=1, p=1
and A=1 for simplicity, then the divergence of the tensor
becomes

> g
V-S=V-[AN\V-w)I]+V-{uVu+ Vu)]}
—V [« (V-w)T]+1%V-(Va)
+1+xV-(V)' + 1% p-(Vu) + V1 - (Va)T
—V-(V-wT1+V-(Va)+ V- (Va).
(42)
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By Equation (40), the first term in the above Equation (42)
becomes

V- -INV-wT]1=V- [—@ 207’]. (43)
r
By Equation (C6), (43) becomes
VNV 0T 1=V - [—ﬂyﬁ]
r
= —uoa,(l)Rzo _ Lo g)s9
r r r
- %RZO - %s;. (44)

By Equation (C8), the second term in Equation (42) becomes

uV-NVu)=V(V-u) -V xV xu
:v(—ﬂyzo) —V XV x (upSY)
r

b 1
g () in(ae)
— ro x V x Szo
- %RZO - 6r"2°S£ —uV x V x 8. 45

By Equation (C10), V x S becomes

V x 8)= f%Tff, (46)
V xVx8=Vx {—lTZO}
r
o =L
o, |25 S
— —R) + + = [sve.
P22 or r2 2(6: )
1 5o
= _ﬁRz . 47)
So, Equation (45) becomes
u 6u | R
puV - (Vu) = r—ngo - r—zoszo - MO(_ﬁRn )
2u 6u
= —rZORZ" - _rzo S5. (48)

By Equation (C12), the third term in Equation (42) becomes
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V - VIuoSTN T = 0% (ug) * [F- Sy @ 7] + a,(luo) * [F

r
Uo

A 1 —Uy .
=0 — 2207 - (WSHTT+ 0+ —uoVi - [VSPI = =547 -
r r r

By Equations (C18) and (C28), we can get

PSS = —879, (50)
Vi - [ViS91 =R — 1783. (51)
So, Equation (49) becomes
—Uu u
Ve AVIngSN T = —2 « (=89 + (R — 787}

—O0ou u

=—"8) + —IR;. (52)
r r

With Equations (44), (48) and (52), the divergence of the tensor
in Equation (42) becomes

4M0

18u
0 00

V. 5= (53)

With Equations (22), (34), (36), (38), (41) and (53), the final
expansion of Equation (17) becomes

wloSy + 1.352 246 807 565 626 Tiwuo Ty
+ 0.5163977794943223iwuo T

6 u
T 92510520 + 8olUo
r r

4u0
r2

R + ZLORO — lfgosz" =0. (54

Equation (53) gives a very simple example of the derivation
of the divergence of a tensor. The most difficult part of LOM is
to derive the operations of the tensor, and we will provide a little
more complex instance in the following Section 2.4.2 to show
how it works.

2.4.2. The Second Instance

Suppose
u= Rzl,
H= Yzo’
A=Y, (55)

—>
V - §¢ has five parts,

V- =V-IMY -]+ 4V - (Va)
FuV - (V) + V- (V) + Vi - (Va)l.
(56)

The expansions of the first three terms of Equation (56), which
are V- {NV-wl}, uV-(Vu) and pV - (Vu)!, are shown in
the first instance. We list their results, and do not give the details.

~(VSHT +
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l%vl )
or

r

1
[S7 ® P + —uoVi - [y T
r

(VST + %vl VST (49)

By Equation (C6), the first term in Equation (56) becomes

1

V - {MV - w)I}=—0.4414562522349272—R|
r

+ 8.829125044698543%5} — 0.18022375157286863L2R2l
r r

+ 1.0813425094372118%S21. 7
r

By Equations (C8)-(Cl11), the second term in Equation (56)
becomes

1

JTAVAR (Vu):f1.7658250089397087—2&1
r

1

— 0.7208950062914745—2R2l + 4.41456252234927%54%
r r

+ 0.54()6712547186066%S2l — 1.8094322036008625iizT31
r r

— 1.6925688412059197ii2T11.
r
(58)

By Equations (C12)—(C30), the third term in Equation (56)
becomes

wV - (V)T = 4.41456252234927%5}

r
+ 0.5406712547186066%52' — 1.8094322036008625il2T3'
r r

—1.69256884120591971‘%Tll — 0.4414562522349272%&{
r r
—0.180223751 57286863D0L2R21.
r
(59)
By Equation (C32), the fourth term in Equation (56) becomes
oYy 01
or Or
1
+ = 0 1% [ViY3 - ViR
r

Vi - VIXI () @0, )] = Ry (0, ¢)

- :—Z[VI Y0 ViR}]. (60)
By Equation (C34), we can get
ViYs - ViRy (0, ¢) = Mo[ViY3 - WViYy]
+ 'R0, ¢) + 30, ). (61)
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By Equation (A52), the second term on the right hand of

Equation (61) becomes

. 0 [2-]1D/2]
,0,¢) Sy = >

5s=0
x [(My; NS
=ci0(2, 1, 0)(Ms)' ~°[(M)[SI1]
= —0.772548432160781 * M [Mlg[SQO]].

co(2, 1, 5)(Me)>~ 211

(62)
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By Equation (A47), we can get

M[S9(0, §)] = +iMy [Mos[Ma[Mi2[ST 0, )111]
= iMy [Mos[Ms[c; ) YIN] = éMl [Mas[e3(2, 0) PY]]
=0.10513052175084iM1[P3]1=0.10513052175084ic; 1 (2, 1)Ys

= —0.4082482821789322iY,.
(65)

Me[S3] = Mio[Ms[My2[S311] + Mis[Mi2[S51] = Mio[Ms[ci(3) Yall + Miglci(3) Y]
= c1(3)Mio[Mi [MoIMa[YAIN] + cl(B)Mia{—2Ms[Y3] + M7 (Y31} — ci(3)Mis[iv3]
= c1(3)Myo[Mi[My[c3(3, DPI] + c1(3)Mys{—2My[c3(3, 1)Pi] + M[Ms[M>[Yi11]} — c(3)iT:

=ca1(3)e3(3, DMio[Mi[cs(3, 1P} + ¢5(3, P

+ aBG)Mia{—2c33, 1) * [ca3, VP + ¢s(3, D] + Mi[Ms[c3(3, DP3I} — e (3)iT4
=ca3)e3B, Des3, Doy '@, De '@ S) + a(3)esB, Des@B, De (e 12, 1S
—2a3)c3(3, Des(3, DS — 2a(3)e3(3, Des(3, 1)Ss
+ a(3)es(3, DM MG + DPy — 3Mo[P1I] — a(3)iT;
= aB3)aB3, Da@G, Dey '@, Doy ' @8 + aB)a3, DesB, De'(Des 12, DS,
—2c1(3)c3(3, Des(3, DS) — 2a1(3)e3(3, Des(3, 1)S,
+40a(3)e3(3, ey 12, DS — 3a1(3)e3(3, Des(3, Dy '(4, DS) + ¢5(3, Des '(2, DSI] — a/(3)iT)

= 0.6099375419488038S; + 0.3187276118361799S; — E’T;,

In fact Mg[M;o[SY]]is cos @ * sinfe® x S5. By Equation (A48),

Mig[S3(0, ¢)1] = sin e « S0, ¢)

= My4[Ma4[S5 (0, P11 + Mis[Mar[S5 (0, H)]).
(63)

By Equations (A45), (A20) and other relations, we can get

Moy [S91= 6Mio[M12[SS1] + My [Mo[Mas[Ms [My2[ST1111]
= 6Mio[c1(2) Y31 + MMy [Mas[Ma[ci(2) Y3111

= MMM Y]] + %MI [Mo[Mas[e3(2, 0)PA1I]

= Mi[Ms[c3(2, 0)PY] + 0.10513052175084002M, [My[P3]]

= 0.6307831305050401M[c6(2, 0) (P} — My[Pi])]
+ 0.10513052175084002M; [c4 (2, 1)P} + ¢5(2, )P}

= 0.21026104350168M; [(P} — c4(2, 1)Pi — ¢5(2, 1)P]]
+ 0.10513052175084002M, [0.4P) + 0.6P/]

= 0.21026104350168M,[0.6P} — 0.6P}]
+ 0.10513052175084002M,[0.4P} + 0.6P}]

= —0.5855400775457997Y} + 0.36514839242905195Y]
— 0.19518002100125173Y] — 0.182574196214526Y

= —0.7807200723713712Y; + 0.18257418895967958Y/.

