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Abstract

Energetic X-ray radiations emitted from various accretion systems are widely considered to be produced by
Comptonization in the hot corona. The corona and its interaction with the disk play an essential role in the
evolution of the system and are potentially responsible for many observed features. However, many intrinsic
properties of the corona are still poorly understood, especially for the geometrical configurations. The traditional
spectral fitting method is not powerful enough to distinguish various configurations. In this paper, we intend to
investigate the possible configurations by modeling the polarization properties of X-ray radiations. The geometries
of the corona include the slab, sphere and cylinder. The simulations are implemented through the publicly available
code, Lemon, which can deal with the polarized radiative transfer and different electron distributions readily. The
results demonstrate clearly that the observed polarizations are dependent heavily on the geometry of the corona.
The slab-like corona produces the highest polarization degrees (PDs), followed by the cylinder and sphere. One of
the interesting things is that the PDs first increase gradually and then decrease with the increase of photon energy.
For slab geometry, there exists a zero-point where the polarization vanishes and the polarization angle (PA) rotates
by 90°. These results may potentially be verified by the upcoming missions for polarized X-ray observations, such
as IXPE and eXTP.

Key words: relativistic processes – polarization – X-rays: galaxies – scattering – radiation mechanisms: non-
thermal

1. Introduction

Active galactic nuclei (AGNs), γ-ray bursts (GRBs) and X-ray
binaries are the most powerful X-ray objects in the universe. The
process of accreting ambient materials and then releasing
gravitational energy by the central compact objects is one of the
most energetic phenomena in astrophysics. The released energies
will eventually heat the accreting gases and result in radiations
ranging from radio to γ-rays. The X-rays are widely believed to be
produced by the inverse Comptonization of soft photons in the
corona which is a hot region close to the central objects (e.g.,
Eardley et al. 1975; Thorne & Price 1975; Haardt & Maraschi
1991, 1993; Gilfanov 2010). Moreover, the soft photons are
usually multi-temperature blackbody emissions and come from
the accretion disk (Shakura & Sunyaev 1973; Page & Thorne
1974; Abramowicz et al. 1988; Yuan & Narayan 2014).

The corona plays a very important role in the disk-corona
system. However, the evolution, formation heating and, especially,
the geometrical configurations of the corona are still under debate,
due to the complicated physical processes involved in the accretion
system (e.g., see the discussions given by Dreyer & Böttcher 2021;

You et al. 2021; Ursini et al. 2022). Various physical processes can
lead to the formation of a corona and they show similar spectral
profiles or spectral energy distributions (SEDs). For example, a
corona with an extended slab-like geometry is usually sited above
the disk and may be a result of magnetic instabilities (Galeev et al.
1979; Di Matteo 1998). Materials accreted around a neutron star
instead of a black hole will accumulate and finally form a transition
layer which shows the characteristics of a corona (Sunyaev &
Revnivtsev 2000; Long et al. 2022). In the vicinity of the black
hole, the quite active magnetic processes could release consider-
able energies by magnetic reconnection which can heat the plasma
to a very high temperature (e.g., Wilkins & Fabian 2012). The
corona can even be formed by the evaporation of the inner part of
an accretion disk, or as the transfer region between the jet and the
black hole, either as a failed jet (Ghisellini et al. 2004) or as a
standing shock wave (Miyamoto & Kitamoto 1991; Fender et al.
1999; Done et al. 2007). The geometrical configurations of these
corona models are deeply connected with their physical origins.
Thus, distinguishing the geometry of a corona from observable
quantities will provide significant constraints on the physics of the
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accretion system (e.g., Dreyer & Böttcher 2021; Long et al. 2022;
Ursini et al. 2022).

Former researches put some constraints on the geometry of the
corona. For example, the size and location of an X-ray corona
have been estimated to be within a few gravitational radii by
microlensing observations (Kochanek 2004; Reis & Miller 2013;
Chartas et al. 2016). Comparing the time lags between the direct
and reflected radiations (or radiations in different energy bands)
can provide further constraints on the geometrical parameters of
the disk-corona system (e.g., Ingram et al. 2019; Mastroserio
et al. 2021). However, the polarization of X-ray radiations is an
alternative and unique way to give possible new constraints on the
corona geometry (Dreyer & Böttcher 2021; Long et al. 2022;
Ursini et al. 2022; You et al. 2021), since the polarizations
induced by the inverse Comptonization are intrinsically dependent
on the geometry and electron distribution (Schnittman &
Krolik 2010; Laurent et al. 2011; Beheshtipour et al. 2017).
The Compton scattering can be simply divided into Thomson and
Klein-Nishina regimes according to the energy of incident
photons and the cross sections are intrinsically polarization
dependent (Fano 1949; Chandrasekhar 1960). It can induce
polarizations for anisotropic and unpolarized photons that scatter
off non-relativistic electrons (Bonometto et al. 1970; Schnittman
& Krolik 2009). For photons scattering off energetic electrons, the
polarization will be suppressed due to the beaming effect (e.g.,
Dreyer & Böttcher 2021). Thus the polarized radiations among the
X-ray bands would be reasonably expected (Poutanen &
Vilhu 1993; Schnittman & Krolik 2010; Beheshtipour et al.
2017; Ursini et al. 2022) and they can be used as a useful probe to
distinguish the geometrical configurations of the corona-disk
systems.

Following the previous studies, here we are motivated to
provide constraints on the corona geometry by modeling the
observed X-ray spectra and polarizations. Our paper is organized
as follows. The model and method are introduced in Section 2. In
Section 3, we present the results of our calculations. The
discussions and conclusions are finally provided in Section 4.

2. Model and Method

In this section, we give an introduction to the model and
method used in this paper, which are based on our publicly
available code Lemon (Yang et al. 2021). Here we mainly
discuss how to generate photons effectively in these geome-
trical configurations for the scattering, and show the estimation
procedures.

