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Abstract

Currently, data-driven models of solar activity forecast are investigated extensively by using machine learning. For
model training, it is highly demanded to establish a large database which may contain observations coming from
different instruments with different spatio-temporal resolutions. In this paper, we employ deep learning models for
super-resolution (SR) of magnetogram of Michelson Doppler Imager (MDI) in order to achieve the same spatial
resolution of Helioseismic and Magnetic Imager (HMI). First, a generative adversarial network (GAN) is designed
to transfer characteristics of MDI onto downscaled HMI, getting low-resolution HMI magnetogram in the same
domain as MDI. Then, with the paired low-resolution and high-resolution HMI magnetograms, another GAN is
trained in a supervised learning way, which consists of two streams, one is for generating high-fidelity image
content, the other is explicitly optimized for generating elaborate image gradients. Thus, these two streams work
together to guarantee both high-fidelity and photorealistic super-resolved images. Experimental results demonstrate
that the proposed method can generate super-resolved magnetograms with perceptual-pleasant visual quality.
Meanwhile, the best PSNR, LPIPS, RMSE, comparable SSIM and CC are obtained by the proposed method. The
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source code and data set can be accessed via https://github.com/filterbank /SPSR.
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1. Introduction

Nowadays, more and more advanced solar Magnetographs
are being developed to measure magnetic field strength and
polarity of the Sun, for studying the source and evolution of
solar magnetic field. However, different magnetographs have
different resolutions, noises, saturation levels and other
specifics. For example, the Helioseismic and Magnetic Imager
(HMI; Scherrer et al. 2012; Schou et al. 2012) was operated
since 2010 onboard the Solar Dynamics Observatory (SDO;
Pesnell et al. 2012). It can provide solar magnetogram of 0”5
per pixel resolution, magnetic intensity and vector magnetic
field. The Michelson Doppler Imager (MDI; Scherrer et al.
1995; Domingo et al. 1995) was operated from 1995 to 2011
onboard the Solar and Heliospheric Observatory (SOHO),
providing solar magnetogram of 2” per pixel resolution. These
two magnetographs have different spatial resolutions, which
impedes the joint application of them in the same forecasting
task. Super-resolving the MDI magnetogram into the resolution
of HMI magnetogram, we can obtain a solar flare database
containing magnetograms for more than two decades, benefit-
ing solar flare forecasting greatly.

The region with stronger magnetic field than its surrounding
region in the Sun is named active region (AR). The AR is the main
source of of energetic phenomena (e.g., solar flare and coronal

mass ejection (CME)). High-resolution of AR is crucial for
probing mechanism behind violent solar bursts which are of great
interest to scientists. In addition, uniform resolution magnetogram
across different telescopes is very beneficial to statistical modeling
of solar activity forecasting. Thus, super-resolution (SR) of AR/
magnetogram is of great significance in both solar physics and
solar activity forecasting. Recently, deep learning-based SR has
been investigated in solar astronomy (Xu et al. 2019; Xu et al.
2020; Yu et al. 2022). Anna Jungbluth et al. (Jungbluth et al. 2019)
leveraged HighRes-Net (Deudon et al. 2019) to super-resolve the
MDI magnetograms to the same resolution of HMI magnetograms.
Sumiaya Rahman & Yong-Jae Moon (Rahman et al. 2020) applied
two deep learning-based networks to enhance the HMI magneto-
grams by a factor of four, and compared the generated HMI
magnetograms with the Hinode/Solar Optical Telescope Narrow-
band Filtergrams (NFI) magnetogram. However, Jungbluth et al.
(2019) is about SR of full-disk magnetogram. In addition, it uses
overlapped magnetograms between MDI and HMI from 2010 to
2011. This time interval has only few ARs, resulting in low
efficiency of SR of ARs. Rahman et al. (2020) only super-resolves
the bicubic-downsampled HMI magnetograms, not concerning
real-world scenarios.

