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Abstract

The surface accuracy of the large-aperture reflector antenna has a significant influence on the observation
efficiency. Recent researchers have focused on using the finite element (FE) simulation to study the effect of
gravity and heat on the deformation distribution of the main reflector. However, the temperature distribution of the
antenna is challenging to obtain, and it takes a long time for the FE simulation to carry out FE modeling and post-
processing. To address these limitations, this study presents a surrogate model based on Extreme Gradient
Boosting (XGBoost) and deep Convolutional Neural Network (CNN) to get the deformation distribution of the
main reflector quickly. In the design of the surrogate model, using the XGBoost algorithm and sparse sampling to
solve the difficulty of obtaining the entire temperature distribution is first proposed, and then a deep CNN is
developed for estimating deformation. Based on the effect of dynamic loads on the antenna structure, a diverse data
set is generated to train and test the surrogate model. The results show that the surrogate model reduces the
calculating time dramatically and can obtain the indistinguishable deformation compared to the FE simulation.
This technique provides a valuable tool for temperature and deformation calculation of large-aperture antennas.
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1. Introduction

Large-aperture reflector antennas are widely used in
communication, radar, and radio astronomy. The surface error
and its distribution of an antenna, which are caused by dynamic
loads (e.g., gravity, heat, and wind, Sun et al. 2021), directly
determine the work efficiency of the antenna (Lian et al. 2015).
To eliminate the surface error, the active surface design is
applied to the main reflector of the fully movable antennas,
such as America GBT 100×110 m, Italy SRT 64 m, and China
TM 65 m antenna (Wang et al. 2018). Therefore, high-accuracy
and real-time deformation calculation are of great significance
to improve the efficiency of the antenna.

The studies of using finite element (FE) simulation to
analyze the deformation of the main reflector caused by gravity
and heat have been mature. In dynamic loads, gravity is the
dominant factor causing the deformation of the main reflector.
The gravity-induced deformation distribution varies with
elevation angle and can be simulated by the antenna FE model
(Wang et al. 2014; Hu et al. 2017; Bergstrand et al. 2019; Lian
et al. 2021). The temperature distribution of the antenna is
always time-varying, which will cause irregular deformation.
Therefore, studying the temperature distribution and thermal-
structure coupled analysis of the main reflector of the large-

aperture antenna is very significant. In many literatures,
through FE simulations and experimental tests, the temperature
distribution and thermal-induced deformation of the main
reflector have been studied (Greve et al. 2005; Li et al. 2012;
Liu 2016). Most of the above FE analysis applications to
calculate the gravity-thermal-induced deformation follow a
similar workflow, as shown in the left flow chart in Figure 1: (i)
manually establish the FE model of the antenna. (ii) Obtain the
approximate temperature distribution of the antenna according
to the FE method based on heat exchange theory or arranging a
large number of temperature sensors. (iii) Apply thermal and
gravity loads; perform the FE simulation by specialized
software, and then the least-squares method is used to calculate
the best-fitting paraboloid.
However, current FE simulation workflows have such

limitations: (i) theoretically, both direct measurement and
indirect calculation methods can be used to obtain the
temperature distribution of the main reflector. However, direct
measurement needs a considerable number of temperature
sensors, which will affect the surface accuracy of the antenna,
and the indirect calculation method based on thermal
environment exchange requires complex FE simulation. Most
researchers are still unable to measure the temperature
distribution of the main reflector of large-aperture antennas
accurately and quickly (Wei et al. 2021), resulting in inability
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to calculate thermal deformation accurately. (ii) The time spent
on manual FE modeling, thermal-structure coupled analysis
and post-processing is incalculable, possibly tens of minutes or
hours, which makes the FE simulation results lag behind the
deformation distribution changes. With the increasing demand
for real-time surface adjustment of large-aperture antennas, the
shortcomings of current workflows limit the application of FE
analysis to deformation calculations. In addition to the FE
simulation, other mature methods (e.g., photogrammetric
measurement, Subrahmanyan 2005, out-of-focus holography,
Nikolic et al. 2007a, 2007b; Dong et al. 2018b, etc.) have also
been used to obtain the deformation of the main reflector
surface, but the measurement accuracy depends on the
operating environment and equipment.