2.1. The Geometries of the Corona

In this paper, we will calculate the observed spectra and
polarizations from three kinds of coronas with slab, sphere and
cylinder geometries, respectively. Their geometrical configura-
tions are illustrated in Figures 1 and 2. The slab-like corona is a

thin layer and sandwiches the accretion disk completely. Its
geometry is determined by the inner and outer radii: Rin, Rout

and the height H. The cylinder-like corona is located above the
disk with the top and bottom surfaces placed at heights H and
H+Hc respectively. The radius of the cylinder is Rc. As the top
surface of the cylinder is set to be sufficiently high, Hc is also
very large, thus the effects of its minor changes on the results
can be ignored. The corona with a sphere geometry is
diagrammed in Figure 2, which is described by the sphere
with radius Rsp and height H of the sphere center with respect
to the disk.
The physical parameters to describe these coronas are the

electron temperature kTe, the number density ne and the optical
depth τ of Thomson scattering. For the sake of simplicity, both
kTe and ne for all three kinds of coronas are set to be constants
throughout the corona. The values of the Thomson optical depth τ
for three cases are fixed and given by: τ= σTneH, τ= σTneRc,
τ= σTneRsp, respectively, where σT is the Thomson cross section.
Hence, as τ, H, Rc and Rsp are provided, one can calculate the
electron number density by

n
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n
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n
R

, , , 1e
T

e
T c

e
T sp
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s

t
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t
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= = =

Figure 1. The schematic diagrams for the geometries of the corona with a slab
(top panel) and cylinder (bottom panel) configurations. The red and blue
regions represent the accretion disk and corona, respectively. The black hole is
represented by the central black disk.
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and vice versa.

2.2. Photon Generation

For all the configurations, the low energy seed photons are
emitted from the standard geometrically thin and optically thick
accretion disk (Shakura & Sunyaev 1973). We assume that the
accretion disk is in a multi-temperature state and its surface
temperature changes with the disk radius R. The distribution
function of the temperature is given by (Shakura &

Sunyaev (1973), Tamborra et al. (2018))
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where rg is the gravitational radius, M is the mass of the central
black hole, G is the gravitational constant, σSB is the Stefan-
Boltzmann constant and m is the accretion rate. The radius R is
in units of rg. For convenience, we will use the energy release
rate η and the Eddington luminosity LEDD to replace m as

L mcEDD
2h = , where c is the speed of light. The Eddington

luminosity is defined by LEDD= 4πGMmpc/σT, where mp is the
proton mass (Yuan & Narayan 2014). Then the expression of T
(R) can be rewritten as
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where C L r3 8 gEDD
2

SB( )p s= . In all the simulations, the
values of η and M are given in advance and set to be 0.1 and
10 M☉, corresponding to a mass accretion rate of m 1.40» ´
1018 g s-1 (see Table 1).

In order to describe the Keplerian motions of the accretion
disk, we define a static reference frame, whose basis vectors are
given by ex, ey and ez. With ei, we can further define a local
reference frame at radius R and azimuth angle j, the basis
vectors of which are constructed by
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Then with respect to the static reference frame, the Keplerian
velocity of the disk at R and j can be expressed as

V eR
c

R
, . 5k y( ) ( )j = - ¢

Within the comoving frame of the disk at (R, j), we assume
that the emissivity j along direction  ,( )q fW =

~
and at

frequency n is a modified blackbody radiation described by
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Figure 2. The schematic descriptions for the geometrical relationships between
the spherical corona and the accretion disk for various heights H of the sphere
center. The red and blue regions represent the accretion disk and corona,
respectively. Seed photons are emitted from the disk surface and only those
with their momentum direction (MD) p (the blue vector) falling into the cone of
β can reach the corona atmosphere. Paths of photons with a red momentum
vector will not intersect with the corona and should be rejected.

Table 1
Parameter Values for all Simulations

Parameter Value

Rout 200 rg
Rin 6 rg
η 0.1
m 1.40 × 1018 g s−1

MBH 10M☉
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where a= 2.06 is a constant and  cosm q= . Factor a1 m+
means that the emissivity obeys the limb-darkening law
(Tamborra et al. 2018). Then the corresponding emissivity j
in the static reference can be obtained through a Lorentz
transformation (Pomraning 1973)

j R D j R, , , , , , . 7p
2( ) ( ) ( ) ( )j n g j nW W=

~

Here V c1 1 k
2 2g = - is the Lorentz factor, Dp =

V c1 k·W+
~

and
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where Dm= 1−Ω ·Vk/c. Notice that the quantities related to
the Lorentz transformation are defined with respect to the frame
ei¢ given by Equation (4). Using Equation (5), the above
equations can be written explicitly as
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where V c R1kb = = , Dm= 1+Ωyβ and Dp =

1 yb- W
~

.
In our former paper (Yang et al. 2021), we explained that the

Monte Carlo radiative transfer is actually equivalent to the
evaluation of the Neumann solution of the radiative transfer
equation. Each term of the Neumann solution is a multiple
integral which can be written as




I n P K P P K P P f
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( ) ( )
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´
-

where n(P0) is the number density of the emitted photons and
related to the emissivity j(P0) through n(P0)= j(P0)/hν. Here h
is the Plank constant, K P P( ) ¢ is the transfer kernel, f (Pm) is
the recording function and P= (r, Ω, ν), which are the position
and momentum vectors and frequency of the photon,
respectively. The generation of photons is actually related to
the calculation of the integral in terms of P0 by the Monte Carlo
method, which can be separately written as

r rn z d d d, , , 11( ) ( ) ( )ò n d nW W

where a δ-function δ(z) is inserted, since the seed photons are
emitted by the disk that is located in the equatorial plane. We
assume that ν1� ν� ν2, since for sufficiently small and large
frequency ν, the contributions from the blackbody radiation can

be ignored. ν1 and ν2 are free parameters and set to be
hν1= 10−6mec

2 and hν2= 10−2mec
2, respectively. For con-

venience, we introduce a new variable y to replace ν and ν=
10y, y1� y� y2, where y log1 10 1( )n= and y log2 10 2( )n= .
Then Equation (11) can be rewritten as

r rn z d d d
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To employ the Monte Carlo method to evaluate the above
integral, we split the integrand into two parts, one is used as
probability density functions (PDFs) for R, j, μ, f and y, and
the other is used as weight for the integral. For R, j and y, we
assign them with the PDFs given by
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where  R R 2R out
2

in
2( )= - is the normalization factor.

Then R, j and y can be sampled directly by
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where ξi are random numbers, whose PDFs are p(ξ)= 1 and
0� ξ� 1. From now on, we will use ξ to represent random
numbers, unless otherwise stated. With Re, je and ye, the
position vector of the emission site and the frequency of the
photon can be obtained as

r e eR cos sin ,

10 . 15
e e e x e y

e
ye

( )
( )

j j
n

= +
=

The sampling of the initial direction Ωe= (μe, fe) is more
complicated and will be discussed in the following sections for
the three geometrical configurations, respectively.
While in order to discuss the initial weight wini, we suppose

that (μe, fe) has already been obtained. Then wini equals the
remaining part of the integrand of Equation (12), i.e.,
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where   y y h2 ln 10R 2 1( )p= - and j is given by
Equation (7).