(64)

! 67)

By Equations (A24) and (64), Equations (65) and (63) become

Mio[S9(0, )11 = —0.7807200723713712S4

+ 0.18257418895967958S| — 0.4082482756069868:T;.  (66)
By Appendices E and F, we can expand Mg [S31] in detail,
and list the expansions of Mg [S,l] and Mg [T 21] here
Ms[S}] = 0.6708203573569965S, — 0.5iT}, (68)
M;[T;] = 0.6374552929509951T
+0.22360680971429314T] + éiSzl. (69)

With Equations (66), (67), (68) and (69), Y21 * Sé) in
Equation (62) becomes

Y« 89 = 0.36788021019577277S}

+ 0.045055937893217185S, + 0.15078601696673857iT;

+ 0.14104740343382657iT.
(70)

Let us discuss the first term on the right hand of
Equation (61). With Equation (B9), VY3 - V¥, becomes
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Bi[ViY5. Vi¥3]=H,[Y}]Bi[Vicos ), ViY;]
+ H\[Y71B[Vi(sin et V@), VY;]

Zhang & Huang

By Equation (C43), the last term in Equation (56) becomes

1
‘ VY- (V[ *R}IT = +=W1 - [ViR; . 76
— Ho[Y?]Vicos 0 - ViY! + Hi[YO]Vi(sin0ei®) - ViYL (71) 2| 21 P2 2 (76)
By Equation (B7), we can get
[2—10)/2] 3
HolY,1= > (2 —2s—10]) * c10(2, 0, 5)(sin Ge¢ @)% (cos §)> =2~ 1011
s=0
=2 —0) %02, 0, 0)(cos )270-101-1 1 (2 —2 % 1 — 0)¢io(2, 0, 1)(cos §)2~2*1-101-1
=2¢19(2, 0, 0)cos 0,
[2—10)/2] 3
HY1= Y 0] * o2, 0, s)(cos §)2~ 210l (sin fe¢ @i0)01 -1
s=0
—0. (72)
So Equation (71) becomes With Equation (C44) and Equation (70),
BI[ViY?, ViYi] = 2¢10(2, 0, 0)cos OV cos b - ViYa.  (73) VY [VIR) =Y, « Yy
_ -1 1 0
With Equation (B10), =a h *Vih
=2.2072812611746366S;
Vicosd - ViYs = M;[Yi] = Mi[Ms[M;[Y3]]] + 0.27033562735930318)
= M[Ms[c3(2, DP]] + 0.9047161018004315:T
=32, DM[2 + P! — 2My[P3]] + 0.8462844206029594iT}. a7
=3c3(2, Desy a, l)Yl1 So, the last term in Equation (56) becomes
—2¢3(2, DMi[es(2, 1P} 2, Hp}
@D 11[«:4( 1 )P + 52, DA] Vit - (V)T = 2207281261 1746366
=3c3(2, Dy '(1, DY, r2
—2¢3(2, Dey (2, Des '3, DY) +0.2703356273593031 5!
2 2
~263(2, Des(2, Dey (1, DY o
— 1.3416408582857589Y! + 0.90471610180043151r—2T3
1
—0.95618293942649271;. o + 0.8462844206020504i T} (78)
r

By Equations (60), (61), (70) and (74), the fourth term of
Equation (56) finally becomes

Vi - (Vu) = 13.24368756704781 1%5}
r

+1.6220137641558197L2S21
r
1

=
1

r2

— 5.428296610802588i— T

—5.077706523617759i—T

1

+ 0.27033562735930283—2R21
r

—0.8829125044698543%&%. (75)
r

By summing up Equations (57), (58), (59), (75) and (78), we
can obtain

>
V- 8=V -{\NV-wl+ u[Vu+ (Vu)'1}
73.531650017879417%&{
r

+33.1o9218917619536i251
r

—0.81 10068820779089%R2l
r

1

+ 4.055034410389547—252l
r

—8.142444916203882iL2T31
r

— 7.616559785426638iizT11. (79)
r
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This example of Equation (79) from Equation (20) shows that
>
the most tedious part (V - S¢) can be derived and expressed by
their components (R, S, T).
The above instances are simple, and the real computation is
much more complex. The parameters are like Equation (A30):

p=po(r) + Y P (YO, ¢)

n,m

A=Xo(r) + DA YO, ¢)

n,m

W= po(r) + Z o, (N Y0, ¢),

n,m

(80)

as is the displacement field u. All the symbolic computations
exceed human capacities, but can be done by a computer.

3. Numerical Validation and a Simple Application

In this section, we will validate our method in Section 3.1 and
give a simple application to the lower degree normal modes of
Saturn in Section 3.2.

3.1. Normal Modes of Earth and Numerical Validation

To validate our method, we compute the spheroidal modes of
a spherical, rotating, elastic and isotropic Earth model. We take
the Preliminary Reference Earth Model (Dziewonski &
Anderson 1981, PREM) without an ocean. (S, means the
fundamental mode of harmonic degree n.

We list our results in Table 1, and it shows that our computed
periods of the normal modes agree very well with those in
Dziewonski & Anderson (1981).

3.2. A Two-layer Saturn Model

The normal modes of the planet Saturn are computed to
demonstrate our method. The rotational modes are free
oscillations which involve the redistribution of angular momen-
tum, in the absence of external torques produced by the
gravitational forces. Such modes require planet models to rotate,
which usually have nonzero ellipticities.

Vorontsov et al. (1976) followed Alterman’s approach
(Alterman et al. 1959) to compute the free oscillations of the
giant planets. Vorontsov & Zharkov (1981) studied the free
oscillations of the giant planets with rotation and ellipticity by
perturbation method which took rotation and ellipticity as small
perturbations to their initially spherically symmetric, non-
rotating Jovian models (Le Bihan & Burrows 2013). If a planet
rotates fast and has a large ellipticity, then the perturbation
method becomes inappropriate. Instead of the perturbation
method we use a direct integration method to compute the
normal modes in this work.

For the planet Saturn, we take R,=58,242km,
M,=5.68+10kg, Q=10.55hr and N,=1.5, where R,
M, w and N, are mean radius, total mass, rotation speed and

Zhang & Huang

polytropic index respectively. By solving (Zhang & Huang 2018)

P=Kpr, 81)
and
1 df_dl
——| &— 0" =0, 82
§2d€(5 d£)+ ®

we can get the density profile of Saturn. Based on this profile,
we make a two-layer model which consists of a solid core and a
liquid shell, and the radius of the core is 1/4 of the whole radius.
We modify this profile by making the density of the core four
times the density of the liquid shell at the boundary. The density
profile is

pg" =9.03 % 10'2 — 1.14 % 10° « r

— 413 % 103 % r*> kgkm3, (83)
P! =222 % 10'2 + 7.24 % 10° « r
—1.56 % 103 * r> kgkm™3. (84)

For a simple polytropic fluid model, Equation (1) can be
simplified as

p0w2u — Zip()WQO X u — Vpl + pov‘/] + P180 = 0, (85)

which governs the small isentropic oscillations of an inviscid
liquid core given by the conservation laws for mass, momentum,
gravitational flux and entropy (Rochester 1989), where

(86)
(87)

pl = _v . (pOu)9
p1 = —u-Vpy + o’p; + o’u - Vp,,

In the above Equations (85)—(87), u, po, p; and V; stand for
displacement, Eulerian perturbation in density, Eulerian pressure
disturbance and Eulerian perturbation in the gravitational
potential respectively (all regarded as first-order departures from
the equilibrium reference state). The local compressional wave
speed « has the form

(88)

We take 3= 0 for a purely adiabatic model to solve o. The bulk
modulus profile is

Ko =243 % 100 — 323 % 1010 % r — 1.80 * 107 * 12
— 847 x r3 + 0.0328 % r* Pa,
(39)

Kshell — 2 84 % 1016 — 3.09 % 10'2 % r 4 1.42 % 108 % r2
— 3341 * r3 4 0.0393 * r* — 1.84 x 1077 % r> Pa.
(90)

We also suppose the core to be a Poisson solid, so we can get the
profile of Lamé parameters.

The ellipticity profile €(r) is solved from the classical
Clairaut equation of the Wavre integro-differential equation
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Table 1
The Periods (minutes) of the Spheroidal Modes of PREM

Author 052 0S3 0S4 0S5
Dziewonski & Anderson (1981) 53.89 35.57 25.76 19.84
This work 53.65 35.45 25.65 19.70
Percentage difference 0.45 0.34 0.43 0.70
(Moritz 1990), or Huang et al. (2019) for more information, or

1 dey n 2 Y rda — R dfzd " 507 u =S+ Tt + Sz + T + o (96)

- 36 pq-aq p——aq =

ry dro 15 rn  dq 127G

oD

If a parameter in a non-rotating spherical model is X(7), it
then becomes

X(r, 0)

P2(6’ ¢)’

1 9Xo(r)
92
5 92)

= Xo(r) — —
r r

in a rotating oblate case. In this work we drop the equivalent
spherical domain, and just use the original figure, which will
resolve lots of obscure problems. By solving Equation (91), the
flattening profile is
feore = 0.0241 + 6.60 x 1071 % r + 2.02 % 10712 % 2
— 988 % 10710 % 13 + 6.79 % 10722 « 4,
93)
fSheu =0.0338 — 271 * 107 % r + 1.92 % 10710 % 2
—3.85% 1071 % 13 + 278 % 10720 & 4,
(94)

The surface flattening of this Saturn model is 0.0867, which is
very large and almost 26 times the Earth’s flattening. So, the
effect of flattening (ellipticity) of Saturn cannot be treated as a
small perturbation anymore, as is usually done in Earth models.