The emergence of machine learning provides new methods
for solving nonlinear problems. In recent years, many
researchers have used machine learning models, especially
deep learning models, to replace time-consuming and complex
works, and these models are referred to as surrogate models.
The surrogate models have been proposed in many fields, such
as medical diagnosis (Liang et al. 2017,2018), stamping quality
assessment (Attar et al. 2021; Lee et al. 2021), structural
optimization (Mai et al. 2021), and topology optimization (Sato
& Igarashi 2022). Moreover, for variables whose entire spatial
distributions are difficult to obtain, sparse sampling with the
machine learning method has been proved to be effective for
spatial distribution prediction (Qu et al. 2020; Zheng et al.
2022). The application of machine learning in the study of the
deformation of the antenna’s main reflector is not yet mature. In

Wang et al. 2022, an artificial neural network was proposed as
an approximator to fit the deformation-amplitude equation
(DAE), but the basis of the mathematical model still requires a
lot of prior knowledge.
To solve the limitations, we take TM 65 m antenna as the

research object and propose a surrogate model containing two
modules, as shown in the right flow chart in Figure 1. The
mapping module contains gravity mapping based on linear
mapping and temperature mapping based on the Extreme
Gradient Boosting (XGBoost) algorithm. The deep Convolu-
tional Neural Network (CNN) is used to calculate the
deformation distribution of the main reflector. The surrogate
model can estimate the deformation in real time and only need
sparse information containing elevation angle and temperature
data obtained by sparse sampling.

2. Overview of the Surrogate Model Method

The overall workflow of the surrogate model is shown in
Figure 2. First, dynamic loads containing gravity and
temperature from design choices are mapped to a suitable
form. The elevation angle is converted to a set of values
referred to as attitude code by a linear mapping without
parameters to be trained. For the mapping of temperature
distribution, sparse sampling is first performed by arranging a
small number of temperature feature points that represent the
temperature sensors on the main reflector, and then the
temperature data of feature points are mapped to the entire
temperature distribution of the main reflector by a nonlinear
mapping, which needs to be achieved by the trained XGBoost
algorithm. Second, the attitude code and temperature distribu-
tion are taken as the input of the deep CNN, and the
deformation distribution is taken as the output target of the
deep CNN. It should be noted that the XGBoost algorithm and
the deep CNN model are trained and validated separately
through the FE simulation data set, and then two modules are
combined to constitute a surrogate model. Once the surrogate
model is trained and tested, it can be used to monitor the
deformation of the antenna’s main reflector in real time. The
data required by this method are only the elevation angle value
and the temperature of the feature points which can be obtained
by arranging a small number of contact temperature sensors.
Based on the fact that there is still no absolutely accurate

method for calculating the temperature and deformation of the
large-aperture antennaʼs main reflector. Using the FE analysis
verified on many antennas as the standard, we compare the
surrogate model method with the FE simulation to demonstrate
its advantages. The details of each step of the surrogate model
are described in the following sections.

3. Finite-Element Simulation Dataset

To train the XGBoost model and the deep CNN model, the
FE simulation of the antenna was used to generate samples for

Figure 1. The current FE analysis workflow and the surrogate model.
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training, validating, and testing the surrogate model. Tradi-
tionally, the machine learning model requires a diverse data set
including a numerous amount of samples to train the
parameters of models (Sha & Edwards 2007). We employed
the batch application in FE software to generate samples. The
details of thermal-structural FE simulation and the process of
deformation calculation are provided in this section.

3.1. FE Simulation of the Antenna

As shown in Figure 3, the FE model of the TM 65 m antenna
was established with FE software. The antenna structure
includes the main reflector, the minor reflector, the frame
carrier, the minor reflector support, the central tube, the pitch
mechanism, the azimuth bear, the drive unit, and the actuator.
According to the actual situation, some parts were replaced by
mass-node elements in the FE model. The main reflector of the
TM 65 m antenna consists of 1008 panels, which are divided
into 14 rings. A total of 1104 actuators are used to support and
adjust the reflector surface to ensure the work efficiency of the
antenna. Therefore, the FE model of the main reflector contains
1008 elements and 1104 nodes, as shown in Figure 4.

A qualified data set should provide diverse samples to ensure
the model’s robustness. We spent a long time generating FE
models with different elevation angles, ranging from 5° to 90°.
The change in the elevation angle means that the gravity
distribution of the entire antenna has changed, which induces
the dominant deformation of the antenna. These FE models
have been verified to have a high similarity with the actual
antenna, and already applied to the deformation compensation
of the TM 65 m antennaʼs main reflector (Fu et al. 2017).