2.2.1. Slab Case

For the slab corona, the procedure is quite simple, since any
photons emitted by the disk will enter the corona automatically.
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We first construct a local triad at re by

e r e e e e e, , , 17x z z y z xê ( )¢ = - ¢ = ¢ = ¢ ´ ¢

where r r Re e eˆ = is the unit vector of re. With this triad one
can obtain Ωe= (μe, fe) directly

, 2 , 18e e1 2 ( )m x f px= =

and

e e e1 cos 1 sin . 19e e e x e e y e z
2 2 ( )m f m f mW = - ¢ + - ¢ + ¢

2.2.2. Cylinder Case

Comparing to the slab, the sampling procedures ofΩe for the
cylinder and sphere cases are more complicated. This is
because if we sample the emission direction Ωe isotropically in
exyz¢ , the efficiency will be quite low, since many photon
samples will miss the cylinder (or sphere) directly. To increase
the efficiency, for the cylinder case, we need to get the region
formed by the effective directions of the photons in the em¢ - ef¢
plane. Here, a direction denoted by Ωe is effective, which
means that a photon assigned with this direction can reach the
corona eventually. Using the geometrical definitions given in
Figure 1, we can obtain the region in the em¢ - ef¢ plane directly,
which is drawn in Figure 3. As Re> Rc (top panel of Figure 3)
the blue and red curves are the boundaries of this region and
their function expressions are stated as
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Then the direction is sampled by
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which are the minimum and maximum of the two functions
given by Equation (20). As Re� Rc (bottom panel of Figure 3),

the functions of the boundary curves become
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where  p f p- ¢ and the sampling procedure becomes
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end do
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Once m¢ and f¢ are obtained, Ωe can be constructed from
Equations (19).
There is a subtle aspect that needs to be clarified, i.e., to

make the final results correct one must update the initial weight
wini by multiplying a factor S(Re), namely, w w S Reini ini ( )¢ = .
S(Re) is the area of the gray region in Figure 3 and can be
calculated by
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2.2.3. Sphere Case

The procedure for the sphere case is similar to that of the
cylinder case, but the local triad at re is constructed in a
different way by (see Figure 2)

e e e r e e e, , . 26x z z y z xê ( )¢ = - ¢ = - ¢ = ¢ ´ ¢

In addition, we should construct another triad at re defined
through

⎧

⎨
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27
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 = - ¢ + ¢
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where the definition of α is shown in Figure 2. In this triad
frame, all of the effective directions (μ″, f″) also form a gray
region in the μ″-f″ plane (see Figure 4). Then we can draw an
effective direction (μ″, f″) isotropically in the rectangle region
[−π, π]× [μβ, 1] by the following algorithm (for case (a))
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do
1 , 2 ,

if exit

else if exit
end do,
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2 2 2( )m b= = - +b , h=OH is the

height of the sphere center of the corona above the disk and
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A direction (μ″, f″) will be accepted if it falls into the gray
region, otherwise it will be rejected. For case (b)
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With (μ″, f″), the initial direction of a photon can be similarly
written as

p e e e e e ep p p p p p ,
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Figure 4. The same as Figure 3, but for the corona with a sphere geometry. The
effective gray regions for panels from top to bottom correspond to the three
geometrical configurations displayed in Figure 2. The blue boundary curve in
the top panel is defined by Equation (35).

Figure 3. The region formed by the effective photon MDs in the f¢-m¢ plane of
the triad defined by Equation (17) for the cylinder case. The top panel shows
the case of Re > Rc and the bottom panel that of Re � Rc. The functions of the
boundary curves of these regions are stated by Equations (20) and (23). A
sample of MDs will be accepted if it falls into the gray region, otherwise it will
be rejected. The sampling algorithms are expressed by Equations (21) and (24).
The area S(Re) of this region is a function of Re and should be multiplied with
wini to regulate the weight.
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From Equations (26), (27) and (32), one can obtain that

⎧

⎨
⎪

⎩⎪

p p p p

p p p p

p p p

sin cos sin cos cos ,

sin sin cos cos sin ,

cos sin .

34

x x y z

y x y z

z x z

e e e

e e e

( )

( )

( )

a f f a f

a f f a f

a a

= -  -  + 

= -  +  + 

= -  + 

In panel (a) of Figure 4, there is a boundary curve plotted
with blue color. The expression of this curve can be simply
derived. From Figure 2, one can see that a photon reaching the
corona sphere must satisfy the condition that pz� 0 and pz= 0
yields the boundary curve. Using the expressions of pz given by
Equation (34) and p″x, p″z provided by Equation (33), from
pz= 0, we can obtain the function of the curve
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. 35
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- 

Finally, we need to update the weight wini by using the areas
S(Re) of the gray region in Figure 4 and the analytical
expressions of S(Re) for three panels can be obtained as
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2.3. Scattering Distance Sampling

As a photon is generated, we then discuss how to determine
the distance between any two scattering points randomly. As
addressed in Yang et al. (2021), the scattering distance is a
random variable, and its PDF is given by

⎛
⎝

⎞
⎠

p s ds
N

s n s ds s n s ds
1

exp . 37
s

a e a e
0

( ) ( ) ( ) ( ) ( ) ( )ò s s= - ¢ ¢ ¢

Here σa(s)= σa[hν, Te(s)] is the averaged scattering cross
section (Hua 1997), Te(s) and ne(s) are the temperature and
number density of hot electrons at s, respectively, N is the
normalization factor and

⎛
⎝

⎞
⎠

N s n s ds1 exp , 38
s

a e
0

m

( ) ( ) ( )ò s= - - ¢ ¢ ¢

where sm is the maximum distance that the path can extend in
the corona region. Usually, sm can be obtained by solving an
algebraic equation derived from the geometrical conditions,
i.e., with the provided vectors p r,ini iniˆ of the initial position
and MD, we have r p rsm bini iniˆ+ = , where rb is a position
vector that falls on the boundary of the corona. Taking the
square for both sides, we get a quadratic equation of sm as

r ps s r r2 . 39m m b
2

ini ini ini
2 2· ˆ ( )+ + =

In our model, we adopt the assumption that both ne and kTe(s)
are constants in the corona, then Equation (37) becomes

p s ds
N

n s n ds
1

exp , 40a e a e( ) ( ) ( )s s= -

where N n s1 exp a e m( )s= - - , which can be sampled by
the inverse cumulative distribution function (CDF) method
directly. That is

s
n

N
1

ln 1 . 41
e a

( ) ( )
s

x= - -

When the scattering distance is determined, the weight wini

should be updated as well by multiplying the normalization
factor N, i.e., w w Nini ini ·¢ = .