SR reconstructs high-resolution (HR) image from low-
resolution (LR) image (Freeman & Pasztor 1999). Deep
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learning-based SR has achieved promising performance of both
quantitative and qualitative (Kim et al. 2016; Lim et al. 2017;
Zhang et al. 2018b; Mugeet et al. 2019). Most state-of-the-art
SR models impose bicubic downsampling on HR images to get
LR images paired with HR images. However, bicubic down-
sampling may alter image characteristics, leading to a serious
problem that the downsampled LR image has distinct image
characteristics different from that of real-world image, namely
domain difference, including sensor noises, blur and other
specifics (Lugmayr et al. 2019). This would lead to the
performance drop drastically when the trained model is applied
to real-world scenarios. Therefore, to overcome the mentioned
problem, SR methods recently applied an unsupervised
generative adversarial network (GAN) model to first conduct
domain migration. Manuel Fritsche et al. (Fritsche et al. 2019)
proposed DSGAN to introduce natural image characteristics
into bicubic-downsampled images. The unsupervised DSGAN
can be trained on HR images, thereby generating LR images
with the same characteristics as the natural LR images. Then,
the paired LR and HR images constitute a database for training
SR model by supervised learning. Recently, GAN based SR
network has been verified to recover photorealistic images with
high-fidelity as the target images (Ledig et al. 2016; Sajjadi
etal. 2017; Wang et al. 2018; Soh et al. 2019). Cheng Ma et al.
(Ma et al. 2020) proposed a structure-preserving SPSR model
to generate perceptual-pleasant details, which leverages
gradient information as the gradient branch to improve the
details of SR results.

General images, in contrast to magnetograms, usually have
clear semantic information and rich texture structure. There-
fore, super-resolution of general image mainly concerns
recovering semantic information, such as edge, structure and
texture, which is closed related to perceptual visual quality.
Moreover, because the structure of general images is more
complex, the network of SR for general image is more
complicated. In contrast, super-resolution of magnetogram is
more concerned with the fidelity, the invariance of the physical
parameters of the magnetic field (e.g., magnetic flux remains
constant).

The SOHO/MDI (2”) and the SDO/HMI (0”5) are different
in noise characteristics, saturation, spectral inversion techni-
ques and other physical characteristics, resulting in two
different domains of magnetograms. To address domain
difference problem, we first leverage DSGAN (Fritsche et al.
2019) to perform domain migration, where the input is an HR
HMI magnetogram, the output is an LR HMI magnetogram in
the same domain as the MDI magnetogram. Then, a two-
channel /branch GAN model, namely structure-preserving
super resolution (SPSR) (Ma et al. 2020) is performed to
super-resolve MDI magnetogram. The SPSR takes into account
gradient preservation and enhancement, which benefits to
recovering the gradient of magnetogram. The gradient of
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magnetogram is a direct measure of magnetic gradient field on
the surface of the Sun. Therefore, maintaining and enhancing
the gradient is essential for generating magnetograms with both
pleasant visual quality and high fidelity.

In brief, there are two key points in the proposed method for
SR of magnetogram. On the one hand, the DSGAN method is
first employed to accomplish domain transferring/transforma-
tion. It alters image characteristics of LR magnetogram directly
downscaled from HR HMI magnetogram, converting it to the
one in the same domain as MDI magnetogram. Thus, a
database consisting of LR&HR magnetogram pairs can be
prepared for the following supervised learning of SR model.
On the other hand, the SPSR Ma et al. (2020) is employed to
leverage image gradient through an additional network branch
to generate pleasant structures of magnetogram. In natural
image, gradients coincide with sharp edges of local image
objects. Moreover, gradients of a magnetogram are direct
measures of the magnetic field gradients on the surface of the
Sun. However, Jungbluth et al. (2019) only leverages gradient
loss in the HighRes-Net, which makes the results generally
suffer from geometric distortions. Hence, we adopt SPSR
method with both gradient loss and separate gradient branch to
generate perceptual-pleasant magnetograms.