Compared with the elevation angle, the natural environment
causes the antenna temperature and deformation to be more
random and variable. A program for randomly changing the
thermal environment of the antenna FE model was established,
and the diverse temperature distributions of the entire antenna
were obtained through FE simulation, as shown in Figure 5.

The simulated thermal and gravitational loads were applied
to the antenna models with different elevation angles, and then
the structural FE simulations were computed by the FE solver.
However, for a fully movable antenna, the displacement of the

main reflector obtained by the FE simulation does not represent
the deformation of the main reflector, which should be obtained
by calculating the normal error between the deformed surface
and the best-fitting paraboloid. The best-fitting paraboloid was
fitted according to the displacement of the main reflector, as
shown in Figure 6. There are six parameters used to determine
the geometry position of the best-fitting paraboloid: Δx, Δy,
Δz, jx, jy, Δf. Δx, Δy, and Δz represent the X, Y, and Z
components of the displacement of the paraboloid vertex,
respectively; jx and jy represent the rotation angle of the
paraboloid around the X-axis and Y-axis; since the paraboloid is
symmetric about the Z-axis, jz was omitted; Δf represents the
change in focal length. For a vector represented as (x, y, z) in
the old coordinate system, it is described as ¢ ¢ ¢( )x y z, , in the
new coordinate system, and the relationship between
coordinates in the new and the old coordinate systems is
shown in Equation (1), the rotation angles jx and jy are very

Figure 2. The overall workflow of the surrogate model.

Figure 3. The FE model of the antenna at an elevation angle of 90°.
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defined as Equations (2) and (3), respectively.
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The best-fitting paraboloid expressed in the old Cartesian
coordinate system can be obtained through Equations (1)–(3)
and is shown in Equation (4) (Wu et al. 2021). The higher-
order terms of the six parameters were omitted in the
calculation process.
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The least-squares method was used to solve the six
parameters of the best-fitting paraboloid, and then the surface
normal error value between the deformed surface and the best-
fitting paraboloid was calculated. The axial error between the
deformed surface and the best-fitting paraboloid surface can be
defined as Equation (5); and the normal error can be defined as
Equation (6) based on the parabolic geometry theory (Fu et al.
2015).

d = - ( )z z 5z 1 0

d
d
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f f z
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where z0, z1, and zp represent the Z-coordinates of a node on the
best-fitting paraboloid, the deformed surface, and the design
paraboloid, respectively.
The goal of the least-squares method is to calculate the

parameters of the best-fitting paraboloid to minimize the
objective function, as shown in Equation (7). According to the
extreme value theorem of calculus, the objective function takes
the minimum value when Equation (8) is established (Wu et al.
2021).

å dD =
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M

n
2
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i

Figure 4. The main reflector of the TM 65 m antenna.

Figure 5. Temperature distribution of the main reflector.

Figure 6. The relationship between the three surfaces (the design paraboloid,
the deformed surface, and the best-fitting paraboloid).
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where M is the number of nodes on the main reflector.
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3.2. Data Preparation

Before using the data set to train the surrogate model, the
quality of the samples was evaluated to ensure that a high-
quality data set was obtained. In the batch generated samples,
there may be implausible samples that affect the accuracy of
the model. Our method focuses on calculating the deformation
caused by dynamic loads rather than the large range
deformation caused by mechanical factors, so we defined
samples containing deformation data exceeding±15 mm as
extreme samples that need to be removed. This range is the
adjustable distance of the actuators on the TM 65 m antenna
and is much larger than the deformation size caused by the
dynamic loads according to previous studies (Qian et al. 2012;
Fu et al. 2017; Dong et al. 2018a; Dong & Liu 2021). Figure 7
shows an example of an extreme sample. Overall, a sample
generation pipeline was developed to generate 5000 quality
assured samples, and each sample contains attitude, temper-
ature, and deformation data represented by a discrete set of
nodes.