3.3. Variable Expansion and Boundary Conditions

The variables are expressed in spherical coordinates by SHs in
Equations (13), (14) and (15). The displacement field (for any

feiﬂ f¢:27r fl‘:R
0=0 ¢=0 r=0

or for an oblate situation, we get
f@:ﬂsz:Z(bfr:R[1+€(R)P2(c0s0)]
6=0 =0 r

given SH order m) in a rotating planet model takes one of two
possible forms (Smith 1974), either

=0

u =T + Sms1 + Tinpa + Sppgat- (95)

x;(Governing Equation)r? sin drdpd = 0, j = 0... jpa.

x;(Governing Equation)r? sin 0drdgdf = 0, j = 0...j ...

Ellipticity (P,(cos8)) couples S,;" to S;", » + T, 1+ S, +
T, + 8,5, and couples T, to T, ,+ 8", 1+ T+
S, | + T, ,. Both rotation and ellipticity can couple a single SH
into a chain, which increases difficulty of the computation.

At a planet’s free surface the boundary conditions require

Rnd
A-SIE=0,

o7)

A - [VV — 4xGpoul[* = 0, (98)

where n is the normal vector at the boundary surface.
<
Also, the stress tensor S in fluid shell takes the form (Huang

et al. 2004),

<> <~
S =—(p,+u-Vpyl. (99)

At the center of a planet, variables are required to be regular.

We adopt the Galerkin method here to solve Equation (85)
instead of Alterman’s approach. Seyed-Mahmoud & Rochester
(2006) applied the Galerkin method on the oscillatory dynamics
of a rotating compressible self-gravitating inviscid fluid in terms
of three potential scalar dependent variables (Seyed-Mahmoud
1994). We express the variables in the form of Equation (95) or
(96) instead of the 3-scalar potential description. The variables

mou,), v and w," are expanded in power polynomials of r as
fo;ﬂé cxr¥, where ¢, are the coefficients. Multiplying trial
functions x; on Equation (85) and integrating them in a sphere,
we get

(100)

(101)

3.4. Result

The final results are listed in Table 2. We started from a non-
rotating spherical model and obtained the fundamental periods
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Table 2
Lower Degree Normal Modes of Saturn
Result
Model Mode Truncated Chain (minutes)
Non-rotating Sphere S, S, 168.4
S3 S3 127.7
Sy Sy 107.4
Rotating Sphere s9 T’ +8)+ 17 167.8
S3 T + S} + T} 158.3
S5 7 4 851+ 15! 170.3
s S} + 13 150.4
852 8,7+ TIs? 174.5
Rotating Oblate Body s? T+ 89 + 1Y 147.1
s! T+ S} + T} 134.1
S5 T+ S+ 15! 157.5
83 87 + T3 130.9
S5 S22+ 157 183.1
Differentially Rotating s) T+ 8+ 1) 160.4
Sphere
si T + S} + T} 140.4
s5! '+ Sy 4+ 13! 171.1
s S} + T3 127.7
S5 8,7+ TI5? 193.9

168.4 minutes for S, 127.7 minutes for S5 and 107.4 minutes for
S4.

The rotation cannot be treated as a small perturbation, because
168.2 minutes is almost 1/4 of the rotation period compared
with Earth: the fundamental SY period of Earth is about
54 minutes and is about 1/24 of Earth’s rotation period.

The rotation splits S, into §52, S5, $Y, S1 and S7. S) has a
period of 158.3 minutes with truncated series 7} + S; + T, and
others are listed in the column of the rotating sphere in Table 2.
The results show that the fundamental periods of S;" vary from
150.4 to 174.5 minutes, and the difference is 24.1 minutes which
is about 14% of the base number. The rotation should not be
regarded as a small negligible number.

The oblate model increases the difference. The results are
listed in the column of the rotating oblate case in Table 2. The
results show that the fundamental periods of S;" vary from 130.9
to 183.1 minutes, and the difference is 52.2 minutes which is
about 35% of the base number. The flattening also should not be
treated as a small perturbation factor.

We also compute a simple differentially rotating model. It has
a differential rotation speed €2(r) in the liquid shell, which is

T, L)
30 58232/
The results are listed in the column of the differentially rotating

sphere in Table 2. It shows that the differential rotation also
causes a large difference and is a non-negligible factor.

Q@) = Qo * (1 - (102)

The main theme of this paper is about the LOM, so we will
not discuss the normal modes of Saturn in detail due to limited
space. We will discuss effects of flattening and rotation on
kronoseismology (Hedman & Nicholson 2013) in a future
article.

4. Conclusion

In this paper, we show how to represent the dynamic
equations and boundary conditions for 3D planet models by
VSHs and the linear operations of these VSHs. These equations
can be finally expressed in integrable form. The GSSH method
relies on abstruse mathematics, which is difficult for many
researchers. By contrast, the LOM uses simple math and it is
easy to program for numerical computation. We compute the
normal modes of Earth to validate our method, and compute the
normal modes with rotation of Saturn to demonstrate this
method. In future articles we will report the FCN of Earth
computed by this method, which is very close to what is
observed, and the effect of the topography of core-mantle
boundary on FCN.
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Appendix A
Vector Spherical Harmonics

Any vector field, like displacement field u, can be represented in a spherical coordinate basis (7, 0, &) where 6 is co-latitude and ¢

is longitude

u=ub + uph + uyo. (Al
It can also be represented by three VSHs

u=7y [U'OR O, ¢) + V" (NS0, ¢) + W' (DT, (O, §)]. (A2)

n,m

These VSHs are defined as

R0, o) =FY,"(0, ¢)

m ViY, (6, ¢) m
S.'(0, ¢) = —n(n D a(n)MY," (6, ¢)
(0, ¢) = — X(Vli" 1()9 9 _ )i x ViY" (0, ¢). (A3)

Vi = 00, + 8 is the surface gradient on a unit sphere of radius = 1.

The scalar SHs are defined as

12T o oy 2 '
Y, (0, ¢) =(—l)m(2n + 1) (n = m). P"(cos 0)e™?
4 (n + m)!
= c3(n, m)P)" (cos 0)e™. (A4)
Also, the associated Legendre functions are defined as

P"(cosf) = 1 (1 — cos2g)ym/? (—d
2"n!

n+m
20 — 1), A5
dcose) (cos ) (A5)

With these definitions, for the case where u is assumed to be real, U,"(r) should satisfy

Re[U,"(r)] — (=1)"Re[U,"(r)] =0
Im[U"(N] + (=D Im[U,™(r)] =0 (A6)
Im(UL(r)] = 0.

The same is true for V," (r) and W, (r).

The vector field in the form of Equation (A1) (coordinate bases are 7, 0 and ¢A>) can be transformed to VSHs (coordinate bases are
R0, ¢), S, (0, ¢) and T, (6, ¢)) by the relations below

1 Ou

VY0, ¢) = ——— A7
g (NY,©0, ¢) sin@[ 8(;5] (A7)
SO0, 6) = +——| D intu) — 2| (A8)
o 0 J¢

One of the associated Legendre function recursion relations is
n—m+1 n+m
cosf x P)"(cos)) = —— P |(cos0) + P (cos@
(cos 0) Y 1(cos 0) o+ 1 1(cos 0)

= c4(n, m)P,", [(cos0) + cs(n, m)P," |(cosB)
= My[P," (cos B)]. (A9)
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cos 0%, i.e., linear map M, turns P,"(cos #) into P;", |(cos#) and P;" ((cos 0).

M, [P (cos 0)] = P"(cos ) * ™ = c3'(n, m)Y" (0, ¢)

MY (6, DI= Y0, ¢) = €™ = e3(n, m)P" (cos b), (A10)
while sin 6% turns m into m+ 1 or m — 1

sinf x P)"(cos 0) = —[P,i’fll(cos ) — cos P (cos )]
n+m+41
= c(n, m) { Py (cos 0) — Mo[P;" ' (cos 0)1}
= M;3[P"(cos 0)], (A1)

or

sinf % P"(cos0) = (n 4+ m)cos P (cos ) — (n — m + 2)P,,”’+_11(cos N1
=(n + m)Mo[P" '(cos 0)] — (n — m + 2)P"'(cos 0)
= My[P,)" (cos 6)]. (A12)
M5 and M, are two linear maps on P with different operational formats.
sin #0y has many relations, and the following one leaves m unchanged,

0 OP,"(cos @) OP," (cos 0)
0(cos 0)
= + m)P," |(cosf) — ncos@ x P, (cos )

= + m)P)" (cos ) — nMy[P)"(cos )]

—sin (1 — cos?6)

= Ms[P"(cos 0)]. (A13)
In other words, Ms5[P)" (cos 0)] is
M;s[P,)" (cos 0)] = —sin QW = (n + m)P)" |(cos@) — nMy[P," (cos 6)]. (Al14)

The same relationship holds true for SHs,

cosf * Y"(0, ¢) = c3(n, m)e™? cos O x P"(cos 0)

= M\[Mo[M:[Y," (0, §)I1] = Me[Y," (0, D)1, (A15)
—sin 0781/"’"(9, 9 _ (1 — cos? 0)76&,’"(9, %)
Od(cos )
= Mi[Ms[M:[Y" (0, 9111 = M7 (Y (0, o). (A16)

The above operator M, does not change m, because on the left side there is no e*'?. The principle is: multiplying ¢’? on the left side,
m must increase by 1 on the right side; and multiplying ¢~ ‘? on the left side, m must decrease by 1 on the right side.