2. Data

SDO/HMI started observation from 2010, recording photo-
spheric vector magnetic field at 0”5 spatial resolution for every
45 s, obtaining magnetograms of size 4096 x 4096. SOHO/
MDI was operated from 1995 to 2011 with spatial resolution of
2" and temporal resolution of 96 minutes, obtaining magneto-
grams of size 1024 x 1024. In this paper, we super-resolve
magnetograms of active region rather than full-disk magneto-
grams. We downloaded the HMI magnetograms of active
region from JSOC and imaged them. The MDI magnetograms
of active region are extracted from full-disk MDI magneto-
grams given coordinates of active regions. MDI and HMI are
two different devices, not only differ in resolution. Thus, there
exists domain difference between MDI magnetogram and HMI
magnetogram. To mitigate domain difference, a DSGAN
model is trained to fulfill domain transfer, generating LR
HMI magnetogram complying with the domain of MDI
magnetogram. Using the well-trained DSGAN, we collected
70,064 LR and HR HMI magnetogram patch pairs from 2010
May to 2014 May to construct a training data set for training
the SPSR model. The validation set contains magnetogram
patches from May 2014 to 2014 November. The HMI
magnetograms from 2014 November to 2017 April and the
MDI magnetograms from 1996 July to 2010 December
constitute the testing data set. It should be pointed that the
magnetogram patches of the same size are used for model
training, while magnetograms of any size can be the inputs of
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Figure 1. Architecture of the unsupervised DSGAN model.

Table 1
The Details of the Datasets for the SPSR Model
Train Set Validation Set Test Set
Date 2010/05-2014/05  2014/05-2014/11 HMI:2014/11-
2017/04
MDI: 1996/07-
2010/12
Number of 70,064 8509 HMI: 107
samples MDI(2010): 58
MDI(1996-
2010): 145
Resolution LR:32 x 32 LR:32 x 32 Random
HR:128 x 128 HR:128 x 128

SPSR model for inference. The details of training, validation
and testing data sets are provided in Table 1.

3. Method

As mentioned above, the overall framework of our method
consists of two stages. In the first stage, the DSGAN model is
employed to accomplish domain transferring, converting directly
bicubic-downscaled HMI magnetograms to the ones in the same
domain as MDI magnetogram. Then, a database consisting of
paired LR&HR magnetograms in the same domain can be
provided for the second stage of supervised learning. In the
second stage, a supervised SR model, namely SPSR, is trained

over the established database in the first stage. Usually, SR may
generate super-resolved images with undesired geometric distor-
tions or twisted structure. To alleviate this problem, the SPSR is
investigated for magnetogram SR in this paper.It exploits gradient
as the prior knowledge. Gradient is the direct measure of magnetic
gradient field on the surface of the Sun. The SPSR model can
improve the subjective visual performance with rich small-scale
structures and sharp edges. We describe these two stages in detail
as follows.

3.1. Unsupervised DSGAN Model

In this part, we describe the overall structure of the DSGAN
as shown in Figure 1, where the DSGAN is exploited to
generate LR images in the domain Z, given the corresponding
HR images in the domain Y. First, we downscale the HR
images using the bicubic downsampling method to obtain the
LR images y;, = B(y). y |, is in the domain Y| instead of the
expected domain Z. To transfer y |, to the domain Z, a generator
Gy,z is applied to y|, to learn a mapping from Y| domain to Z
domain, namely Z; = G(y;). To train Gy z, a standard GAN
(Goodfellow 2016) with an additional discriminator D is
employed. The discriminator D is used to distinguish the output
and the source images. The output image G(B(Y)) is regarded
as the fake sample, while the source image in the domain Z is
regarded as the real sample.

Network Architecture: The generator network contains several
residual blocks (He et al. 2015) with a short skip connection.
Each block includes two convolutional layers with strides of 1
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Figure 2. Architectures of the supervised SPSR model.

and a RELU activation function in between. We use 3 x 3 filters
in all convolutional layers. As the downsampled image low
frequency information remains and the high frequency informa-
tion loses, we apply discriminator D only on the high frequency.
The discriminator contains four convolutional layers with 5 x 5
kernels. Between each layer we apply LeakyReLU activations.
The number of feature maps is increasing layer by layer, where
the input channel is 3, then increases to 64, 128, 256. Finally, the
output LR images of the generator and the source LR images are
fed into the discriminator.