4. XGBoost Model for Temperature Mapping

4.1. Sparse Sampling and the Feature Points

In the actual temperature measurement of the large-aperture
antenna, it is impossible to arrange a considerable number of

temperature sensors to obtain the entire temperature distribu-
tion. The mapping of the temperature of feature points to entire
temperature distribution is achieved by appropriate sparse
sampling and the XGBoost algorithm. Both the location and
number of feature points will affect the estimation accuracy of
the temperature distribution. Since the temperature environ-
ment of the antenna is complex, it is necessary to arrange the
feature points uniformly to eliminate the influence of different
location distribution of feature points. Therefore, the location of
temperature feature points was selected by the K-means
clustering algorithm. As shown in Equation (9), the objective
of clustering is to minimize the sum of the distance between
each node on the main reflector and the center point of the area
to which this node belongs (Hartigan & Wong 1979). The
center point of each class was selected as the feature point,
which is the location of the temperature sensor. In order to train
the XGBoost model, the temperature values of feature points
were selected as the input of the XGBoost machine learning
model; the temperature distribution of the main reflector
surface including 1104 nodes was taken as the output of the
XGBoost model.

å m= -
=

( ) D p , 9
i

M

i c
1

2
i

where M is the total number of nodes, pi is the location of node
i, ci is the area to which node i belongs, and mci

is the location
of center point.

4.2. Extreme Gradient Boosting Algorithm

The XGBoost algorithm (Chen & Guestrin 2016) is an
ensemble learning method based on the idea of “boosting,” and
its fundamental approach is to cultivate a “strong” learner with
high accuracy through multiple simple “weak” learners. The
goal of the XGBoost algorithm is to obtain accurate predictions
while preventing overfitting, which is achieved by adding
regularization terms to the loss function (Fan et al. 2018). The
XGBoost calculation workflow is shown in Figure 8. The
initial training samples are used to train the first learner, and
then the residuals between the prediction values and the label
values are calculated. The objective of the second learner is to
fit residuals, and then the sum of the first learner and second
learner will have fewer residuals. The calculation process is
repeated until the number of learners reaches the specified
value or the entire ensemble result reaches the accuracy
condition. The final prediction of the model is obtained by a
weighted combination of predictions from each learner. The
general function for the prediction of the ith sample at step t is
presented as follows:

= +-ˆ ˆ ( ) ( )y y f x , 10i
t

i
t

t i
1

Figure 7. Deformation distribution with numerical outliers.
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where ( )f xt i is the prediction result of the learner at step t; -ŷi
t 1,

a known constant, is the prediction at step t− 1; and ŷi
t is the

prediction at step t.
To avoid the overfitting problem without affecting the

computational speed of the model, the XGBoost model derives
the following analytical expression as the objective function at
step t:

å å= + W
=

-

=

( ˆ ˆ ) ( ) ( )L l y y f, , 11t

i

n

i
t

i
t

i

t

i
1

1

1

where l is the loss function, n is the total number of samples,
and W( )fi is the regularization term to prevent overfitting.

The regularization term is defined by

g l wW = +( ) ( ) f k
1

2
, 122

where γ is the complexity parameter, k is the number of leaves,
γk represents the complexity of the learner, λ is the
regularization parameter, and ω is the weight vector of leaf
nodes.

Of the 5000 samples, 3000 samples were used for training
the model’s parameters, 1000 samples were used for verifying
the model’s performance preliminarily, and 1000 samples were
used for testing the generalization of the trained model. The
model was trained using the temperature values of feature
points as input and the theoretical temperature distribution
generated by FE simulation as output. In the test process, the
root mean squared error (rms), as shown in Equation (13), and
the relative root mean square error (RRMS), as shown in
Equation (14), were selected as performance metrics to
evaluate the accuracy of the temperature distribution estimated
by the XGBoost machine learning model.

=
å -= ( ˜ )

( )
t t

M
RMS 13i

M
i i1

2

=
-

( )
t t

RRMS
RMS

, 14
max min

where ti is a theoretical temperature value at node i, t̃i is a
temperature value estimated from the XGBoost machine
learning model, tmax is the maximum temperature for each
sample, and tmin is the minimum temperature for each sample.

5. Deep Learning Model

5.1. The Input and Output of the Deep CNN

Gravity and heat, which are the main factors affecting the
surface accuracy of the antenna reflector, were considered as
the input of the deep CNN model. The gravity and temperature
from the design choice were first mapped to suitable forms for
training the deep CNN. We took the Z component of the nodes’
coordinate values in the global coordinate system as the attitude
code to completely replace the gravity information for the
following two theoretical reasons: (i) The gravity-induced
deformation is caused by changes in elevation angle. (ii)
According to the main reflector’s rotational motion, each
elevation angle corresponds to a unique set of Z-coordinate
values. Overall, the attitude code obtained from elevation angle
and the temperature distribution generated by the FE simulation
were taken as the input of the deep CNN model, and the output
of the deep CNN model was the deformation of the main
reflector surface.
It should be highlighted that the input and output of the deep

