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Abstract

Astronomical outliers, such as unusual, rare or unknown types of astronomical objects or phenomena, constantly
lead to the discovery of genuinely unforeseen knowledge in astronomy. More unpredictable outliers will be
uncovered in principle with the increment of the coverage and quality of upcoming survey data. However, it is a
severe challenge to mine rare and unexpected targets from enormous data with human inspection due to a
significant workload. Supervised learning is also unsuitable for this purpose because designing proper training sets
for unanticipated signals is unworkable. Motivated by these challenges, we adopt unsupervised machine learning
approaches to identify outliers in the data of galaxy images to explore the paths for detecting astronomical outliers.
For comparison, we construct three methods, which are built upon the k-nearest neighbors (KNN), Convolutional
Auto-Encoder (CAE) + KNN, and CAE + KNN + Attention Mechanism (attCAE_KNN) separately. Testing sets
are created based on the Galaxy Zoo image data published online to evaluate the performance of the above
methods. Results show that attCAE_KNN achieves the best recall (78%), which is 53% higher than the classical
KNN method and 22% higher than CAE+KNN. The efficiency of attCAE_KNN (10 minutes) is also superior to
KNN (4 h) and equal to CAE+KNN (10 minutes) for accomplishing the same task. Thus, we believe that it is
feasible to detect astronomical outliers in the data of galaxy images in an unsupervised manner. Next, we will apply
attCAE_KNN to available survey data sets to assess its applicability and reliability.
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1. Introduction

Astronomy is stepping into the big data era with the
upcoming large-scale surveys (Lochner & Bassett 2021), e.g.,
Euclid5, LSST6 and CSST.7 Mining knowledge from enormous
astronomical data sets has become critical for astrophysical and
cosmological investigations. Typically, data mining in astron-
omy includes object classification, dependency detection, class
description, and anomalies/outlier detection. The first three
categories of tasks are problem-driven, i.e., once the goals are
well-defined, the tasks can be handled in a supervised manner by
involving well-designed training sets. These tasks help improve
the accuracy and precision of the models for describing
mainstream objects, and relevant approaches are relatively
mature and widely applied in astronomy (Lukic et al. 2019; Zhu
et al. 2019; Cheng et al. 2020; Gupta et al. 2022; Chen et al.
2022; Zhang et al. 2022). On the other hand, astronomical
anomalies/outliers constantly lead to unforeseen knowledge in

astronomy, which may trigger revolutionary discoveries.
Expectedly, more unpredictable outliers should be uncovered
in principle with the increment of the coverage and quality of
upcoming survey data. Therefore, developing approaches for
outlier detection are as important as those for the first three tasks
(Reyes & Estévez 2020; Webb et al. 2020; Ishida et al. 2021).
Outliers are defined in various papers (Hawkins 1980;

Beckman & Cook 1983; Barnett & Lewis 1996; Pearsons et al.
1995), generally, it is described as: an outlier is an observation
that deviates significantly from primary observations so that it
aroused suspicions that a different mechanism generates it. In
daily life, outlier detection has numerous applications, includ-
ing credit card fraud detection, the discovery of criminal
activities in E-commerce, video surveillance, pharmaceutical
research, weather prediction and the analysis of performance
statistics of professional athletes. Most of them are relevant to
troubles. Nevertheless, the detection of astronomical outliers
always leads to the discovery of surprising unforeseen facts and
expands the boundaries of human knowledge of the universe
(Pruzhinskaya et al. 2019; Sharma et al. 2019). Hence, it is
necessary to develop efficient and automated approaches for
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detecting astronomical outliers and understand their feasibility
and reliability thoroughly, particularly in the era of big data
(Zhang et al. 2004; Margalef-Bentabol et al. 2020).