Loss Function: To train the DSGAN model accurately, we
utilize multiple loss functions with content 10sS Lcongents
perceptual loss Ly, and adversarial loss L,q,. As the content
attach importance to the low frequencies, we define a Gaussian
low-pass filter as w;. To keep the low frequencies constant, we
apply an L; loss to be the content loss, as expressed by
Equation (1):

1 n
Lcontent = ;Z ||WL(G(yib)) - WL(yJ,b)Hl €))
i=1

where n represents the batch size.

Perceptual loss has been proposed in Johnson et al. (2016),
which is effective in image restoration. It contains semantic
information in the features. We apply the pre-trained VGG16
network to extract the features. It can be defined as follows:

Lyw = %; 165G Gy,) — 6%, ®)

where ¢; represents the output features of the ith layer. The
bicubic downsampling method can only preserve low frequen-
cies of an image, resulting in the loss of high frequencies of an
image. Therefore, we apply the GAN loss (i.e., lyen and lgig)
only to the high frequencies, where wy represents a Gaussian
high-pass filter. The discriminator contributes to distinguishing
the LR image y |, and the source LR image on high frequency.
The GAN loss makes the generated LR image in the domain 2
close to the source image in the domain Z. The GAN loss is

given as:
Lgen = —E[log D(wu (Gy—z(y))] (3)
Lgise = —E[log D(wi () + log D(wu (Gy—z(y)]  (4)
In conclusion, the overall loss is given by:
Loy = MitLiow + Ai2Lper + Ai3Lgen + MiaLaise )

where )\, and )\, represent the weights of pixel loss and
perceptual loss, respectively. Az and )4 are the weights of the
adversarial loss.

3.2. Supervised SPSR Model

After domain transformation, the output LR images with the
corresponding HR images constitute the image pairs. The
supervised SPSR model is then trained over the prepared LR-
HR image pairs. The SPSR model with gradient guidance
preserves finer structure and high fidelity of the images.
Because the gradient map reveals the sharpness and finer
textures of an image, we use it to guide the super-resolution of
the images. A gradient branch is used to generate the high
resolution gradient maps from the LR images, providing
gradient information to the SR branch.

Network Architecture: An overview of the SPSR model is
depicted in Figure 2. The network consists of the SR branch
and the gradient branch. The SR branch is divided into four
modules: shallow feature extraction, high-frequency feature
extraction utilizing Residual in Residual Dense Block (RRDB)
proposed in the ESRGAN (Wang et al. 2019), fusion module
and reconstruction module. The shallow feature module
includes one convolution layer with a 3 x 3 filter with feature
maps of size 64. The high-frequency feature extraction module
contains 23 RRDB blocks and one long skip connection. The
fusion model contains one fusion block which fuses the feature
maps from the two branches together. Finally, the SR image is
reconstructed through the reconstruction module, which has
one RRDB block and a convolutional layer. The gradient
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Figure 3. Visual comparison among LR, HR, our SPSR model, HighRes-Net and bicubic method on HMI images. From top to bottom, the first, third and fifth rows
are full-images, and the others are zoomed-in patches.
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Figure 4. Visual comparison among LR, HR, our SPSR model, HighRes-Net and bicubic method on 2010 MDI images. From top to bottom, the first and third rows

are full-images, and the others are zoomed-in patches.

branch consists of multiple gradient blocks which are employed
to extract higher-level features. In addition, the gradient branch
incorporates the middle-level features from the SR branch,
which benefits to recovering the gradient maps. Finally, the SR
branch integrates the generated SR gradient maps by the
gradient branch to guide SR reconstruction in turn.

Loss Function: We utilize multiple loss functions containing
common pixel-wise loss, perceptual loss, adversarial loss and
gradient loss to train the model. The gradient loss consists of
gradient pixel-wise loss and gradient adversarial loss. Both of
them are applied to the gradient map of the generated SR image
and HR image. The gradient pixel-wise loss and the gradient

adversarial loss are given by:

1X 1 -
Lpx = ;Z |M(GU™R)) — MIMR)|,
i=1

Lyh = —%Z[l — log DM (G(I**)))]

i=1

- %Z[logD(M(IHR»]
i=1

L = —%; [log D(M (G (I®)))]

(6)

(N

®)
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Figure 5. Visual comparison among LR, our SPSR model, HighRes-Net and bicubic method on the MDI magnetograms. From top to bottom, the first and third rows

are full-images, and the others are zoomed-in patches.