CNN model are images with a unified representation. The
interpolation method was used to transform the data into
matrices with the same size, 128× 128 pixels, as shown in
Figure 9. In order to make the network more directly learn the
relationship between input and output, the deep CNN was
trained by matrices where each pixel value represents the actual
data of temperature, attitude code, or deformation value instead
of the color value. Once the data has been processed, the input
size of the deep CNN is 128× 128× 2, and the output size of
the deep CNN is 128× 128× 1. The data was normalized by
applying Equation (15) to eliminate the influence of dimension.

=
-
-

( )x
x x

x x
, 15new

min

max min

where x is the initial value, xnew is the normalized value, xmin is
the minimum in this kind of data, and xmax is the maximum in
this kind of data.

5.2. The Structure of the Deep CNN

In this paper, a deep CNN model was developed from the
following aspects: (i) the input of the model is the attitude code
and temperature distribution of the main reflector, with
128× 128× 2 pixels; the output of the model is the
deformation of the main reflector, with 128× 128× 1 pixels.
(ii) There are many ways to improve the performance of CNN,

Figure 8. Flowchart of the XGBoost algorithm.
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especially increasing the depth and width of the CNN (Szegedy
et al. 2015); besides this, kernel size, activation function,
optimizer, learning rate, and strides also affect the performance
of the CNN. (iii) As the complexity of the network increases,
the problems (e.g., vanishing gradient, exploding gradient, and
degradation) will also arise (Nielsen 2015).

In recent years, numerous studies have proven CNNs with
U-shaped structures to be an effective architecture for image-
to-image mapping (Mendoza et al. 2021; Romaszko et al. 2021;
Tong et al. 2021; Zhou et al. 2022). A typical U-Net
(Ronneberger et al. 2015) structure contains an encoder part
and a decoder part for downsampling and upsampling,
respectively. Moreover, skip connections, which can prevent
feature information loss, link the encoder feature channels and
the decoder feature channels with the same size. Through the
improvement of U-Net, a U-Net with residual blocks
(abbreviated as Res-U-Net) was developed for computing the
deformation distribution, as shown in Figure 10. The Res-U-
Net can be divided into encoder, residual learning module, and
decoder. For all convolutional layers, we used 3× 3 kernel
size, which can make the network have fewer training
parameters than larger kernel size under the same receptive
field (Simonyan & Zisserman 2014). Except for the final layer,
each convolutional layer is followed by a batch-normalization
layer and a scaled exponential linear unit (selu), which help the
network to converge rapidly and suppress gradient anomalies,

respectively (Nwankpa et al. 2018). In each downsampling, the
convolutional layer with stride 1 for feature extraction is first
performed, and then a downsampling layer is used to compress
the size of feature images. It is to be noted that the
downsampling layer is composed of a convolutional layer
with stride 2 instead of the traditional pooling layer. This is
because the convolutional layer with stride 2 can retain feature
information better (Tong et al. 2021). The decoder part is used
to calculate the deformation distribution. The residual learning
module, which is established in the region between the encoder
and the decoder, contains six residual blocks and effectively
solves the degradation problem caused by excessive network
depth. Each residual block contains two convolutional layers
and three batch-normalization layers. The residual block can be
realized by feed-forward neural networks with “shortcut
connections” (He et al. 2016).

5.3. Training of the Deep CNN Model

All 5000 samples were divided into training, validation, and
test data sets in the same proportion (3:1:1) as before. The
proposed deep CNN was trained in the Keras backend
framework. In the training process, the mean squared error
(MSE) was selected as the loss function, which is defined by:

d d
=

å -= ( ˜ )
( )

N
MSE 16i

N
i i1

2

Figure 9. Data processing, including (a) the attitude and temperature of the main reflector, (b) the input and output data represented by a discrete set of nodes, and (c)
prepared 128 × 128 images for deep CNN training, validating, and testing.

7

Research in Astronomy and Astrophysics, 23:015001 (14pp), 2023 January Zhang et al.



where δi is a deformation value at pixel node i calculated from
FE simulation, d̃i is a deformation value estimated from the
deep CNN model, N is the number of all pixels.