Early outlier detection methods (Edgeworth 1888; Zhang
et al. 2004; Dutta et al. 2007; Solarz et al. 2017; Giles &
Walkowicz 2019; Fustes et al. 2013; Baron & Poznanski 2017)
are generally based on traditional unsupervised learning
algorithms. For instance, Giles & Walkowicz (2019) employed
a variant of the DBSCAN clustering algorithm to detect outliers
in derived light curve features. Baron & Poznanski (2017)
extracted the feature of galaxy spectra manually first and then
adopted an unsupervised Random Forest to detect the most
outlying galaxy spectra within the Sloan Digital Sky Survey8

(SDSS). Moreover, as a well-known clustering algorithm,
k-Nearest Neighbor (KNN, Dasarathy 1991) becomes popular
for detecting outliers because it operates without assumption
about the data distribution. However, these traditional methods
become unsuitable when the volume and quality of astronom-
ical images increase greatly. One reason is that the feature
extraction routines in traditional methods are too coarse and
inflexible to retain details and untypical features of the high-
quality astronomical images; another reason is that the
efficiency of CPU-based traditional methods is too slow to
handle the tremendous volume of future survey data.

Recently, beyond traditional machine learning, deep learning
has been utilized to construct programs for detecting outliers
(Chalapathy & Chawla 2019; Nadeem et al. 2016; Hendrycks
et al. 2018; D’Addona et al. 2021), such as Auto-Encoder (AE,
Vincent et al. 2010) and Convolutional Auto-Encoder (CAE,
Masci et al. 2011; Storey-Fisher et al. 2020). AE and CAE
represent input images with a feature vector which can be used
to reconstruct the input images with the most likelihoods. This
feature extraction procedure is automated and speedy. Besides,
Bayesian Gaussian Mixture is utilized to implement the
clustering process and then identify the galaxy images’ outlier
according to the distribution of the feature vectors in latent
space (Cheng et al. 2021). Combining the above two modules,
one can classify galaxy images without labels (Cheng et al.
2020), as well as to detect outliers. However, the performance
of such unsupervised approaches based on deep learning is
above 10%–20% worse than that of supervised approaches due
to noisy data (Zhou & Paffenroth 2017).

In this work, we adopt the attention mechanism (Vaswani
et al. 2017) to further improve the performance of the
unsupervised methods as it can make the CAE pay more
attention to the critical features and suppress background noise.
To understand the differences from traditional outlier detection
methods to state-of-art attention-improved ones systematically,
we construct three programs, which are built upon the KNN,
CAE + KNN and CAE + KNN + Attention mechanism,
separately. We organize two types of data sets based on the

galaxy images data published by the Galaxy Zoo Challenge
Project on Kaggle9 to evaluate the performance of various
approaches in different cases. The first data sets of galaxy
images for testing the above approaches include inliers
containing a single type of galaxy morphology plus outliers
containing a single type of galaxy morphology; the second data
set is similar to the first ones but with multiple types of galaxy
morphology in the outliers. After conducting extensive
experiments, we find that CAE boosts the clustering process
significantly and improves the accuracy of detecting outliers;
the attention mechanism increases the accuracy further because
it guarantees CAE to extract valuable features only, avoiding
noise. It is the first time involving the attention mechanism in
the outlier detection of astronomical images, which is worth
being included in the program for similar purposes in the
future. For the convenience of other researchers, we published
the code and data used in this project onine.10

This paper is structured as follows. We introduce the data
sets used in this work in Section 2. Section 3 describes the
methods that we constructed. Details about the experiments,
including data processing and the implementation of outliers
detection with the above approaches, are shown in Section 4.
We summarize and analyze the results in Section 5. Finally, the
discussion and conclusions are delivered in Section 6.

2. Data

The galaxy morphology data used in this study is collected
from the Galaxy Zoo project (Willett et al. 2013; Ventura &
D’Antona 2011). In this section, we first introduce the origin
and composition of the data set and then present the filtering
methods and how to divide the original data in Section 2.1.
Section 2.2 describes how to construct experimental data
subsets to evaluate the performance of outlier detection with
the approaches mentioned in Section 3.