4. Results and Discussion
4.1. Implementation Details

Model training details: We downsample HR HMI magneto-
grams by the DSGAN method to get LR HMI inputs and only
consider the scaling factor of 4 in the SPSR model. First, we
utilize DSGAN to generate the LR HMI magnetograms in the

similar domain to the MDI magnetograms. For training the
DSGAN network, we crop 128 x 128 HR HMI magnetograms
patches and 32 x 32 LR MDI magnetograms patches; the batch
size is 16. We train the DSGAN network with 400 epochs and
use the Adam (Kingma & Ba 2014) optimizer with 3=0.5.
The initial learning rate is 2 x 10~* for the generator and
discriminator and decayed with the epochs.
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Figure 6. Visual comparison among LR-bicubic, LR-DSGAN, HR, our DSGAN-SPSR model and Bicubic-SPSR on HMI images, From top to bottom, the first row is

full-images, and the second is zoomed-in patches.

Table 2 Table 3
Comparisons of Models on Test HMI Dataset with PSNR, SSIM, LPIPS,CC Comparisons on MDI Dataset (2010) with Respect to PSNR, SSIM, LPIPS, CC
and RMSE and RMSE
Method PSNR SSIM LPIPS CcC RMSE Method PSNR SSIM LPIPS CC RMSE
Bicubic 36.3236 0.9489 0.3501 0.9844 17.9401 Bicubic 34.7284 0.9070 0.5197 0.8669 21.1758
HighRes-Net 27.783 0.9606 0.1758 0.9867 48.3778 HighRes-Net 27.501 0.9171 0.3927 0.8723 49.4365
SPSR-GAN 36.4567 0.9595 0.0818 0.9863 17.6419 SPSR-GAN 35.4178 0.9240 0.3607 0.8721 19.5870

Second, the generated LR-HR HMI magnetogram pairs are
used to train the SPSR model. We randomly crop patches of
size 32 x 32 and patches of size 128 x 128 from LR HMI
magnetograms and the corresponding HR magnetograms,
respectively. In addition, we train the model for 200 epochs
and use the Adam optimizer with 5; = 0.9 and 3, = 0.999. The
learning rate is set to 1 x 107%, and it decayed to half by every
1000 iterations. We optimize the model using pixel loss,
perceptual loss, GAN loss and gradient loss. Because the
structure of the magnetograms is not complicated, the weights
of the gradient loss and other image-space loss are different for
the trade-off. All the experiments are implemented by using
PyTorch 1.6.0.

Evaluation metrics: For quantitative evaluation, we employ
PSNR, Structure Similarity (SSIM) (Wang et al. 2004),
Learned Perceptual Image Patch Similarity (LPIPS) (Zhang
et al. 2018a), correlation coefficient (CC) and root mean square
error (RMSE) to evaluate our method. PSNR represents the
error between the corresponding pixel points, reflecting the
fidelity of the generated images. SSIM measures the image

similarity in terms of brightness, contrast and structure.
However, the two measures do not take into account the visual
recognition and perception characteristics of the human, which
makes the two measures are poorly related to the human
subjective perception. Therefore, we consider the LPIPS as the
primary metric for comparison. LPIPS has the best correlation
with both image similarity and human perception. In addition,
the physics-based CC and RMSE metrics are computed over
the total signed magnetic flux to evaluate the super-resolved
solar magnetograms. RMSE measures the deviation between
the generated magnetic flux and the observed magnetic flux.
RMSE is more sensitive to the outliers. The CC reflects the
degree of linear correlation between the generated magnetic
flux and the observed magnetic flux. Namely, the CC and
RMSE reflect the trend and the true value consistency,
respectively. The RMSE and CC metric are calculated by:

N GT SR |2
N GT —
RMSE = \/Z‘=1|| v | )
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Figure 7. Visual comparison among LR, our DSGAN-SPSR and Bicubic-SPSR model on MDI images. From top to bottom, the first is full-images, and the second is

zoomed-in patches.