2.4. Scattering Sampling

In our model, we will consider inverse Comptonization of
the photons in the three kinds of coronas with the electrons
assigned with various distribution functions. As discussed in
Yang et al. (2021), Lemon can incorporate any kind of
scattering readily. Here, we mainly consider three kinds of
electron distributions, i.e., the relativistic thermal, the κ and the
power law distributions, which are respectively expressed as
(Xiao 2006; Pandya et al. 2016)
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⎪
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⎪
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1
exp ,
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,

42e
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e

e
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2
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2 1

e

( )
( )

( )
( )

g

p
g g

g

p
g g g

k

p
g

W
=

-
Q Q

- Q

-
+

-

k

k

a

- +

-

where v c1 1 2 2g = - is the Lorentz factor, γ1�
γ� γ2, d d dsin q q fW = is the solid angle, Θ= kT/(mec

2)
is the dimensionless temperature, κ, w are free parameters, γ1,
γ2 are boundary values and Nκ, Np are the normalization
factors. In general, we assume that γ of these distributions is
confined between γ1 and γ2. Np can be written as Np =

1e1
1

2
1e e( ) ( )g g a- -a a- - , while Nκ will be evaluated numeri-

cally since its analytical expression involves special functions
and is quite complicated (Pandya et al. 2016). In Yang et al.
(2021), we discussed how to sample dn d de ( )g W by a method
proposed by Hua (1997). Here we present a new method to deal
with these two PDFs in a unified way. This method is a
combination of the inverse CDF and rejection method. For the
thermal distribution, an auxiliary function is introduced as

/f
A

1
exp , 431

2( ) ( ) ( )g g g= - Q
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where A is the normalization factor. Then the procedure of the
method is reported by Schnittman & Krolik (2013)



1 get a by sampling f ,

2 if 1 accept

else goto 1. 44

f

f f f

1

2

1

1 1 1

◯ ( )

◯ ( )

◯ ( )

g g

g x g g-

The algorithm of sampling f1
g from f1(γ) is the inverse CDF

method, which is equivalent to solving the following algebraic
equation (Schnittman & Krolik 2013)

g u g u g u g u , 451 1 2( ) ( ) [ ( ) ( )] ( )x= - -

where u= γ/Θ, g u u u u2 2 exp2( ) ( ) ( )= + + - , u1= γ1/Θ
and u2= γ2/Θ. It turns out that this equation can be solved by
an iterative method numerically. To accomplish this, we rewrite
the above equation as

u u u Gln 2 2 ln , 462
0( ) ( )= + + -

where G0= g(u1)− ξ[g(u1)− g(u2)]. Then the root u0 of
Equation (45) can be obtained by the following algorithm



x

x x x G

x x
x x

0,
do

ln 2 2 ln
if exit

end do 47

1

2 1
2

1 0

2 1

1 2

( )
(∣ ∣ )

( )

=

= + + -
- <

=

and u0≈ x2, where ò is the tolerance value for the accuracy
of the root. Usually, we set it to be ò= 10−10. Once the root
u0 is obtained, the sample of the Lorentz factor is given
by uf 0

1
g = Q.
For the κ distribution, the algorithm is similar and the

auxiliary function is expressed as

f
A a

1
, 48

2

1
( )

( )
( )g

g
g

=
+k k+

where a= κw− 1 and A is the normalization factor. Also one
needs to solve the following equation to get a trial sample of γ,

⎡
⎣⎢

⎤
⎦⎥d G

a b c a
1

, 49
1 0

1
2

1 1

1

( ) ( )g g g= + + -
k

where a1= κ(κ− 1), b1= 2aκ, c1= 2a2, d1= κ(κ− 1)(κ− 2)
and G0= g(γ1)− ξ[g(γ1)− g(γ2)]. The function g(γ) is given
by

g
a b c

d a
. 501

2
1 1

1
( )

( )
( )g

g g
g

=
+ +

+ k

Equation (49) can be numerically solved by an iterative method
as well and the algorithm is similar

⎡
⎣⎢

⎤
⎦⎥



x

x
d G

a x b x c a
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1,
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if exit

end do 51
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2
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1 1
2

1 1 1

1

2 1
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( )

(∣ ∣ )

( )

=

= + + -

- <
=

k

and xf 2g »
k

. For the power law distribution, the samples of γ
can be obtained directly by the inverse CDF method as

1 . 521
1

2
1e e

e
1

1[ ( ) )] ( )g g x g= - +a a- - a-

The MD (θ, f) of the electron can be drawn isotropically as
follows

1 2 , 2 , 531 2 ( )m x f px= - + =

where cosm q= . Then we calculate the ratio of the total
Klein–Nishina cross section to the Thomson one by Hua (1997)

⎡
⎣

⎛
⎝

⎞
⎠

⎤
⎦⎥

  


 

3

4
1

4 8
ln 1

1

2

8 1

2 1
, 54

T

KN
2

2

( )

( )
( )

s
s

= - - +

+ + -
+

where

 h

m c
v

2
1 , 55

e
2

( ) ( )n
g m= -

hν is the energy of the incident photon and v 1 1 2g= -
is speed of the electron. A random number ξ is generated to
determine the acceptance of γ, μ, f as the Lorentz factor and
velocity direction of the scattering electron. If ξ� σKN/σT, they
are accepted; otherwise rejected.

2.5. Lorentz Transformation of Stokes Parameters

The polarization states are described by the Stokes parameters
(SPs): S= (I, Q, U, V )T and the polarization vector (PV) f. The
Compton scattering will inevitably change the polarization states
of the photons. In this subsection we will discuss how to
describe and trace these changes in Lemon in a detailed way.
These discussions, however, can be found in, e.g., Krawczynski
(2012). For the purpose of completeness, we shall provide these
descriptions in a more consistent way as follows.