2.1. The Galaxy Zoo Dataset

The SDSS captured around one million galaxy images. To
classify these galaxies morphologically, the Galaxy Zoo Project
was launched (Lintott et al. 2008), a crowd-sourced astronomy
project inviting volunteers to assist in the morphological
classification of large numbers of galaxies. The data set we
adopted is one of the legacies of the galaxy zoo project, and it
is publicly available online with the Galaxy-zoo Data
Challenge Project on Kaggle.11

The data set provides 28,793 galaxy morphology images
with middle filters available in SDSS (g, r, and i) and a truth
table including 37 parameters for describing the morphology of
each galaxy. The 37 parameters are between 0 and 1 to

8 https://www.sdss.org/

9 https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge
10 https://github.com/hanlaomao/hanlaomao.git
11 https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge/data
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represent the probability distribution of galaxy morphology in
11 tasks and 37 responses (Willett et al. 2013). Higher response
values indicate that more people recognize the corresponding
features in the images of given galaxies. The catalog is further
debiased to match a more consistent question tree of galaxy
morphology classification (Hart et al. 2016).

To make the problem of outlier detection representative, we
reorganize 28,793 images into five categories: Completely
round smooth, In-between smooth, Cigar-shaped smooth,
Edge-on and Spiral according to the 37 parameters in the truth
table. The filtering method refers to the threshold discrimina-
tion criteria in Zhu et al. (2019). For instance, when selecting
the Completely round smooth, values are chosen as follows:
fsmooth more than 0.469, fcomplete,round more than 0.50, as shown
in Table 1. The testing sets are constructed by choosing images
from the above categories, and details are presented in
Section 2.2.

2.2. Experimental Data Subsets

To mimic different cases of outlier detection, we construct
two sorts of experimental data subsets by selecting images from
the categories of galaxy images described in Section 2.1. One
group of testing sets includes inliers containing a single type of
galaxy morphology plus outliers containing a single type of
galaxy morphology; the other group of testing sets is similar to
the first ones for inliers but containing multiple types of galaxy
morphology in the outliers.

Implicitly, the first group contains four data subsets, the
inliers are all Completely round smooth galaxies, and the
outliers are selected from other categories of galaxies
separately. The fraction of outliers is 10% in each subset.
The second group contains one data subset, the inliers are also
Completely round smooth galaxies, but the outliers consist of
galaxy images from other categories of galaxies. The total

fraction of outliers is 10% as well, and the four types of galaxy
images are equally constituted in the outliers.
Table 2 shows an overview of the above five testing sets, and

columns denote the structure of each testing set. For instance,
the first testing set (subsect1) consists of Completely round
smooth galaxies (category 0) as inliers and Cigar-shaped
smooth galaxies (category 2) as outliers. There are 16,000
inliers and 1778 outliers. Note that when lacking galaxy images
of some categories, we expand the insufficient number of
galaxy images by using data augmentation (see Section 4.1).

3. Methodology

For comparing the traditional methods and our state of art
method, we build three approaches for outlier detection. The
simplest one is based on KNN only, a classic clustering
algorithm grounded on distance metrics. The second one
involves CAE for feature extraction but still utilizes KNN for
the clustering procedure. Finally, we employ the attention
mechanism to improve the stability of the feature extraction
with CAE. The following subsections demonstrate details of
the construction of these approaches.

3.1. The KNN-based Approach

The KNN algorithm is one of the non-parametric classifying
algorithms (Dasarathy 1991), whose core idea is to assume that
data X has K nearest neighbors in the feature space. If most K
neighbors belong to a certain category, the X could also be
determined to belong to this category. As shown in Figure 1(a),
the yellow rectangle is the data X needs to be predicted.
Assuming K= 3, as shown in Figure 1(b), then the KNN
algorithm will find the three neighbors closest to X (here
enclosed in a circle) and select a category with the most
elements. For example, in Figure 1(b), there are more elements
described by red triangles, so the X is classified to the category
containing elements described by red triangles. As shown in

Table 1
Five Galaxy Morphology Categories from 0 to 4 with 28,793 Samples

Category Category name Thresholds Number

0 Completely round smooth fsmooth � 0.469 8436
fcompletelyround � 0.50

1 In-between smooth fsmooth � 0.469 8069
fin−between � 0.50

2 Cigar-shaped smooth fsmooth � 0.469 579
fcigar−shaped � 0.50

3 Edge-on f 0.430features disk 3903

fedge−on,yes � 0.602
4 Spiral fedge−on,no � 0.715 7806

fSpiral,yes � 0.619
Total 28,793

Note. The first column is the category id, the second column is the name of
category, the third column is the thresholds corresponding to each category,
and the last column is the number of galaxy images in each category.