Moreover, the Adam optimizer (Kingma & Ba 2014) with
default parameters of β1= 0.9 and β2= 0.999 was selected for
optimizing the loss function, and the initial learning rate was
0.001. The Keras callback APIs were employed to adjust the
learning rate and terminate the training process early by
monitoring the trend of the validation loss.

5.4. Evaluation of the Deep CNN Model

In this paper, three performance metrics were used to
evaluate the accuracy of the deformation distribution estimated
by the deep CNN model: root mean square error (rms), relative
root mean square error (RRMS), and image structural similarity

(SSIM). The image structural similarity, ranging from 0 to 1,
can offset the defect that rms and RRMS cannot measure the
similarity of deformation distribution structure. For each
sample, rms, RRMS, and SSIM are defined as Equations (17),
(18), and (19), respectively.

d d
= =

å -= ( ˜ )
( )RMS MSE

N
17i ii 1

N 2

d d
=

-
( )RRMS

RMS
18

max min

where dmax is the maximum deformation, dmin is the minimum
deformation.

m m s
m m s s

=
+ +

+ + + +

( )( )
( )( )

( )
c c

c c
SSIM

2 2
, 19r e r e

r e r e

1 , 2
2 2

1
2 2

2

Figure 10. Res-U-Net architecture of the neural network.
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where μr and μe are the mean values of deformation
distribution images calculated from FE simulation and deep
CNN model respectively, σr and σe are the standard deviations
of deformation distribution images, σr,e is the covariance of
deformation distribution images calculated from FE simulation
and deep CNN model, c1 and c2 are small constants to avoid
system errors caused by the denominator equal to zero.

6. Results

In this paper, all computations were performed on a PC with
an Intel i7-8700 CPU and 16 GB of RAM, which is equipped
with an NVIDIA GeForce GTX 1660Ti Graphics Cards.

6.1. Effectiveness of the Temperature Mapping Model

To highlight the advantages of XGBoost, two other methods,
support vector machine (SVM) and random forest regressor
(RF), were compared with the XGBoost algorithm. Table 1
presents the estimation accuracy of three models for the test
data set with different numbers of feature points. The results
showed that XGBoost has higher estimation accuracy than the
other two methods. Considering the number of feature points
and the estimation accuracy, 60 feature points were selected as
the location of the temperature sensors. Using the grid search
method, we obtained a set of hyperparameters with the best
results, achieving low rms (avg, 0.56 °C) and low RRMS (avg,
3.31%) simultaneously. The subsample and the maximum
depth of trees were set as 0.6 and 10 respectively, and the other
hyperparameters were set as the default values. The discrete
temperature data in the test data set were converted to images
by interpolation to visually compare the temperature distribu-
tions generated by FE simulation and XGBoost algorithm.
Figure 11 shows four samples sampled from the test data set.

6.2. Effectiveness of the Deep CNN Model

The deformation distributions calculated by the FE
simulation were considered approximate true data and
compared with the deformation values predicted by the deep
CNN model. The curve of training loss and validation loss over
epochs can preliminarily verify the training effect of the deep

CNN model, as shown in Figure 12. Overall, the loss curve
converges at the 120th epoch, and the training time is about 8h.
Res-U-Net exhibited an excellent performance on the test data
set, achieving low rms (avg, 96.28 μm), RRMS (avg, 2.37%),
and high SSIM (avg, 0.9977) simultaneously, and the statistical
charts are shown in Figure 13. Moreover, the approximate true
deformation distribution, the Res-U-Net estimation, and the
pixel differences between the two distributions are shown in
Figure 14, while the performance metrics are reported in
Table 2. From the difference distribution, it can be seen that the
difference in deformation distributions of the main reflector
calculated by the two methods is almost zero, and there is no
extreme local difference.

6.3. Effectiveness of the Surrogate Model

To verify the accuracy and rapidity of the surrogate model,
we executed the entire workflow in Figure 2 and the inputs of
the surrogate model were the elevation angle and the
temperature values of 60 feature points. The regenerated test
data set including 100 samples was used to compare the time
required for the FE analysis and the surrogate model method
and display the similarity of the deformation distributions
obtained by these two methods. The results of the computation
time comparison are shown in Figure 15. The average
computation time for FE analysis is 23.79 s, while the time
required for the surrogate model to perform the computation is
0.33 s. This strongly shows that our method has the ability to
predict the deformation distribution of the main reflector
quickly. It should be emphasized that the FE analysis
computation time only includes the solving time of the FE
software. Manual FE modeling, meshing and post-processing
will take a longer time, several minutes or more.
The average performance metrics of the estimated deforma-