A.l. For a Rotating Oblate Earth Model

A steadily rotating Earth can be approximated using a slightly rotating symmetric model with a small polar ellipticity, while its
equator is still a circle. In this model, each parameter, like density, Lamé parameters, etc., can be expressed by the following formula
with one order small correction of ellipticity e,

x(r, 0) = xo(r)[1 + e()P2(cos 0)]. (A17)
None of them depend on longitude ¢, so ¢ and e*'? never appear. This correction generates many terms of cos # in the dynamic
equation, so we need only care about the operator cos § and ignore the operators sin fe*’® in this subsection.
The action of cosé on R, (0, ¢) is

cost x R,"(0, ¢) = Mo[Ms[Ms[R," (0, $)]1] = Ms[R," (0, ¢)]. (A18)
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Mg and My are

MolY," (0, )1 =Y, (0, $)7 = R, (0, 9).
Let

MiolY," (0, 91 = V1Y, (0, ¢) = ¢ (S, (0, ¢)
MY, (0. 9I=7 x VY0, §) = ¢ ') T, (0. ¢)
M [S," (0, )1 = a(m) Y, (0, ¢)
Mi3[T," (0, 91 = c2(m) Y, (0, ¢),

and applying integration by parts, cos @ * S, (6, ¢) becomes

cosf x S, (0, p) =cos b x ci(m)MY, (0, ¢)
= c(n)[Mi(cosd x Y," (0, ¢)) — Y, (0, ¢) * Vicos O]
= Mio[Mc[M12[S) (0, ®)IN + ci(n)sin 6 « ¥, (0, $)0.

So, it just requires the VSH form of sinf x Y," (6, (b)@. Using the relation (A7), the equation below is obtained,

1 8 . 8”0‘7
~ g [%(sm Oug) + 9 ]
1 [i(sin2 Y™ (6, ¢))] — 2c0s0Y"(0, ¢) — sin0-2¥"(0, &)
sinf | 00 00
==2M¢lY," (0, §)] + M71Y," (0, $)].
By relation (AS), it is easy to get

1[0
9 (sinuy) — 20| = _imym (6, ).
sine[ae(sm o) 8(;5} im0, 9)

Utilizing the auxiliary operator

MY, (0, 9)1= S, (0, ¢)
MsY," (0, 9I=T,"(0, ¢),
and (A7), (A8), (A22) and (A23), the VSH representation of sinf x Y," (6, ¢)0 is

sinf = Y"(6, )0
= Mia{ —2Ms[Y," (0, §)] + M7[Y," (0, §)1} — MislimY," (6, ¢)]
= Mi6lY," (0, )1
Then the final VSH representation of cos @ * S, (0, ¢) is
cosf x S, (0, ¢)
= Mio[Ms[M12[S," (0, 9111 + Mis[M12[S," (0, &)
= Me[S," (0, 9)].
By defining the 7-cross-product operator M,
Mp[ul = —F xu = { T .ifu =5
=S, ifu=T,,

the VSH representation of cos 6 * T, (6, ¢) is

cosf x T"(0, ¢p) = —# x [cos® x S (0, )] = My7[Ms[S" (0, $)]]
= My7[Ms[Mis[T;" (0, 9111 = Ms[T," (0, 9)],
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and Mg is
Mi[T,"] = S, (A29)

A.2. For an Asymmetric Model

For an asymmetric Earth model rather than a rotating oblate model described in the above subsection, the related parameters
should be expressed in the following general forms

p=po(r) + > p (YO, ¢)

A = )\O(r) + Z )‘Zl(r)ynm(95 ¢)
1= pug(r) + 3y (DY, ¢). (A30)

The product of two SHs is deduced first for convenience’ sake, as sin fe™® x Y (0, ¢),

sin e’ x Y (0, ¢) = e x e™9c3(n, m)sin@ x P (cos 6)

= M{[M3[M[Y," (0, §)11] = MiolY," (0, 9)], (A31)
sinfe " x Y"(0, ¢) = e~ x e™Pc3(n, m)sin@ x P"(cos 0)
= M{[M4[M:[Y,)" (0, 9] = MaolY," (0, $)]. (A32)
Let
s) _ M]g, ifs=1
Moy = {Mzo, if s =—1. (A33)

P (cos 6) is a combination of cos @ and sinf. For m > 0,

[t m)/2] (—1)*2n — 2s)!

m — n—2s—m
P (cos0) =sin™ 0 Z TR T y—r (cos 0)

s=0
[((n—m)/2]
=sin"0 > c¢7(n, m, s)(cos @)=, (A34)
s=0
 l—m)/2]
Y (0, ¢) = c3(n, m)sin™ fe'™? Z c7(n, m, s)(cos §)r—2-m
s=0
[(n—m)/2] )
= > cs(n, m, 5)(cos0)" =" (sin fe'®)" . (A35)
s=0
For m <0,
!
PPcos0) = (— 1y M pomco50) = co(n, m)P " (cos 0), (A36)
(n — m)!
Y0, ¢) = c3(n, m)co(n, m)Py" (cos B) =111
[(n—|m]/2] )
= > c(n, m)co(n, mycs(n, |ml, s)(cos §)"~2~Iml (sin fe=i)lm! (A37)
s=0
cg(n, m, s), m>0
= A38
ol m. 5) {03(11, m)co(n, mycy(n, |ml, s), m < 0. (A38)
Let
Cm) = =, (A39)

|m|
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which is a sign function. For any m, Y, (0, ¢) has the unified form

[(n—1m|)/2]
YPO, 9) = >, cio(n, m, s)(cos§)" = Im (sin gectmicyml (A40)

s=0 .
The product of two SHs is now regarded as actions of the cos # and sin fe™* operating on the second SH,

[(n—|ml)/2]
Y0, @) x Y20, 9)= > cioln, my 5)a(Me)" 2™ vE 9, o)1
s=0
= M"Y, ). (A41)
By the above equation,

Y0, ¢) * R0, ¢) = Mo[Myy™ [MS[RE (0, ¢)11]

= M R} (0, O)]. (A42)
Before deducing sin fe*® x S/ (6, ¢), two important relations of sin Hmwaﬂ are needed:

P A CR ) - 20" 0.6) 2 gy 9% (6. 9)

sm@a—ﬁ = —SIn em = —(1 — COS e)m
= mcos @Y (0, ) — sinfcz(n, m)P" " (cos H)e™?, (A43)

sin 078)]” 0.9 _ —(1 — cos? 0)78)/" ©, &)
0 dcosf
= —mcos Y™, ¢) + sinfc3(n, m)(n + m)(n — m + 1)P" " '(cos f)e™?

= —mcosOY™(8, ¢) + c3(n, m)ci (n, m)sin OP™~(cos §) e (Ad4)

The procedure of representing sin 6 x Y, (6, $)0 in VSHs is applied to sin fe’® x S (0, ¢). Letu = sinfe’® x S (0, ¢), then the
right hand side of Equation (A7) is

1 0 . 6140‘
_ Y (sin6 i
sin 0 [ 00 (sim ) 0¢ ]

_ A o+ 1)sin? Y0, ¢) + cosOsin 02 G D ymip 61
sin 0 oY)

= c(n)(n® 4+ n + m)sin 0e*Y™(0, ¢) + c1(n)cos Ocz(n, m)P" 1 (cos §) e+ o

= + n + m)Myo[Mp2[S,) (0, 911 + Mi[Mo[Mas[Ma[Mi2[S,) (0, $1111]

= MulS," (0, ¢)]. (A45)
Mys[P"(cos 0)] = P+ (cos §)

Mog[P"(cos B)] = P™ (cos ). (A46)
The right hand side of Equation (AS8) is

sinf | 00 Do
*M[im cos 0" (0, ¢)e’ — isinaw]
sin 80
=-+ici(n)c3(n, m)P" " (cos )l + Do
=+iM[Mas[M> [M12[S,) (0, )] = May[S," (0, ¢)]. (A47)

So sin0e® x 8" (0, ¢) in VSHs is

sinfe' x S"(0, ¢) = My4[Mas[S," (0, P)1] + Mis[Mx[S," (6, )]
= Myo[S," (0, H)]1. (A48)
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Also, sin0e® x T (0, ¢) is

sinfe’® x T)'(0, ¢) = —F x [sin0e'® x S;"(0, ¢)]
= Mi7[Myo[Mis[T," (0, )11 = Mol T," (0, ). (A49)
sinfe=® x §™(0, ¢) and sin fe~® x T (0, ¢) are obtained by a similar procedure

sinfe~'® x §"(0, ¢)

= c1(n) * My[sinfe= x (02 + n)Y"™ (0, ¢) — msinfe Y™ (0, ¢)
—c1(n, mycz(n, m)cos OP"~(cos f)e! = D9
—ai(n)es(n, m)Myslicii(n, m)Py"~elm=19]

= (n* + n — m)Myy[Mo[My,[S," (6, $)]1]
—cy1(n, m) My [My[Mo[Mas[Ma [M12[S," (8, ¢)]1111]
—icyi(n, m)Ms[My[Mas[Ma [Mi2[S," (0, ¢)1111]

= MylS," (0, ¢)], (A50)

and

sinfe~® x T"(0, ¢) = —F x [sin e S (0, ¢)]
= M7 [Moo[Mi3[T," (0, P11 = Mxn[T," (0, $)]. (A51)

Like the product of two SHs, Y"(6, ¢) * S2(6, ¢) can be regarded as the action of a combination of cos 6 and sin fe*® operating
on 87 (6, ).