1. As the MD k of the incident photon is given, we first
construct the photon triad as ez(p)= k, ex(p)= f,
ey(p)= ez(p)× ex(p). For unpolarized radiations, the basis
vector ex(p) is set as ex(p)= k× z/|k× z|, where z= (0,
0, 1).

2. Then in the photon triad ei(p), we obtain the MD pe and
Lorentz factor γe of the scattering electron by sampling
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the distribution function given by Equation (42) as
discussed in the above subsection. Equivalently, pe can be

expressed by (μe, fe), i.e., p e p1 cose e e x
2 ( )m f= - +

e ep p1 sine e y e z
2 ( ) ( )m f m- + . With pe we can construct

the static electron triad with respect to the photon triad ei(p)
as ez(e)= pe, ey(e) = k× pe/|k× pe|, ex(e)= ey(e)× ez(e).
We denote the MD of the incident photon as (μe, fe) in this
triad.

3. To complete the Compton scattering, we need to
transform the SPs into the rest frame of the electron. To
do so, we should first carry out a rotation and get the SPs
defined with respect to the electron triad ei(e), that is
Se=M(fe)S, where

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

M

1 0 0 0
0 cos 2 sin 2 0

0 sin 2 cos 2 0

0 0 0 1

56e
e e

e e
( ) ( )f

f f
f f

=
-

is the rotation matrix (see Chandrasekhar 1960). At the
same time the PV f has been rotated into the plane of pe
and k as well. As demonstrated by Krawczynski (2012),
Se will stay invariant under the Lorentz transformation,
which means that we can get the SPs in the rest frame of
the electron directly as: S Se e= (from now on, the
quantities in the rest frame of the electron are signified
with a tilde ˜). The MD (μe, fe) and frequency ν of the
incident photon will be transformed as:




v

v

v

1
, ,

1 , 57

e
e e

e e
e e

e e( ) ( )

m
m

m
f f

n ng m

=
-

-
=

= -

where ve is the velocity of the electron.
4. With  ,e e( )m f , we could reconstruct the MD k of the

photon in the rest frame of the electron. Using k , we can
construct another photon triad with respect to the electron
rest frame as:  e kpz ( ) = ,    e k z k zpy ( ) ∣ ∣= ´ ´
and   e e ep p px y z( ) ( ) ( )= ´ , where z 0, 0, 1( )= is
the z-axis of the electron frame. In frame e pi ( ), we
redenote the MD of the electron as pe.

5. Simulating the Compton scattering in the rest frame of the
electron, we sample the Klein-Nishina differential cross
section d d dKN ( )s m f¢ ¢ to get the scattered frequency n¢
and MD  ,e e( )m f¢ ¢ (see, e.g., Pozdnyakov et al. 1983 and
Hua 1997), which is defined with respect to the triad
e pz ( ) and

 
 h m c1 1

. 58
e e

2( )( )
( )n

n
n m

¢ =
+ - ¢

From  ,e e( )m f¢ ¢ , we can get the scattered MD vector k ¢ and use
it to construct the scattered photon triad as  e kpz ( )¢ = ¢,

    e k k k kpy ( ) ∣ ∣¢ = ¢ ´ ¢ ´
and   e e ep p px y z( ) ( ) ( )¢ = ¢ ´ ¢ .

Then we carry out a rotation given by  S M Sp e e( )f= ¢ to get
the SPs defined with respect to the scattering plane determined

by k ¢ and k . From Sp, the scattered SPs Sp
¢ can be obtained by

Fano’s Matrix as (Fano 1949, 1957; McMaster 1961)

  S F S, , , 59p e p( ) ( )n n q¢ = ¢ ¢

where
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n
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⎞
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sin , sin , 2 cos ,

cos , 1 cos .
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e e e

e e

0
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3
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22 33
2

( )

n
n

n
n

q q q

n
n

n
n

q q

=
¢
+

¢
- ¢ = ¢ = ¢

=
¢
+

¢
¢ = + ¢

6. Now we construct a triad by using k ¢ and pe, i.e.,

 e kpz ( ) = ¢,    e k p k ppy e e( ) ∣ ∣ = ¢ ´ ¢ ´ and e px ( ) =
 e ep py z( ) ( ) ´  . We then can obtain the angle between the
k ¢-pe plane and k ¢-k plane (or equivalently the angle between

basis vectors e px ( )¢ and e px ( ) ) as (refer to Equation (8) of
Krawczynski 2012)

   e e e ep p p psign arccos . 62x y y y0 [ ( ) · ( )] [ ( ) · ( )] ( )f = - ¢  ¢ 

With f0 we can do a rotation to get the SPs defined with respect
to the triad e pi ( ) as  S M Sp p0( )f = ¢, which could be
transformed back into the static frame directly.
7. At this stage, the Compton scattering has been completed

and we implement another Lorentz transformation to bring all
the quantities back into the static reference. For the scattered
MD k ¢, we first transform it from the e py ( ) frame to the
electron rest frame through

 k e k p e p , 63m i
i
m( ) ( ) ( ) ( )( )¢ = ¢

where e pi
m ( )( ) are the components of the ith basis vector e pi ( )

with respect to the electron rest frame and  k p k e,m i( ) ( )¢ ¢ are the
components of k ¢ with respect to the photon and electron triad
respectively. Then the Lorentz transformation of n¢ and k em( )¢
can be written as

9

Research in Astronomy and Astrophysics, 22:085011 (19pp), 2022 August Yang, Wang, & Yang



  








k e v k e
k e v

k e v

k e
k e

k e v
k e

k e

k e v

1 ,
1

,

1
,

1
.

64

z
e

z
z

e
z

e

x
x

z
e

y
z

z
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The scattered direction in the static frame can be obtained from

k k e e e e p , 65m i
i
j

j
m( ) ( ) ( ) ( )( ) ( )¢ = ¢

and the scattered vector k ek m
m¢ = ¢ . The scattered SPs in the

static frame are given by Sp
 and the scattered PV f ¢ is

obviously in the p ke - ¢ plane and can be expressed as
f p p k k Ne e[ ( · ) ]¢ = - ¢ ¢ , where N is the normalization

factor. As k¢, Sp
 and f ¢ are obtained, one can continue to trace

the next transfer and scattering of the photon. Simultaneously,
one can record the contributions of the photon made to the
observed quantities at the scattering point, which will be
discussed in the next section.