tion distribution are 99.72 μm (rms), 2.55% (RRMS), and
0.9975 (SSIM), which indicate there is almost no discrepancy
between the deformation distribution calculated by the FE
simulation and estimated by the surrogate model. The results
are visualized for four representative samples, as shown in
Figure 16, and their performance metrics are shown in Table 3.
The sample shown in Figure 16(iv) represents one of the worst
performances in test samples, there are some minor differences,
but the overall deformation distribution is very similar. From
the results, once the surrogate model has learned the
relationship between the compound load and the deformation
distribution, FE analysis is no longer needed, replaced by the
surrogate model.

7. Discussion

The surrogate model method has high requirements on the
data, so we first generated a data set that contains a large
number of samples with diverse loads. For gravity, the data set
contains all the elevation angles of the antenna under operating

Table 1
The Performance of the Algorithms on the Test Dataset with Different Number

of Features Points

Number of
Points rms/°C RRMS

XGBoost SVM RF XGBoost SVM RF

10 1.99 2.27 2.06 11.76% 13.50% 12.05%
30 0.80 1.97 1.75 4.75% 11.73% 10.17%
60 0.56 1.94 1.69 3.31% 11.68% 9.82%
80 0.47 1.92 1.67 2.82% 11.64% 9.66%
120 0.38 1.89 1.62 2.29% 11.53% 9.41%
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conditions to ensure the diversity of gravity distribution; for
temperature, we obtain temperature samples by reasonably
changing the antenna thermal environment. Although the
temperature data are not actually measured, there are many
temperature samples in our data set (such as the temperature
distributions in Figure 5 and Figure 9) that are very similar to
those obtained in recent antenna temperature studies (Liu 2016;
Wei et al. 2021). Therefore, our data set can cover the key
features of the considered loads. After training on the diverse

data set, the results strongly indicate that the surrogate model
has learned the mapping between the gravity-thermal load and
the deformation distribution of the main reflector. In this study,
for the convenience of training, the surrogate model was
divided into two modules. The two modules were trained and
validated separately, and the regenerated test data set was used
to test the accuracy of the entire surrogate model.
In the mapping module, the attitude code is obtained by a

linear mapping that does not require training. For the
temperature mapping, after selecting feature points and training
the XGBoost model, the temperature distribution can be
obtained accurately; the average rms and RRMS can reach
0.56 °C and 3.31% simultaneously. High-accuracy estimated
temperature distribution is helpful for deformation calculation.
The recent work of Wei et al. (2021) represents the latest
research findings on the temperature distribution of the antenna.
In this work, the heat exchange theory is used for the thermal
analysis of the antenna, which has obtained satisfactory results.
However, the thermal analysis based on the FE method cannot
obtain the temperature distribution in real time. The feasibility
of using the sparse sampling and XGBoost algorithm to solve
the difficulty of obtaining the entire temperature distribution
can provide a new method for the research of antenna thermal
analysis. Hence, we are conducting further research to discuss
using heat exchange theory as prior knowledge to obtain a
more accurate temperature distribution. In the deformation
calculation module, we develop a Res-U-Net with three parts:
encoder, residual learning module, and decoder. Once the
proposed network is trained, the deformation distribution

Figure 11. Comparison of temperature distributions obtained by the FE simulation and the method of this study.

Figure 12. Deep CNN loss curve for the training process until convergence.
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calculated by Res-U-Net is highly consistent with the
deformation distribution from the FE simulation. Moreover,
there is no overfitting problem in the trained Res-U-Net, which
is reflected in the performance of the network on the test data
set, low rms (avg, 96.28 μm), RRMS (avg, 2.37%), and high
SSIM (avg, 0.9977).

In the final test stage, when we regenerated samples and only
used the elevation angle and sparse temperature data as the
input of the surrogate model, after the calculation of the two
modules, the deformation of the model output was still very
similar to the deformation produced by the FE simulation. In
practical application, our method is mainly divided into data
acquisition system and deformation calculation system. First,
the data acquisition system only needs to obtain the sparse
temperature data from the temperature sensors and the current
antenna attitude. There are 60 temperature sensors on the main
reflector, the model is PT100, and the ZJ1064 multi-point
temperature measuring instrument is used to collect temper-
ature data. The ZJ1064 can be equipped with 64 temperature
sensors at most at the same time, and the collection speed can