Table 2
Number of Samples in Five Different Experimental Data Subsets

Category Subset1 Subset2 Subset3 Subset4 Subset5

0 16000 16000 16000 16000 16000
1 0 0 1778 0 445
2 1778 0 0 0 445
3 0 1778 0 0 444
4 0 0 0 1778 444
Total 17778 17778 17778 17778 17778

Note. The first column is the category id and the last five columns are five data
subsets. For example, the second column represents the first experimental data
subset, it only contains 16,000 samples of category 0 as inliers and 1778
samples of category 2 as outliers. The last column represents the fifth data
subset which contains 16,000 samples of category 0 as inliers and contains total
1778 samples from category 1–4.
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Figures 1(c) and (d), when K= 5, the X is classified to the
category containing elements described by blue circles. Hu
(2019) used KNN-based algorithms to perform classification
experiments on a variety of data sets and achieved good results
without any assumptions about the data. However, the KNN-
based algorithm would cost considerable computing time due
to the high data dimension in the case of astronomical images
as input data.

3.2. The CAE-KNN-based Approach

CAE (Masci et al. 2011) is an optimized AE by adopting a
convolution operation, which could extract principal features of
astronomical image with high dimension. CAE_KNN makes
full use of the CAE advantage in reducing the dimension to
improve above KNN-based algorithm. We first present the

architecture and components of CAE as shown in Figure 2, and
then describe the joint of CAE and KNN.
CAE consists of two components: the encoder and the decoder.

The first component is the encoder, which is responsible for
extracting the representative features from input images. For an
input image x, the j th representative feature map hj is expressed as
Equation (1).

*h f x W b , 1j j j( ) ( )= +

where Wj is the jth filter, * denotes the convolution operation,
b j is the corresponding bias of the feature map and f is an
activation function. The activation function f (z), where the
input denotes by z used in the convolutional layers, is the
Rectified Linear Unit (ReLu) (Bengio & LeCun 2007), as

Figure 1. The classifying results based on classical KNN. (a), (b) The procedure of an element with yellow rectangle is classified to the category with red triangle
when K = 3. (c), (d) The procedure of data X with yellow rectangle is classified to the category with blue circle when K = 5.
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described in Equation (2).

f z
if z

z if z
0 0

0.
2⎧

⎨⎩
( ) ( )=

<

The encoder in this study is built with four convolutional layers
(filter size: 64, 32, 16, and 8) and three dense layers (unit size:
128, 64, 32). A pooling layer follows each convolutional layer
with 2 by 2 pixels. The pooling layer is also considered a
down-sampling layer, aiming to reduce the volume of
parameters involved in the encoder.

The second component of the CAE is the decoder, and its
function is to reconstruct the input image according to the
extracted feature map obtained by the encoder. The decoder
structure is symmetrical with the structure of the encoder. In
other words, its structure is simply the opposite of the encoder
structure. As for the detail of reconstructing procedure, please
refer to Masci et al. (2011); Cheng et al. (2020). The decoder
has three dense layers (unit size: 32, 64, and 128), four
convolutional layers (filter size: 8, 16, 32 and 64) using the
ReLu activation function (Bengio & LeCun 2007), and an extra
convolutional layer (filter size: 3) using the softmax (Ren et al.
2017) function as the output of the decoder. Except for the last
output layer, there is an upsampling layer behind each
convolutional layer, whose function is to gradually restore
the feature maps to the same shape as input images. The layer
between the encoder and the decoder is the embedding layer
used to reconstruct the input galaxy images.

The loss function L between the two components is given by
Equation (3) (Cheng et al. 2020).