2.6. Spectrum and Polarization Estimation

Lemon used a scheme that can improve the efficiency and
accuracy of spectrum and polarization evaluations, since the
information at any scattering point can contribute to the
observed spectrum and polarization. Under the Neumann
expansion solution of a differential-integral equation, the
scheme is equal to the introduction of a δ-function and
recording function (for more detailed discussions, refer to Yang
et al. 2021). This scheme has actually been applied widely and
implemented in many codes dealing with Lyα radiative transfer
(e.g., see Seon et al. 2022, where the scheme is named the
“peeling-off technique”, also known as “next event estimation”
or “shadow rays” (Yusef-Zadeh et al. 1984; Laursen &
Sommer-Larsen 2007; Yajima et al. 2012), one may also refer
to Whitney (2011) and Noebauer & Sim (2019) for reviews).
We will use this scheme to reduce the noise generated by the
Monte Carlo method and obtain the results with high signal-to-
noise ratio.

Now we discuss the specific procedures of the estimation
scheme using the conventions and triads established in the last
subsection. The observer is assumed to be located at a direction
nobs(μobs, fobs). Due to the axial symmetry of the system, we
can choose fobs randomly, i.e., fobs= 2πξ. Then utilizing the
coefficients of the photon and electron triad, we can transform
nobs into the two triads directly by

n p n e p

n e n e p e e

,

, 66
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obs obs
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=

where ei
m( ) is the inverse of matrix e m

i
( ) . Since all of the triads

are orthonormal, we have e ei
m

m
j

i
j( )

( ) d= , e ei
m

n
i

n
m( )

( ) d=
and e ei

m T
m
i( )
( )= , where the superscript T represents the

matrix transpose. Through a Lorentz transformation, we get the
observer direction in the rest frame of the electron as
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g g

= =
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where D n e v1 z
eobs( )( )= - . Using the triad matrix e pm

i ( )( ) of
e pi ( ), we can further transform the observer direction into the
photon frame as

 n p n e e p , 68m n
n
m

obs obs( ) ( ) ( ) ( )( ) ( ) ( )=

or in the vector form n ep n p pm
mobs obs( ) ( ) ( )( )= . Then the

cosine of the scattering angle in the rest frame of the electron is

given by   n pcose e
z

obs( )( )m q¢ = ¢ = , from which we can get
the scattered frequency in the electron rest and static frame
respectively as
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where n is the frequency of the incident photon given by
Equation (57) and mec

2 is the rest energy of the electron. To get
SPs for a given observer direction, we should rotate the SPs Se

into the scattering plane by  S M Sp e e
obs ( )f= ¢ , and obviously
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. 70e
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Then the scattered SPs can be obtained by Fano’s Matrix as

  S F S, , . 71p e p
obs

obs
obs( ) ( )n n q¢ = ¢ ¢

With n pobs( ) we can construct two triads as before:

/ 

  

    

72

e n e n k n k

e e e

p p p p p

p p p

, ,

,

z y

x y z

obs obs obs
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z y e e
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obs obs obs( ) ( ) ( ) ( ) ∣ ( ) ∣

( ) ( ) ( )
( )

= = ´ ´

= ´

¢¢ ¢¢

¢¢ ¢¢ ¢¢

from which we can get rotation angle f0 given by
Equation (62) and then the scattered SPs defined with respect

to the plane of n pobs( ) and pe through  S M Sp p
obs

0( )f=
¢¢ ¢

.

Finally, the PV is given by f p p n n Ne eobs obs obs[ ( · ) ]¢ = - .

As obsn¢ , Sp
obs¢¢

and fobs
¢ are obtained, we can eventually record

the contribution made by this scattering site to the observed
spectrum and polarization. Before that, we should do a final

10

Research in Astronomy and Astrophysics, 22:085011 (19pp), 2022 August Yang, Wang, & Yang



rotation to get the SPs defined with respect to the static triad of
the observer, which is constructed by

e n e

e e e

n nobs , obs , , 0 ,

obs obs obs . 74
z x y x

y z x

obs
obs obs( ) ( ) ( )

( ) ( ) ( ) ( )
= = -

= ´

By the definition of ex(obs), we have assumed that the PA is
measured from a direction parallel to the disk in the sky plane.
A PV along the north–south direction corresponds to a PA of
90 degrees. This definition is different from the convention
adopted by Ursini et al. (2022) with a 90◦ rotation. The triad
associated with fobs

¢ can be obtained by

e n e f e e ep p p p p, , .

75
z x y z xobs obs( ) ( ) ( ) ( ) ( )

( )
= = = ´¢

Then the rotation angle can be calculated by

e e e ep psign obs arccos obs . 76x y y y0 [ ( ) · ( )] [ ( ) · ( )] ( )f = -

With f0, we get the SPs defined with respect to the observer

triad: S M Sp p
obs

0
obs( )f=¢¢ ¢¢
. Then one can synthesize the

spectrum νLν, PD δ and PA by
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where SI Q U, , T
pobs obs obs

obs( ) =¢¢ ¢¢ ¢¢ ¢¢ , w is the weight, σKN is the
Klein-Nishina differential cross section and τobs is the optical
depth from the scattering site to the boundary (e.g., Yang et al.
2021).

3. Results

In this paper we mainly investigate the effects of geometries
on the observed spectrum and polarization of the disk-corona
system. The corona is assumed to be assigned with a slab, a
sphere and a cylinder geometry composed of hot electron gas.
In the following, we will present the primary results of our
models.

3.1. Example Demonstrations

We first demonstrate the global pictures of the spectra for
various viewing angles and scattering numbers. To accomplish
this, the values of all other parameters must be fixed. The
results are shown in Figures 5 and 6. In Figure 5 we show the
spectra with various scattering numbers viewed at μobs= 0.5.
From this figure, one can see the typical characteristics for a

Comptonized spectrum, i.e., at high energy bands, the spectrum
is composed by a power law followed with a steep exponential
high-energy cut-off due to the Klein-Nishina effect (e.g.,
Fabian et al. 2015; Mastroserio et al. 2021). Also as the energy
becomes higher, the noise becomes louder. The green line
represents the spectrum formed by the multi-temperature
blackbody radiations escaping from the disk directly. As the
scattering number increases, the corresponding spectrum
becomes harder. In Figure 6, we show the spectra and
polarizations with respect to the inclination angles, where the
curves with different colors represent different cosine values of
the viewing angles. From the figure one can see that as the
inclination angle increases, the PD δ will increase, but the
intensity I will decrease. This is because photons will go
through a larger optical depth and thus suffer from more
scatterings at higher inclination.