Table 4
Quantitative Comparisons on the Dataset of HMI Magnetograms with
Respective to PSNR, SSIM, LPIPS, CC and RMSE

SR method PSNR SSIM LPIPS CcC RMSE

DSGAN + SPSR 36.4567 0.9595 0.0818 0.9863 17.6419

Bicubic + SPSR 31.3783 0.9202 0.2261 0.9647 31.4529
JGT _ "JGTy(JSR _ SR

CC = 2 ) ) (10)

N \/Z(IGT — [OT)2y (ISR _ SRy

where N, I°T, PR, 16T and ISR are the total number of testing
data, the observed magnetic flux, the generated magnetic flux,
the average observed magnetic flux and the average generated
magnetic flux, respectively.

4.2. The Comparison of Super-solved Results on HMI

Quantitative Comparison: In this section, we evaluate our
model on the synthetic LR HMI magnetograms. We compare

our model with other two methods including bicubic interpola-
tion and a deep learning model named HighRes-Net. The
HighRes-Net has been applied on solar magnetograms super-
resolution. In the quantitative evaluation, the results of PSNR,
SSIM, LPIPS, CC and RMSE are presented in Table 2. From
Table 2, we see that our SPSR model obtains the best PSNR,
LPIPS, RMSE, comparable SSIM and CC. Our method
surpasses other two methods by a large margin in terms of
LPIPS benefiting from the gradient-space guidance for preser-
ving geometric structures. Although HighRes-Net obtains the
best SSIM values, it obtained the worst RMSE and PSNR
values. This is due to the large deviation of the generated
magnetic flux from the observed magnetic flux in the strong
magnetic fields. The bicubic method obtains the second best
PSNR values, it is more like a PSNR-oriented interpolation
method generating blurred images. In addition, the CC value is
almost equal to the HighRes-Net method, while the RMSE
values surpass HighRes-Net by a large margin, indicating that
our method has good stability while generating magnetic flux
values are closer to the observed magnetic flux value.
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Figure 8. Visual comparison among LR, HR, complete SPSR model and SPSR model without gradient guidance on HMI images. From top to bottom, the first is full-

images, and the second is zoomed-in patches.

Qualitative Comparison: We show a visual comparison of
our SPSR model, HighRes-Net and bicubic method. From
Figure 3, we observe that our method produces perceptual-
pleasant results which are more realistic and natural. For the
first magnetogram observed on 2015 January 3, our SPSR
method can recover small-scale magnetic structures with fewer
artifacts. Moreover, SPSR model can produce clear polarity
inversion line and sharper edges. The bicubic method and
HighRes-Net produce blurry magnetograms. Then, we apply
these methods on MDI magnetograms, the results of which are
shown in Figures 4 and 5.

4.3. The Comparison of Super-solved Results on
Real MDI

In this section, we evaluate our model on the LR MDI
magnetograms in real scenarios. MDI and HMI observations
overlapped from 2010 to 2011. However, there exists a slight
time difference of image capture time, resulting in small
deviation of magnetogram between MDI and HMI. We present
the quantitative and qualitative comparisons of SR results over
paired data of MDI and HMI in 2010. The quantitative
comparison is listed in Table 3. We can observe that our
method achieves the best performance over MDI data set in
terms of almost all the metrics. The correlation coefficient (CC)
and root mean square error (RMSE) metrics are calculated from
total signed magnetic flux. The quantitative comparison shows
that our method is effective to the real MDI magnetogram. The

10

qualitative experimental results are presented in Figure 4,
where the magnetograms were observed on 2010 May 1 and
2010 November 16. From Figure 4, our method can produce
small-scale structures of magnetic field, with sharper edges
than HighRes-Net and Bicubic methods, which is more close to
the target magnetogram in both positive and negative magnetic
regions. However, the results of the HighRes-Net and Bicubic
methods are much more blurred than the SPSR method. All
three methods produce a better distribution of magnetic flux.

Figure 5 presents a comparison on MDI observed on 2003
October 31 and 2000 June 7 of our SPSR method, HighRes-
Net and bicubic. Since the two MDI magnetograms have no
ground truth, we only show the visual quality. For the image in
Figure 5, our SPSR model has generated relatively clear
magnetograms with detailed information and preserves finer
geometric structures. In contrast, the HighRes-Net and the
bicubic method produce blurred magnetograms including
unnatural artifacts. The structures in SPSR method are clear
without severe distortions, while other methods fail to show a
satisfactory appearance for the objects.