L
N

t y t y
1

log 1 log 1 , 3n n n n[ ( ) ( )] ( )= - + - -

where N is the number of samples, t n is the target data, and y n

is the reconstructed data. The goal of CAE is to minimize the
reconstruction error by using loss function L.
As so far, we could get the low dimension features from

galaxy images by using the embedding layer vectors in CAE.
Then these features are fed into the KNN algorithm avoiding
the time-consuming problem of KNN outlier detection.
However, the CAE_KNN has the disadvantage of instability
because the background noise of the galaxy image sometimes
influences the stability of the outlier detection.

3.3. The Attention-CAE_KNN-based Approach

To increase the stability of the CAE_KNN, we propose a
novel algorithm, namely attCAE_KNN, which is the first time
to explore the attention strategy to CAE. Attention strategy (Xu
et al. 2015; Gregor et al. 2015) makes the attCAE_KNN focus
on “what” is meaningful for given astronomical images so that
attCAE_KNN could ignore the background noise. We build
attCAE_KNN by adopting a convolutional block attention
module (CBAM Liu et al. 2019). Its architecture is shown in
Figure 3, including encoder, decoder, and KNN module. The
decoder and KNN module have been described in Section 3.1
and Section 3.2. Next, we focus on the improved encoder.
The first part is the encoder that consists of the channel

attention block and the spatial attention block (Liu et al. 2019),
which differs from the classical encoder in inserting CBAM, as
shown in Figure 4. These two blocks can extract the meaningful
features of astronomical images along the two-dimensions of the
channel axis and the spatial axis. The second part is the decoder,
in which the CBAM is not inserted after the convolutional layer.
This is because through the analysis of experimental results,
adding the CBAM after the convolutional layer of the decoder
hardly improves the experimental results. To reduce model

Figure 2. The architecture and components of CAE. CAE consists of two components, the encoder and the decoder. Green cuboids in encoder and orange cuboids in
decoder denote convolution layer; blue cuboids indicate maxpooling layer; purple cuboids present uppooling layer.
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complexity and decrease model training time, we only add the
CBAM after the convolutional layer in the encoder of the CAE.
The last part is the KNN module, whose input data is the latent
features from the embedding layer of attCAE.

4. Experiment

We present the details of experiments with the data and
methods described in Sections 2 and 3 here. It includes data
processing, parameters of the machine learning models,
evaluation metrics and experimental environments.

4.1. Data Pre-processing

As is shown in Section 2, we obtain 28,793 RGB color images
with a size of 424× 424× 3 pixels. Considering the valuable
features of these images are concentrated at the central part, we
conduct some pre-processing operations (see Figure 5). The first
step is to crop the images with a box of 170× 170 pixels in all
channels. The second step is to downscale images from
170× 170× 3 pixels to 80× 80× 3 pixels. The last step is to
crop images from 80× 80× 3 pixels to 64× 64× 3 pixels further.
The detailed operations refer to the process in (Zhu et al. 2019).

Figure 3. The architecture of the attCAE_KNN, including encoder, decoder and KNN module, where the CBAM attention strategy is added to the encoder.

Figure 4. The encoder of the attCAE_KNN, which consists of the channel attention block, the spatial attention block and other CAE blocks.

Figure 5. The procedure of data preprocessing on the original galaxy image.
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Five processed examples from five categories described in
Section 2 are displayed in Figure 6.

The number of images in some categories is too small to be
outliers for supporting machine learning algorithms for outlier
detection, for instance, there are only 579 Cigar-shaped smooth
galaxies. Thus, we make data augmentation by rotating these
images randomly and finally obtain 17,778 images in five data
subsets, where each data subset consists of 16,000 inliers and
1778 outliers (see Table 2).