[(n—|ml)/2]
YO, 0) xSEO, )= Y, cioln, m, $)(Mg)" 2[NS (B, $)]]
s=0

= M{E™(S2(0, $). (A52)

Similarly,

Y0, ¢) * (O, ¢) = —7 x [Y,"(0, ) * SL(0, ¢)]
= My7 [MY™ [Mis[ T2 (6, ¢)]1]
=M™ T2, $)). (AS3)

Appendix B
Operations of Two VSHs

B.1. Boundary Conditions
The boundary conditions on the displacement field u, tensor field S and incremental Eulerian gravitational potential ¢; are also

very important. They are: u - 71, 71 - S’ and @157 - (Vo, + 4nGpu) should be continuous across any kind of boundary, and u should

be continuous across any welded boundary between two solid regions.
In an asymmetric 3D Earth model a boundary surface is described as

r=rog+ ZK,TY,{"(H, ?). B1)

n,m

For a rotating elliptical Earth model, the above equation degenerates to a simple format r = ry + € (ro) P>(cos 6).
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The normal vector of this surface is

n=YV

r—ro— > Ky Y0, ¢)]

Lk ¢>]
.

= — Zl”T"cr'<n>5f(9, qb)l. (B2)
For an isotropic medium, its tensor is
< <
S =XV -wl + u[Vu + (Vu)T]. (B3)

L ud
The boundary condition of the tensor assumes that n - S should be continuous.

< <
n-S=XV-wn-I +p*xn-[Vu+ Va)]. (B4)
The first term on the right hand is just A(V - w)n. The second term n - [Vu + (Vu)T] will be discussed in the next section.

B.2. Dot-product of Two VSHs
R2(0, ¢) - R"(0, ¢) is quite easy.

R}, ¢) - R0, ¢) = MV IMS[R, 0, )] = Mig" R} (0, 9)]. (BS)
Before discussing S, (6, ¢) - vy, the Leibniz rule is applied on V{Y," (0, ¢),

[(n—1m|)/2]

iy 0, ¢) = > coln, m, s)Vil(cos 0)" =2 1ml (sin e (m?)ml]
s=0
[(n—Im|)/2] ) |
= Z [Im| * cio(n, m, s)(cos §)'~2~1m s (sin GeCMi®)m =17 (sin HelMi¢)
s=0
+(n — 25 — |ml) * cio(n, m, s)(sin Gt MO)ml (cos G) =2~ 1m=1 cos 0]. (B6)
Let
[(n—|m|)/2] )
HylY," (0, )] = Z (n — 25 — |m]) * cio(n, m, s)(sin et Mio)ml
s=0
*(COS 9)n72s7|m|71
[(n—]m|)/2]
HIY" 0, 9)l= > |ml * cio(n, m, s)(cos §)" 2~
s=0
*(sin eef(m)i(b)|m|—l , ®7)

then V1Y (6, ¢) is represented by two basic vectors, Vjcos  and Vj(sin fe¢™i?),

ViV (0, ) = HolY," (0, ¢)] * Vicos O + Hi[Y,"(0, §)] * Vi(sin fec ™). (B8)

Let B;[vy, v»] denote the dot product of any two vectors v; and v,, then

B[V, (0, ¢), v2] = MY, (0, ¢) - v
= HolY," (0, $)1B1[Vicos b, v2] + Hi[Y," (0, $)1B[Vi(sin Ot ™%), p,]. (B9)
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So, B[V cos 8, v,] and B;[V;(sin 0e¢™9), v,] just need to be solved. For v, = Sf(@, o) = ¢ (a)V]Yf(H, ¢), we have

Vicosf - ViY?(6, ¢) = —sin = M;[Y)(0, $)1,

Vi(sin 6e®) - ViY2(0, ¢) = < fcos fsin 674D _ pyP(o, ¢))

= —bsin0e®Y? (0, ¢) — cosOcz(a, b)PPT(cos @)e! Do
= —bMyo[Y2(0, §)] — MM [Mas[Ms[YE (0, H)I11] = Mao[ Y2 (6, )1,

pYe 0, 9)
00

—i¢

Vi(sin fe ) - VY2 (0, ¢) = ¢ J [cos@sinQ

sin

= bsinfe Y2 (0, ¢) + cosOcs(a, b)cii(a, )P~ (cos §)e!®=1o

+ bY.(0, ¢)

oY (0, ¢)
00

= bMao[Y2(0, §)] + ciia, bYMs[M[Mag[Mo[Y2 (0, $)ITT1 = M3o[Y2 (6, d)].

Let

MylY," (0, §)], s >0

Srym =
M31 [Yn (9’ ¢)] - {M30[erﬂ(9, dj)]’ s <0.

B.3. Dot Product of a Spheroidal Vector and a Toroidal Vector

The dot product of two spheroidal vectors is

B[S (0, #), SL (0, )1 = Ho[M2[S" (0, )11 * My [Mi2[SL (0, )11
+ Hi[M2[S" (0, $)1] * MSP M1 [SE(0, )11
For v, = T2 (0, ¢) = ca(@)i x ViYL (0, o),
Vicos @ - [ x VY (0, $)] = ibYL(0, ¢),

vk, 9)
a0

Vi(sinei®) - [F x VY20, ¢)] = if:’g[sine

— bcos Y (0, ¢)]
= —ic3(a, b)P’ " (cos B)e! b+ Do
= —iM,[Mys[Ms[ Y2 (6, )]
= M3, [Y2(0, 6)],
. b b
—jei [sm p2Y2(0, ¢)
sin 0 00
= —ics(a, b)cii(a, b)P!(cos B)ei®= Do
= —ic11(a.b) M [Mos[Mo[Y2 (0, $)]
= M35[Y:(0’ d))]

Vi(sin fe=i) - 000[ # x VY2 (0, )] =

Let

MaulY," (0, 9)I, s >0
Mss[Y," (0, ¢)1, s <0,
then the dot product of a spheroidal vector and a toroidal vector is

MDY, $)] = {

B[S (0, ¢), T2 (0, §)] = Ho[Mi2[SL(O, )11 * {ib * Mi3[T2(0, ¢)1}
+ Hi[Mp2[S2 (0, §)11 * M [Ms[TE (0, P)]1).
Using the relation below,

W1 X v) - (3 X )= @r-v3) * (2 w) — (V- w) * (- vs3),

+ b cos 9Ya”(9, ¢)]
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the dot product of two toroidal vectors is

BI[T.(0, ¢), T,"(0, ) =T.(0, ¢) - T, (0, ¢)
=a@amF x VY20, ¢)] - [} x VY0, ¢)]
=@ M{[F - £ = [ViY2(0, ¢) - ViY" (0, ¢)]
— [F - WY (0, )] = [F - VY20, §)]}
=@ emWViYL O, ¢) - Y0, ¢)
=820, ¢) - 80, ).

B.4. Cross Product of Two VSHs
R0, ¢) x Wi, ¢) is

R0, ¢) x R)(0, $) =0

R0, ¢) x S2(0, 6) = Y,(0, ¢) * F x 870, ¢) = —ME™ [T, (0, $)]

R0, ¢) x T8, 9) =Y, (0, ¢) * 7 x T, (0, §) = MZ™ (S0, §)].
With Equation (B8), the cross product of two spheroidal vectors is

570, ) x 820, ¢) = a(m)e(@) VY, (0, ¢) x VYL, ¢)
= ci(n)c1(a) {HolY," (0, ¢] * VicosO x VY2 (0, ¢)
+ Hi[Y" (0, ¢] = Vi(sin 0eSti) x VY2 (0, ¢)},
where

Vicos x ViY2(0, ¢) = —ibY? (0, )7 = —ibR" (0, p)

b
o0, ¢) bcosHY:(e’ ¢)]

00 sin 6
= ic3(a, b)c; Ya, b + DR, ¢)

8Yf(0, o) n bcosﬁ
00 sin

= ici\(a, b)ey (a, b — DR, ).