4.4. Ablation Study

In this section, we conduct two experiments to validate the
necessity of the different downsample methods and the gradient
guidance. First, we compare our DSGAN model and the bicubic
downsample method. We obtain two data sets containing LR-HR
HMI magnetogram pairs by the two methods. We feed the two
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Figure 9. Visual comparison among LR, HR, complete SPSR model and SPSR model without gradient guidance on MDI images. From top to bottom, the first is full-

images, and the second is zoomed-in patches.

Table 5
Comparison of SPSR Model with/without Gradient Guidance
SR method PSNR SSIM LPIPS CC RMSE
SPSR 36.4567 0.9595 0.0818 0.9863 17.6419
SPSR w/o0 Grad 35.6153 0.9580 0.1071 0.9836 19.4283

data sets to train the SPSR model separately. Our quantitative
results are provided in Table 4 reporting PSNR, SSIM, LPIPS,
CC and RMSE. It is observed that the performance of the
DSGAN method is much better than the bicubic method in all
metrics, which demonstrates the effectiveness of the domain
transformation. We provide visual results in Figures 6 and 7
testing on DSGN-LR HMI and MDI magnetograms. In Figure 6,
we see that the bicubic-LR HMI magnetogram and DSGAN-LR
HMI magnetogram exit some differences. For example, the
bicubic-LR HMI magnetogram is clean in the clean domain
resulting from it alters the characteristics of the HR HMI
magnetograms. The DSGAN model enables the generated LR

11

HMI magnetograms in the similar domain with the MDI
magnetograms. The bicubic downsampling method produces
blurred magnetograms with many artifacts and incorrect structure
in Figures 6 and 7. The result indicates that bicubic method is not
applicable to super-resolution of the MDI magnetograms. In
contrast, our DSGAN model greatly enhanced the performance. In
Figure 6, the generated SR HMI magnetogram is consistent with
the HR HMI magnetrograms with sharper edges and finer
geometric features. In Figure 7, the generated MDI magnetogram
has clear edges and small-scale magnetic structures. Therefore,
our DSGAN is more applicable to the super-resolution of the MDI
magnetograms.

We conduct the second experiment to validate the effectiveness
of the gradient loss and gradient branch. We compare the SPSR
without the gradient loss and gradient branch with the complete
SPSR model. Quantitative comparison is presented in Table 5. We
see that our complete SPSR model gets the best metrics, which
demonstrates that gradient guidance can improve the model
performance. The qualitative results presented in Figure 8. The
complete SPSR model recovers the HMI magnetogram with
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sharper edges and pleasant structure. However, the SPSR model
without the gradient guidance recovers a blurred HMI magneto-
gram with incorrect structure. Figure 9 shows the visual results on
the LR MDI magnetogram. Our complete SPSR model can
recover photorealistic magenetograms without many distortions.
The SPSR model without gradient guidance fails to reconstruct
MDI magnetograms with clearly serrated structure. This illustrates
the important role of gradient guidance for super-resolving the
magnetograms with correct structure.

5. Conclusions

In this paper, a super-resolution model for upscaling MDI
magnetogram into the one with the same resolution as HMI
magnetogram, so that a large-scale database containing both MDI
and HMI with uniform spatial resolution is built. The database
provides continuous observation of solar magnetogram from 1996
to the present, which is fundamental for operating statistical
forecasting of solar activities. In our case, there is no correspon-
dence between MDI and HMI magnetograms, so we first propose a
GAN model to generate downscaled magnetograms with the same
resolution as MDI from HMI, meanwhile transfer MDI domain
knowledge onto generated magnetograms. Through this way, we
can get the correspondences of LR and HR magnetograms, which
are then fed into another GAN for training a super-resolver, which
can be applied to MDI to generate HR magnetograms with the
same resolution as HMI. It should be pointed that the novelty
concerning our model lies in a two-stream GAN model, which
explicitly optimizes gradient preserving through a separate stream
besides the other stream for optimizing image content fidelity.
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