reach 30 temperature points per second. Therefore, a ZJ1064
can collect all temperature data in about 2 s. The current
antenna attitude can be obtained at any time through the
antenna monitoring system. Second, the deformation calcul-
ation system uses the collected data to calculate the
deformation according to the process shown in Figure 2 which
takes about 0.33 s. The surrogate model method does not
require complex numerical simulation process like the FE
method and iterative algorithm like the phase recovery method,
so it greatly shortens the calculation time. Although the training
of the model takes about 8h, it is a one-time process. In
conclusion, our method is theoretically sufficient to resist the
deformation that changes rapidly with time and meets the real-
time requirement of large-aperture antenna deformation
compensation.
To the best of our knowledge, this is the first study to use the

surrogate model method based on machine learning and deep
learning to rapidly and accurately estimate the temperature and
deformation of an antennaʼs main reflector. The motivation for
this work is that the temperature analysis for large-aperture

Figure 13. Statistical charts of the test data set, including (a) bar graph of the average rms, RRMS, and SSIM values, with error bars representing the standard
deviation, (b) histogram of rms, (c) histogram of RRMS, and (d) histogram of SSIM.
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antennas is still in the numerical analysis stage, and the manual
FE deformation calculation of the antenna is time-consuming
and complicated.

The limitations of this study are as follows: (i) this study is
concerned about gravity-thermal-induced deformation but
ignores wind loads. This is because the average wind loads
mainly affect the pointing accuracy of the antenna rather than
the surface accuracy (Xu et al. 2021). (ii) The purpose of this
study is to evaluate the feasibility of the surrogate model to
calculate the deformation distribution, so the FE model is
simplified to facilitate the study. These limitations may lead to
a slight deviation of the data set generated by the FE simulation
from the actual deformation distribution of the main reflector.

However, these limitations can be addressed in future work.
Because the research on the effect of wind loads on the antenna
structure becomes more mature, a comprehensive dynamic load
including gravity, heat, and wind can be considered as the input

Figure 14. Deformation distributions from the FE simulation and the Res-U-Net, and the pixel-wise differences between them.

Table 2
Values of the Performance Metrics of the Samples Sampled from the Test

Dataset

rms/μm RRMS SSIM

(i) 79.39 2.73% 0.9982
(ii) 114.26 2.19% 0.9972
(iii) 56.82 2.25% 0.9991
(iv) 54.92 2.08% 0.9991

Figure 15. Computational time comparison between the FE simulation
(excluding pre-processing and post-processing) and the surrogate model
method: the five lines from top to bottom in the box plot represent the
maximum, upper quartile, median, lower quartile, and minimum.
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of the surrogate model in the follow-up research. In addition,
based on the ability of neural networks to perform transfer
learning, the performance of CNN can be further improved by
using data sets obtained by more accurate deformation
measurements. This is also one of the advantages of the
surrogate model method.

8. Conclusion

This paper has proposed a novel surrogate model method to
calculate the deformation distribution of the main reflector of
the antenna. According to the conducted research, the main
conclusions are as follows:

(i) A two-module surrogate model is proposed. The first
module maps the sparse input information to the attitude code
and temperature distribution of the entire main reflector, and
the second module calculates the deformation distribution.
(ii) To solve the problem that the temperature distribution is

difficult to obtain, a new temperature measurement method,
which could predict the entire temperature distribution
accurately with no more than 60 sampling points, is proposed.
(iii) A deep CNN with residual blocks is used to accurately

complete the deformation distribution estimation in real time
from temperature distribution and attitude code of the main
reflector.
(iv) The final test results show that the surrogate model

method can complete the calculation of the deformation
distribution within 1 s, and the calculation results of the
surrogate model are indistinguishable from the FE simulation
results.
The method proposed in this study can obtain the surface

accuracy of the main reflector of the antenna with a limited
amount of data and does not require researchers to spend too
much time learning the professional knowledge of the
deformation calculation of the main reflector. In the follow-

Figure 16. The visualized results of the regenerated test data set.

Table 3
Values of the Performance Metrics of the Samples Sampled from the

Regenerated Test Dataset

rms/μm RRMS SSIM

(i) 85.68 2.33% 0.9983
(ii) 71.52 2.02% 0.9984
(iii) 57.11 2.11% 0.9992
(iv) 122.21 3.91% 0.9967
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up work, the estimation accuracy of the surrogate model can be
further improved based on transfer learning.
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