Vi(sin e’y x VYZ(0, ¢) = —iei</>f[

Vi(sin fe~9) x VY20, ¢) = ie—w[ Yb(, ¢)]

Finally, the cross product of a spheroidal vector with a toroidal vector is

S70, ) x TL (O, ¢) = cl(n)ea(@) VY0, ¢) x [F x VY0, ¢)]
=am e (@ F VYO, ¢) - ViYL, ¢)].

The cross product of two toroidal vectors is

T,'(0, ) x T, (0, ¢) = ca(mea(@[F x VY, (0, ¢)] x [F x VY7 (0, )]
= ama(@{F - [VY,)" 6, ¢) x VY, (@, §)1}7.

Appendix C
Divergence of a Dyadic Tensor

The divergence of the tensor is

V.S =V -INY-0)T]+V - {(ulVa + (Va)]}.

20
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The displacement vector u has the form (see Equation (A2)),

u =) [US (RO, ¢) + V,"(1)S," (0, ¢) + W' (DT, (0, $)]. (C2)

It is easy to obtain

m 2 m m : m m
|:6an (I") + 7Xn (r)] * Yn (07 ¢)9 lf ‘I’n (69 (b) - Rn (97 (b)
= mr\IIZ"O, = 1m m : m m C3
el SIS KO N0, 6) = S70, 0) ©
0, if 10, ¢) =T, (0, ).
The divergence of a second-order tensor in a spherical coordinate basis is
V- (T} = {arT;r + r71 af?THr + Leao]})r + 27;? - EN) - Td)o + COtY;/r:l }f
| sin
1 1 R
+ {3rTr9 + —[59T99 + — 03¢T¢9 + 2T, + Ty, + cotO(Tpy — T¢¢>)] }9
r sin
1 1 A
+ { 0, Ty + —[&;T% + 7865T¢¢ + 2Ty + Ty + cotO(Tpy + T(pg):l }qb. (C4)
r sin
Let
AV -u) == 7' (NY,"0, ¢), (C5)
the first term on the right hand of Equation (C1) is
d s
V- MV -wl]=V-()
.l A 1
= POy + 0=0py + o———0y7
r rx sinf
= m m 1 m m 0 0 Yr:n 0’ 3
= Z{am (IR}, &) + ] (r)[am 0. )0 + Mqﬁ]}
» r sin 6
S m m 1 m —1 m
= Z{ar% (MR, (0, ¢) + T (e (S, (6, ¢)}- (Co)
The second term on the right hand side of Equation (C1) is
V- {ulVu + (Vw)1} = puV - [Vu + (Va)'] + Vi - [Vu + (V)]
=uV - (Vu) + uV - V)t + V- (Vu) + V- (Va)l. (C7)
C.1. The First Term of Equation (C7)
There is a useful equation to compute the first term on the right hand of Equation (C7), which is
V- Vu=VN - -u) -V xV xu. (C8)
With the following relations
Px Vit ==V x (7))
Vix Vi=Fx W
Vi x (F x V) =#Vi = W, (C9)

21
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the curls of VSHs are obtained,

o
VX )+ RO, 9= =20 0) 176, 0)

8 m
X, 1le<r>]r,;"<e, o)
or r

XI(r) [3X;”(r) N xXI(r)
r

Vo x [x; (r) = 8,6, <15)]:—[

V x [x)(r) = T,"(0, $)] = ——R," (0, ¢) + ]Srfn(e, ®).
r or

Using Equations (C3), (C8) and (C10) leads to those useful equations,

Vi ViR" (0, ¢) = —(% + n + 2R (0, ¢) + 2¢; ' ()S" (0, ¢)
Vi - ViSO, ¢) = 2R (0, ) — ¢ '(m)S (0, ¢)
Vi - VT (0, ¢) = —n(n + DT, ¢).

C.2. The Second Term of Equation (C7)
The second term of Equation (C7), V - (Vu)T, is
V- AVIXI)E 0, 91T

T
—F (D10 (TN, §) © F1) + 7 {a,[}x:%r)(vlw::’(e, ¢>] }
HLV OO0, 6 @ 7] + 19 [}x,’,”(r)(vlw(e, ¢))T]
_OL L] % [F - 6, ) @ ] + a,[ }x;"m] o [F - (V6. &)

+%3rx,,'"(r)vl [0, ) ® ] + :—ZXZ’(F)W MO, P

We now process the four terms of the above equation one by one.
The second part of the first term in Equation (C12) is

R0, ¢), if W0, ¢) = R,"(0, ¢)

P d’)@f:{ 0. if W0, 6) = SO, HorT}' D ).

Zhang & Huang
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(C13)

For the second term of Equation (C12), 7 - (V®(0, ¢))T, we first list the spherical surface (or horizontal) gradients of VSHs on a

unit sphere:
ViR, (0, 6) = BO4[R; (6, §)] + b5 06RO, )]
= OpY," (0, 9)OF + ——0, Y6, 9)OF + X0, $)00 + ¥, (0, $)d,
VS (0, ¢) = () ViViY," (0. ¢)
= cl(n){ —070y — P8, + % + 30) (D9 — cot00y)
+ 0002 + &s&s[@a; + Cotﬂﬁg] by, o),
VT (0, §) = —c () Vi[—7 x ViY;"(0, §)]

PO |
= — —0’\
CZ(n){ rsin&

Dy + 370y + (00 — dd)—— (40, — cot00)
sin

— 0003 + &59[%96% + cot 989] } Y (0, ¢).
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So, the second term of Equation (C12), 7 - [V;®”(8, ¢)]”, can become

PIVR O, O =7 - [00170, )07 + 0,70, 9)57]
DY, (0, )0 + S5 0,Y," (0, 9)$

=c ' (M)S(0, ¢), (C17)
~ ~ T
PO, O = a0 - [ ~0r0pY0, 6) — BP0, 0, ) |
=870, ), (C18)

1

T
FITE O, O = —ca(n) 7 - [féf.—eaaY:'(o, ¢) + GropY," (0, ¢>]
Sin

— 170, ¢). (C19)

Now, let us process the third term of Equation (C12). According to Equation (C4), spherical surface divergence of a second-order
tensor is

T 1 A
V1 T = {aﬁﬂ)r + —oaq&];)r + 2Trr — Tpy — ]zb(/) + cot oﬂir } r
sin

1 A
+ {697100 + _—98¢T¢9 + 2T + Ty + cotO(Tyy — Ts0) } 0
sin

1 ~
+ { O0pToy + .—03¢T¢4) + 2T, + Ty + cotO(Tyy + Tyo) } ?. (C20)
sin

<—
For T = W0, ¢) ® F,

v, T = {897"9, + .Leaﬂm + 2T, + cotmr}f + Tp0 + Ty 0. (C21)
sin
So, the third term of Equation (C12), V; - [¥7'(0, ¢) ® ], now turns into

Vi - 8,0, ¢) ® 7]

dxy" @, ¢) dy’ @, ¢) m? .
= L tg—= — Y@, S, (0,
q(n)[ L cot 0 b0, 6) P+ 8]0 0)

=—a(mn(n + DR, (0, ¢) + 8,"(0, ). (C23)
Vi - [T,(0, ¢) @ 7]

x| —imd D - gy, ) - cong ™GO |;
sin 6 sin 6 sin 6

For the fourth term of Equation (C12), V; - [Vy®2 (0, »)I7. As ¥2(0, ¢) = R)' (0, ¢),

[VIR," (0, 9)I" = {VI[Y;" (0, ¢) @ F1}T

_ON0,0) 1 OVO,0) s pm 2% 4 ym 10
=g+ —— % o+ Y0, $)08 + Y0, $) . (C25)

Vi - [ViR (0, ¢)]" then becomes

Vi [ViR, (0, ) = =2R," (6, ¢) + 3¢ (m)S,"(0, ). (C26)
With the following useful relation (Dahlen & Tromp 1998),

MW = ViVi — "V + FW)T, (C27)
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we can get,

Vi [0, 9" = am)Vi - MWy, §)IF
=am©Vi - {(ViVY"(0, ¢) — FWY"(0, ¢) + [V (0, ¢)]17}

= ViSI(0, ) — 289, ) — alm)n(n + DR(O, ) + S0, ¢)

=R (0, ®) — (n* + n+ 1S} (0, ¢).
With the relation,

Vi(F x W' = (F x WV — 7 x W) + [F(F x W,

we get

Vi (VT (0, o) = e2(m) Vi - [Vi(F x VY0, o)1
=MWV - [(F x VY0, 9)] = Vi - [} @ (F x VY,"(0, ¢))]
+ Vi - [(F x Y0, ¢) ® 7]

=MWV [(F x V)Y, o)1 — Vi - [F @ T/, §)] + Vi - [T,1'(0, ¢) @ 7]

=0—-2T,"0, ¢) + T,/ (0, ¢) = —T,"(0, ¢).