3.2. Parameter Settings

The parameters of the disk are set to be the same for the three
kinds of coronas (see Table 1). The inner and outer radii of the
disk are set to be Rin= 6 rg and Rout= 200 rg, respectively. The
mass of the central black hole and the mass accretion rate of the
disk are 10 M☉ and 1.4× 1018 g s−1, respectively.
The slab-like corona is composed of parallel planes

sandwiching and covering the disk completely (Poutanen &
Vilhu 1993; Schnittman & Krolik 2010). Then, the inner and
outer radii of the slab are set to be the same as the disk. The
height and temperature of the slab are given by h and kTe
respectively. Former researches show that the dependence of
results on the height h is not significant (e.g., Ursini et al.
(2022)). Hence, in all the calculations, we will set h to be 1 rg.

Figure 5. The spectra of a corona with spherical configuration for various
scattering numbers. The parameters are: Rin = 6.0 rg, Rout = 100.0 rg, H = 0.0
rg, τ = 1.0 and kTe = 100 keV.
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The Thomson optical depth τ of the slab is given as neσTh. We
will simulate the cases with τ= 0.5, 1.0 and 2.0.

The geometry of the corona with a spherical configuration is
determined by its radius Rsp and height H. For appropriate
setting values of these two parameters, the configuration of the
corona can either be extended which can fully cover the disk,
or compact and located above the disk. Many evidences have
shown that the size of the hot corona is most likely very small
and close to the central compact object (Fabian et al. 2015;
Ursini et al. 2020, 2022), which is the well known lamppost
model (Zdziarski et al. 1996; Życki et al. 1999). In other
models, the size of the sphere can be as large as fully covering
the whole disk (e.g., Tamborra et al. 2018). Thus in our
simulations, we will set Rsp= 10 rg for a compact configuration
and Rsp= 200.0 rg for an extended configuration. The optical
depth τ= neσTRsp of the sphere is measured from the center to
the boundary and set to be τ= 0.5, 1.0 and 2.0 as well.

The corona with a cylindrical geometry is usually used to
describe the outflowing materials, or a jet (Ghisellini et al.
2004). Then the corona will be assigned with a bulk velocity

β= v/c. As long as the motion is not extremely relativistic, its
influence on the results will not be significant (Ursini et al.
2022). Thus, in our simulations we can set β= 0 and focus on
the impact of other relevant geometrical parameters on the
results. The Thomson optical depth τ= neσTRc is measured
along the horizontal direction and is also set to be τ= 0.5, 1.0,
2.0. The electron temperature is assigned with the value of
kTe= 100.0 keV for all the situations.

3.3. Spectra and Polarizations

With the parameter settings and assumptions given above,
we carry out the simulations to study the dependencies of
observed spectra and polarizations on the geometries of the
corona. The results will be presented as follows.
We first present the spectra, PDs and PAs of the radiations

emerging from three kinds of coronas. The results are plotted in
Figures 7, 8 and 9, which affirm that as the optical depth
increases, the spectra become harder for all the cases. The profiles
of the spectra are similar for the three cases and also for different
inclination angles. This supports the perspective of distinguishing
the geometries for the coronas with different configurations
through fitting the SEDs is not so effective (see also Tamborra
et al. 2018; Dreyer & Böttcher 2021). The polarizations of the
three geometrical configurations, however, show significant
differences both in the profile and the magnitude. One can see
that in the X-ray bands, which we are mostly interested in, the slab
corona has the biggest PD, whose value can be up to around 10%
depending on the viewing inclination, followed by the magnitude
of PD for the sphere and cylinder coronas, which goes to 1%–2%
and is less than 1%, respectively. These results are consistent with
those given by Ursini et al. (2022). However, in the high energy
bands, the results change into the opposite situation, where the
cylinder corona has the highest PD up to almost 15%. One can see
that there exists zero-points in PDs both for the slab and sphere
coronas, as depicted in Figures 7 and 8, where the Q component
of the SPs vanishes and changes its sign simultaneously. From the
parameters in Figures 7 and 8, we can see that both of the two
coronas have extended geometrical configurations. This may be
taken as a special feature for this kind of corona.
From Figures 7 and 8, one can conclude that the trends and

profiles of PD for the slab and the sphere are similar to each
other but different from those of the cylinder case. This is
because the former two coronas have similar geometrical
configurations due to the parameters we chose, i.e., they both
have the extended configurations that fully cover the disk. On
the contrary, the cylinder corona has a compact configuration
above the disk, which makes its irradiation by disk be less
isotropical compared with the extended configurations. For the
extended corona, a higher optical depth yields a higher PD,
while for the compact corona, the conclusion seems opposite
(see Figure 9, where the maximum of PD decreases as optical
depth increases).

Figure 6. The same as Figure 5, but for different viewing inclination angles.
The top and bottom panels are the spectra and PDs, respectively.
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Figure 7. The synthesized spectra (top panels), PDs (middle panels) and PAs (bottom panels) of a corona with slab geometry viewed from various inclination angles.
The parameters are: kTe = 100 keV and τ = 0.5, 1.0, 2.0 for panels from left to right, height h = 1.0 rg, and the inner and outer radii of the disk Rin = 6.0 rg and
Rout = 200.0 rg respectively.
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Figure 8. The same as Figure 7, but for a corona with sphere geometry. The parameters for the sphere are: the radius of the sphere Rsp = 200.0 rg and the height of the
sphere center above the disk h = 0.0 rg.
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Figure 9. The same as Figure 7, but for a corona with cylinder geometry. The parameters for the sphere are: the radius Rc = 10 rg, the height H = 20 rg and the
intrinsic height Hc = 100 rg.
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According to our definition of the reference direction of the PA,
for all the cases, the PA oscillates around zero and the polarization
direction is horizontal in the low energy bands. This result is
simply due to the fact that all of the geometrical configurations
considered here have axial symmetry, which will yield an
orientation of the PVs that can either be horizontal or vertical
(Connors et al. 1980). However, in the high energy bands, the PA
oscillates turbulently which leads the results to become unreliable.

In Figure 10, we give the spectra of all configurations for
various scattering numbers and optical depths. For the spherical
and cylindrical configurations, the profiles of the spectra are quite
similar for different optical depths. But for the slab configuration,
the spectra become harder as the optical depth increases.

For the corona with a spherical or cylindrical geometry, its
height H measured from the disk is an important parameter.
The changes of H will not only alter the geometry of the

system, but also affect the efficiency with which the disk
illuminates the corona. For a higher H, the illumination is less
isotropical. Hence we do simulations to investigate the impact
of H on the spectra and PDs. The results are plotted in
Figures 11 and 12 for the spherical and cylindrical cases,
respectively. From these figures one can see that as H increases,
the spectra become softer in the high energy bands, due to the
reduction of the luminosity and flux that could be captured by
the corona. As the viewing angles change, the spectra tend to
stay the same. But for the PDs, the magnitude of variations is
considerable. Averagely, the PDs of the cylinder corona are
bigger than those of the sphere corona. The profiles of the PDs
for the two configurations are analogous, due to the quite
similar geometrical parameters we choose. However, for the
sphere case, with the increase of H, the Q component will
change its sign from positive to negative. But for the cylinder

Figure 10. The synthesized spectra of coronas with a slab (top panels), sphere (middle panels) and cylinder (bottom panels) geometries for various scattering numbers.
The cosine value of the viewing angle is μobs = 0.5. Other parameters are the same as those given in Figures 7, 8 and 9 for the three kinds of coronas, respectively.

16

Research in Astronomy and Astrophysics, 22:085011 (19pp), 2022 August Yang, Wang, & Yang



case, the sign of Q always stays negative. Also one can see that
with the increase of H, the PDs in the low energy bands stay
almost unchanged, just as the trend of the spectra. However, the
changes of the PDs in the high energy bands are significant.
This difference of PDs between the low and high energy bands
may be used as a probe to discriminate a corona with or without
a compact geometry.

4. Discussion and Conclusions

The geometrical configurations of the corona in an accreting
systems are poorly understood due to the degeneracy of
spectroscopy differentiating the system. Polarimetry provides a
more effective and powerful option to overcome this dilemma.
With the advent of the missions IXPE (Weisskopf et al. 2016)

and eXTP (Zhang et al. 2016, 2019), the era of high-quality
data from polarization observations will arrive in the near
future. Hence it is necessary and urgent to do the theoretical
studies in advance. For this purpose, we carry out simulations
of radiative transfer in the corona with different geometries.
These simulations are based on the publicly available Monte
Carlo code, Lemon (Yang et al. 2021), which is based on the
Neumann series expansion solution of differential-integral
equations. By using the code, one can increase the signal to
noise ratio dramatically and simplify the calculations when the
configuration of the system has geometric symmetries. The
main contents and results of this paper can be concluded as
follows:
We have discussed detailedly how to simulate the polarized

radiative transfer in the three geometry configurations, namely,

Figure 11. The spectra (top row panels) and PDs (bottom row panels) of a corona with a sphere geometry for different heights H and viewing angles μobs. The
parameters are: the radius Rsp = 10.0 rg, optical depth τ = 1.0 and temperature kTe = 100 keV. The height H of the spherical center varies from 10.0 to 80.0 rg and the
corresponding results are plotted with different colors and line styles. The cosine values of the viewing angles μobs are 0.2, 0.5 and 0.9 for panels in the left, middle and
right columns, respectively.
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the slab, sphere and cylinder. We emphasized how to generate
photons efficiently for the sphere and cylinder cases. To
accomplish this, we have derived the shapes of the regions
formed by the effective MDs in the f-μ plane of the triad. This
method can increase the efficiency of the simulation, especially
for coronas with a compact geometry, since the solid angle
subtended by the corona with respect to the emission site is
small, which further reduces the probability that a photon can be
received by the corona. In our model, we considered the effect
due to the Keplerian motion of the disk on the spectra. This
effect works by affecting the photon generation. In our model, it
can be taken into account readily through a Lorentz transforma-
tion, which connects the emissivities in the comoving reference
frame of the disk and the static reference frame. The Keplerian
motion of the disk will make the frequencies of the seed photons
have blue or redshifts, which will further affect the final results.
While due to the low speed for most parts of the disk (R? 1),
the Keplerian motion seems to have a minor impact on the

spectra and polarizations. However, if we focus on the radiations
emitted from the most inner part of the disk, both the Keplerian
motion and general relativity effects should be taken into
account. Then we discussed how to obtain the scattering distance
between any two scattering sites by the inverse CDF method.
Because the electron distribution has a very important impact on
the Comptonized spectra, we proposed a new scheme to deal
with three often used distribution functions, i.e., the thermal, κ
and power law, in a uniform way. Next, we demonstrated how to
implement the polarized Compton scattering in the Klein-
Nishina regime consistently and detailedly, which involves
complicated triad constructions, Lorentz boosts, SP transforma-
tions and rotations. Finally, we discussed the procedure for
evaluating the contributions made by any scattering site to the
observed quantities when the inclination angle of the observer is
provided.
We use our model to simulate the radiative transfer in three

kinds of coronas with different geometrical configurations. The

Figure 12. The same as Figure 11, but for a corona with cylinder geometry. The parameters are: the radius Rc = 10 rg and intrinsic height Hc = 100 rg.
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results demonstrate that the polarizations of the observed
radiations are significantly dependent on the geometries of the
corona. Different configurations will produce PDs with
different magnitudes and profiles in the X-ray bands. The
corona with an extended configuration, such as the slab, yields
a higher PD while the compact one yields a less polarized
result. With the increase of the photon energy, the PD will
increase gradually as well until a maximum is reached. After
that, the PD will decrease to zero due to the relativistic beaming
effect (Dreyer & Böttcher 2021). The maximum of PD for the
extended configurations increases with the increase of the
optical depth, but for the compact configurations the conclusion
is the opposite.

Our results are consistent with those of the former
researches. However, our model and code are flexible and
can deal with different geometrical configurations readily. One
just needs to modify the photon generation and tracing parts.
However, the results presented here are quite theoretical and
not connected with practical observations. Also, our model
does not include the effects of general relativity, which
inevitably plays an important role in the radiative transfer
around a black hole. These effects will be included in the future
work. Nonetheless, our model includes the essential ingredients
of Comptonization in a hot electron corona. Thus, hopefully,
our model will provide some useful insights for the observa-
tions of upcoming X-ray missions, such as IXPE and eXTP.
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