C.3. The Third Term of Equation (C7)

For an asymmetrical Earth model,
= pg(r) + 3 1 (N Y70, ¢),
a,b
the third term of Equation (C7) is

Vi - VIXG () EH0, ¢)]
o

= [—f + %Vlu] [0, (NF @ w0, ¢) + %xf(r)vl‘l'fq"(ﬁ, )

or

9 m m 1 m m

- 8_/:&xn (N0, 6) + = (Vg - L0, 6)
or

For W,/(0, ¢) = R,"(0, ),

VIR, (0, ) = VY, (0, ¢) @ F + Y,(0, )P
= VY0, §) @ F + Y6, )00 + ),
and the second term of Equation (C32) is

ViYL, ¢) - ViR (0, ¢)
= [VAY(0, ¢) - Y, (0, §)17 + Y0, $) QYL (0, ¢)
= Ms[ViY2(0, ) - VY, (0. )] + ¢ (@)Y, (0, ¢) * S2(0, ).
For W)'(0, ¢) = S (0, ¢).

VIS, (0, ¢) = a(m VWY, (0, ¢)
[(1—m])/2]

=am) Y, coln, m,s)ViVi[(cos 0)"~2Iml (sin el (mOyml],

s=0
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Using the Leibniz rule twice, we get

ViVil(cos 0)% (sin B¢ ™) ] = V[ (sin Ge ™®) x k x (cos )%~ Vi cos 0]

+ Vil(cos )F x I x (sin feSti?) =17 (sin fet Mi®)]
= H{ DV Vicos 0 + HEDVi(sin 0e€™i9) @ Vi cos 6
+ H*'Vicos 0 @ Vicos 0 + H*D W Vi(sin et i)

+ H*D Vi cos 0 @ Vi(sin fel i)

+ HED W (sin e M0y @ Vi(sin feC i),
where

HED = (sin0e™i9) % k x (cos O)F!

HED = kox 1% (cos 0)F! (sin Gl midyi=1
HED =k x (k — 1)(sin feS™Mi®)! (cos )2
Hs(k,l) = (cos )% x [ % (sin PeSmi®)i=1

HED =k x 1(cos )% (sin fe (mid)=1

H%D = (cos @)% % [ % (I — 1)(sin GeCtmioy=2

ViVicos = —Vicos @ 7 — cos 0 (B9 + QASQAS)
Vi Vi(sin 0ei®) = —Vi(sin 0e’®) @ 7 — sin 000 + ¢d)
ViVi(sin e~ %) = —Vi(sinfe~ %) @ 7 — sinfe~ (B0 + ¢).
To get the VSH representation of VIY[f’ @, ¢) - ™S, (0, ¢), we need

WY, (0, ¢) - iVicos 0 = — (1Y, (0, ¢) - Vicos )7
—cosf x V1Y (0, ¢)
ViY," (0, ¢) - ViVisinBe’® = —(ViY,"(0, ¢) - Vi(sin 0e'®)) 7
— sinfe’® x VY (0, ¢)
VY, (0, ¢) - ViVisinfe @ = —(V1Y," (0, ¢) - Vi(sin Be~)) 7
— sinfe™® x Y0, ¢).
For W,'(0, ¢) = T," (0, ),

Vi{# x Vi[(cos 0)* (sin HeSmid) 1}
=V, [(sin BeS™®)  k % (cos 0 17 x Vi cos ]
+ Vil(cos B)F x I % (sin eSMi®) =17 5 7 (sin Gl Mi?)]
= HFDVi(7 x Vicos 0) + HED Vi(sin et ™i%) @ (7 x Vicos 0)
+ HPVicos 0 @ (7 x Vicosd) + HED V7 x Vi(sin feC i)
+ H*PVicos 0 @ (7 x Vi(sin fecmidy)
+ HED W (sin 0eC i) @ [# x Vi(sin e )],

where

VI(F X Vicosf)=—F x Vicosf ® F + cos@(&@ — ?)(Ab)
Vi[F x Vi(sinfei®)] = —F x Vi(sinfe’®) @ 7 + sinBe®(¢p — H)
Vi[F x Vi(sinfe )] = —# x Vi(sinfe ) @ 7 + sinfe¢(dp0 — 0).
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With

VY0, ¢) - Vi(F x Vicos 6)
= —[ViY;"(0, ¢) - (7 x Vicos )17 — cos * [ x VY, (0, $)]
VY (0, ¢) - Vi[F x Vi(sin 0e’®)]
—{ViY,"(0, ¢) - [} x Vi(sinBe™)]} 7 — sinfe’ x [ x V1Y," (0, ¢)]
ViY™(0, ¢) - Vi[F x Vi(sin fe )]

the VSH representation of VIY;’ @, ¢) - T (0, ¢) is obtained.

C.4. The Last Term of Equation (C7)
The last term of Equation (C7) is

Vi - AVIX) (e 0, H)I} T

9] A 1 m m A 1 m m
= [8—/:” + 7V1N] [0 X) ()0, ¢) @ F + 7X,l (NI, I
o

or

1 A 1 m m
+ 78rx’n”(r)V1M -0, 6) @ F + —Xa (GATTREN (D)

R m . 10u . . . m
A X" (r)F - WG, §) ® F + 78—‘r‘x,, (rF - [0, oI

For ¥'(0, ¢) = R, (0, ¢), the fourth term of Equation (C43) is

Vip - [ViR (0, I = Y0, ¢) = Vip.
For W70, ¢) = S, (0, ¢), as

[ViIViY," (0, 9)I" = iVAY" (0, ¢) — FWY," (0, ¢) + [ViY," (0, §)]F,
the fourth term of Equation (C43) turns into

Vip - [ViAY" 0, 9T = Vi - ViVIY (0, ¢) + Vi - [V, (0, ¢)] @ 7.
Also, the terms on the right hand side above are already obtained.
For W0, ¢) = T (0, ¢), (MP2 (0, ¢)] turns into

(V{7 x Vi[(cos 0)* (sin et ™io) THT
= {V[(sin BeS™®) « k % (cos @)~ '# x VicosO]}7T
+ {Vil(cos )% I * (sin GeSMi®y =17 x V(sin feS™i®)]} T
= H*D [V x Vicos )T + HED(F x Vicos ) @ Vi(sin et i)
+ H*(F x Vicosf) ®@ Vicosd + HED VA7 x Vi(sin et Mioy]} T
+ HED (R x Vi(sin e ™)) @ Vi cos 6

+ HED[R x Vi(sin 0e€™i9)] @ Vi(sin et i),
where

[Vi(? x Vicos )] =—F @ F x Vicos® — cos () — 0)
{VI[F x Vi(sin0ei®)]}T = —7 @ 7 x Vi(sinfei®) — sin 0’ (pH — H)
(Vi[F x Vi(sine )|} = —F @ 7 x Vi(sinfe~®) — sinfe~¢(30 — 0¢).
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With

ViY (O, ¢) - [MiF x VicosD]T = +cosf  [f x VY0, ¢)]
ViY7(O, @) - {VI[F x Vi(sin0e)]}T = +sinBe’® x [F x VY0, ¢)]
VY0, ¢) - (V[P x Vi(sinfe )]} = +sinfe ™ x [F x VY (0, ¢)], (C49)
the VSH representation of Viu - [T (0, $)]" is obtained.
After all these procedures in this section, V - S’ can be finally represented in VSHs. n - S’ in Section 3 can be computed with a
similar procedure as Vi - T that has been computed in this section.

Appendix D
The Final Equations

By the LOM shown in the above sections, the VSH representation of the equations on an asymmetric 3D model is obtained. In this
approach, we do not need GSSHs or Wigner 3-j symbols. Finally the dynamic equations will neither have cos @ nor sin fe®
explicitly, and they can be transformed into the following form

Y USM) % RO, 9) + V() x 80, ¢) + W () T,'(0, ¢) = 0, (D1)
where "
Uy (r) = Z LU (0] + L1V 0] + L3 W (0]
V() = Zj LETR LU (0] + LES IV (0] + LE3 W ()]
Wiy = 3D LET U (0] + LESPWV/ (0] + LES W (), (D2)
and ’

of; (r) O’ (r)
Liaay VU (01 = 3 A 10 5 =5+ 2 =5

There are several methods to solve Equation (D1), such as Runge—Kutta integration (Smith 1974), collocation method and
Galerkin method.

(D3)

Appendix E
Definitions of Coefficients c,,

() = ﬁ ED)

&) = —ﬁ, (E2)
e
caln, m) = ’“z‘n—’”++11 (E4)

con, m) = ﬁ (E6)
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(—1)*n — 29)!
2151(n — s)l(n — 2s — m)!’
cg(n, m, s) = c3(n, m)cy(n, m, s),

(n + m)!
(n—m!’

c7(n, m, s) =

co(n, m) = (="

cg(n, m, s), m>0
c3(n, myco(n, myc7(n, |ml, s), m <0’

cio(n, m, s) = {

cin,m)y=m+my(n —m+ 1).

Appendix F
Definitions of Main Linear Operators

My[P)' (cos 0)] = cs(n, m)P)" (cos 0) + cs(n, m)P,)" (cos ),
Mi[P;"(cos )] = ¢35 '(n, ;)Y (0, §),
MY, (0, ¢)] = c3(n, m)P,"(cos 9),
M5[P)" (cos 0)] = ce(n, m) {P" ! (cos ) — Mo[P" " (cos 0)]},
My[P}' (cos )] = (n + m)Mo[P,"~!(cos )] — (n — m + 2) P! (cos 0),
Ms[P)"(cos 0)] = (n + m)P," |(cos 0) — nMy[P)" (cos 6)],

M [My[M,[Y," (0, 9111, X =Y, ¢
Mg [X] = | Mio[Ms[M12[S," (0, O + Mis[Mi2[S," (6, I, X = 8,6, ¢)
Mi7[Ms[Mi3[T," (0, $)111, X=T,, ¢)

M [Y,"(0, )] = My[Ms[Mo (Y, (6, P11,
M[R" (0, )] = Y;'(0, ¢),
Mo[Y," (0, $)] = R0, ¢),

Mol (6, §)] = ¢ '(m)S; (6, ),
MY, (0, 9] = ¢ () T,"(0, ¢),

M (S, (0, P = a(n)Y," (0, ¢),
Mis[T) (6, §)] = c2(m) Y, (0. ¢),
MY, (6, ¢)] = (0. ¢).
Mis[Y)" (0. ¢)] = T;'(0. ¢).

Mg, (0, )] = Mia{ =2MsY," (0, &) + My[Y," (0, §)I} — Mys[imY," (0, ¢)],

Mo | T iru=sy
T s ifu =T
Mg[T,"] = S,
M [Ms[M, Y, (0, $)]11, X =Y, ¢
Mo[X] = { Mis[Mos[S," (0, O + Mis[Mx[S," (0, )11, X =S,"(0, ¢)
My [Myo[M3[T," (6, ®)111, X=T,0, ¢)
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MMy [My [ Y, (0, )11, X =Y, ¢)
(n* + n — m)My4[Ma[Mi2[S,)' (0, $)]11]
My [X] = —cy1(n, m) My [My[Mo[Mas[Ma [M2[S, (6, )]1111] (F21)
—icy(n, m)Ms[My[Mas[M[Mi5[S," (0, &)1, X =S,"(0, )
My [Mao[Mys[T," (0, 9111, X=T,, ¢)
) _ Mlg, ifs = 1
M21 n {Mzo, ifs = —1’ (F22)
[(n—|m|)/2]
cio(n, m, 5)(Me)"= >~ MM )MY2 0, $)11, X = Y. (0, ¢)
s=0
Mo[MP™ [Mg[RE (8, , X =R},
MEmx] = | B o[Myy™ [Mg[R, (0, $)]]] 0, 9) (F23)
cio(n, m, $)(Me)"=>~1mI[(MS5 " YM[SP (O, )11, X = S7(6, b)
s=0
M [M§™ M [T (0, )11, X =T,00, ¢)
Mo [S," (0, $)] = (n* + n 4+ m)Mo[M2[S," (6, $)]1] (F24)
+M [Mo[Mss[Ma [My2[S," (0, o111
Mys[P"(cos 0)] = P 1(cos h), (F25)
Ms[P (cos 6)] = P"~'(cos §), (F26)
M8, (0, ¢)] = +iMy[Mos[ M [My1[S," (0, #)111]. (F27)
Appendix G
Some Useful Equations of Three Basic Operators
We list some useful operations on VSHs, i.e., ¥,;" (which is similar to R)"), S," and T,".
cosd x Y, (0, ¢) = di(n, m) = Y," (0, @) + da(n, m) = ¥, (0, ¢), (G1)
where
di(n, m) = c3(n, m)cs(n, m)c3_1(n + 1, m)
dr(n, m) = cz3(n, m)cs(n, m)c{l(n — 1, m). (G2)
sn 05O s, m) V20 )+ dan, (0. 0), (©3)
where
dz(n, m) = cz(n, m) * n x c4(n, m)c{l(n + 1, m)
dys(n, m) = c3(n, m) *x n x cs(n, m)c{l(n —1,m)
— c3(n, my(n + myey '(n — 1, m). (G4)
sinf x Y," (0, (b)@ = —imT," (0, ¢) + ds(n, m)S," (0, ¢) + de(n, m)S," (0, ¢), (G5)
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where
ds(n, m) = —2d;(n, m) — ds(n, m)
de(n, m) = —2d>(n, m) — ds(n, m). (G6)
cosd * S, (0, ¢) =dy(n, m) x S," (0, ¢) + dg(n, m) = S, (0, ¢)
+do(n, m) x T, (0, ¢), (G7)
where
dr(n, m) = ci(m)[di(n, mye;” (n + 1) + ds(n, m)]
ds(n, m) = cy(m)[da(n, m)c; '(n — 1) + dg(n, m)
do(n, m) = —imc,(n). (G8)
cos 0 « T,"(0, ¢) = dy(n, m) = T," (0, ¢) + ds(n, m) = T,” (6, §)
sinfe’® « Y, (0, ¢) = dio(n, m)Y;" (0, ¢) + dii(n, m)¥;"'(0, ¢), (G10)
where
dio(n, m) = c3(n, m)c{l(n + 1, m+ Dcg(n, m)[1 — c4(n, m + 1)]
di(n, m) = —c3(n, m)c{'(n — 1, m+ Dce(n, m)cs(n, m + 1). (G11)
sinfe= % Y"(0, ¢) = dia(n, m)Y,"53'(0, ) + di3(n, m)Y"1'(0, ¢), (G12)
where
dir(n, m) = c3(n, m)c;l(n +1,m— D[+ m)ca(n,m — 1) — (n — m + 2)]
diz(n, m) = c3(n, m)c{l(n —1,m—1)(n+ m)cs(n, m — 1). (G13)
sin 0’ x (0, ¢) = dia(n, m) x S50, ¢) + dis(n, m) * S0, b)
+ dig(n, m) x T"(0, ¢), (G14)
where
dia(n, m) = c;(n)(n®* + n + m)dio(n, m) + c;(n)cs(n, m)c{l(n, m+ di(n,m + 1)
dis(n, m) = c;(n)(n® + n + m)d; (n, m) + c;(n)cs3(n, m)c{l(n, m~+ Ddy(n,m + 1)
dig(n, m) =ici(n)cs3(n, m)c;l(n, m+ 1). (G15)
sin e « T™(6, ¢) = dig(n, m) * T"5NO, ¢) + dis(n, m) * T"51(0, o) G16)
—dig(n, m) * S™TNO, ) ’
sinfe= x SM(0, ) = dy7(n, m) * SI"'(0, ¢) + dig(n, m) * S0, $)
+ dio(n, m) * T~ '(6, ¢), (G17)
where

di7(n, m) = ci(n)(n* + n — m)dia(n, m)

— c(n)cy1(n, m)cz(n, m)c{l(n, m— 1)di(n,m — 1)
dig(n, m) = cy(n)(n* + n — m)dy3(n, m)

— c(n)c1(n, m)cs(n, m)c{l(n, m— Ddy(n,m — 1)

dio(n, m) = —ici(n)c3(n, m)cyi(n, m)c{l(n, m — 1). (G18)
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sinfe~ « T, (0, ¢) = di7(n, m) = T3 (0, ¢) + dig(n, m) = T;"5'(0, ¢)
— dio(n, m) = "0, o). (G19)
Appendix H
Rotation Actions on VSHs Around z-axis
Z =1r7cosf + Vicos@. (H1)
sin@ x Y (0, )¢ = —imS," (0, ¢) + dao(n, m)T)"y (6, )
+ d21(n’ m)Tr:n—l(97 d))? (H2)
where
dy(n, m) = +2d,(n, m) + dz(n, m)
dr1(n, m) = +2d,(n, m) + ds(n, m). (H3)
X RO, 9) = —imS,;" (0, ¢) + dr(n, m)T," (0, ¢) (H4)
+d21(n’ m)Tr’ln—l(09 ¢) '
2 X S}”ln(e’ ¢) = _d7(n9 m) * T}'Iﬁ‘rl(9> (b) - d8(n9 m) * Tylln—l(e’ ¢) (HS)
+do(n, m) x 8™, ¢) — imc,(M)R"™ (0, }) ’
Zx T,'0, ¢) = di(n,m) xS,;" (0, ) + dg(n, m) x S,;" (0, ¢)
+do(n, m) x T,/"(0, ¢) + dya(n, m) * R, (0, ¢), (H6)
+d23(n’ m) * Rr:n—l(07 ¢)a
where
dyp(n, m) = —c,(n)dz(n, m)
drz(n, m) = —cy(n)ds(n, m). (H7)
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