4.2. Training And Clustering

We apply the three methods (KNN, CAE_KNN, and
attCAE_KNN) to the data subsets separately. The training
process consists of auto-encoder training and KNN training.
The former is for extracting the representative features of the

astronomical images, while the latter is for detecting outliers.
The flow chart of the attCAE_KNN for detecting outliers in
astronomical images is shown in Figure 7.
The training process in this paper is entirely different from

the training process in the context of supervised learning. We
train CAE to extract features by comparing the input images
and generated images, so no labels are included in the whole
process. To avoid overfitting, we divide each data set shown in
Table 2 into training sets and testing sets with a ratio of 7:3,
and the images in the training set and test set are randomly
selected from the whole set with 17,778 images. Considering
that the number of outliers always accounts for a small part of
the total data set, we set the proportion of outlier data to
account for 10% of the whole data set for detecting outliers. For
example, the number of outliers in the test set is 533, which can
be calculated by 17,778× 0.3× 0.1.

Figure 6. Five representative examples from five categories.

Figure 7. The flow chart of the attCAE_KNN for detecting outliers in astronomical images.
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During the training procedure of CAE, parameters of the
embedded layer need to be optimized in a data-driven manner.
We use area under the receiver operating characteristic curve
(AUC Bradley 1997; Fawcett 2006) as the criteria. The receiver
operating characteristic (ROC Fawcett 2006; Cheng et al.
2020) can be drawn with false-positive rates (FPR) and true-
positive rates (TPR), which are given by Equations (4) and (5),

FPR
FP

FP TN
, 4( )=

+

TPR
TP

TP FN
, 5( )=

+

where TP means true positive, TN means true negative, FP
denotes false positive and FN means false negative, respec-
tively. We then repeat the outlier detection process and
compare the AUC of each classification to find the most
optimal number of extracted features within the embedding
layer in the CAE. In Figure 8, the blue dashed line shows the
mean AUC of the outlier detection with CAE_KNN, while the
solid red line shows the mean AUC of the outlier detection with
attCAE_KNN. The lighter shadings present the standard
deviation of the three results from the three training processes.
One can see that the AUC of CAE_KNN and attCAE_KNN
reach the maximum values when the feature number of the
embedding layer is set to 20, which is, therefore, chosen to be
the number of latent features in CAE and attCAE. In addition,
it can also be seen that the stability of attCAE_KNN is higher
than that of CAE_KNN.

The detailed implementation of KNN outlier detection refers
to the modules in (Zhao et al. 2019; Ramaswamy et al. 2000),

where there is a core procedure, namely computeOutliersIndex.
The output data of procedure computeOutliersIndex is stored in
a heap structure (Lattner & Adve 2003). We take the top 533
galaxy images with the largest values in a heap as outliers and
then evaluate the model’s performance based on the 533
outliers.

4.3. Evaluation Metrics

Besides AUC, we also employ Recall, F1 score, and
Accuracy to estimate the performance of outlier detection
(Cheng et al. 2020; Zhu et al. 2019; Hou 2019; Kamalov &
Leung 2020) , which are given by Equations (6), (7), (8)
and (9).

precision
TP

TP FP
, 6( )=

+

recall
TP

TP FN
, 7( )=

+

f
presion recall

1 2
precision recall

, 8( )= ´
´
+

accuracy
TP TN

TP FP TN FN
. 9( )=

+
+ + +

Be worth mentioning, though Accuracy and F1 score are two of
major performance metrics in many applications, they are
considered supplements to AUC and Recall because the data
distributions in this study are unbalanced (the ratio of the
outliers is only 10%). In addition, TP+FN is equal to the TP
+FP in all experiments, resulting in the values of recall being
equal to the values of F1.

Figure 8. Effect on AUC mean values of various feature numbers in embedding layer.
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4.4. Implementation Details

The experimental environment of this study is as follows.
We mainly use an Intel Xeon E5-2690 CPU and an Nvidia
Tesla K40 GPU. Software environment includes python 3.5,
Keras 2.3.1, NumPy 1.16.2, Matplotlib 3.0.3, scikit_learn
0.19.1, and pyod 0.8.4. It takes less than half an hour to train
17,778 images running on two NVIDIA Tesla K40 GPUs.

When training the CAE and attCAE, we set the batch_size to
128 and set epoch to 100, use the binary_crossentropy as
described in Equation (3) and the Adam as optimizer. One can
refer to the settings of the CBAM in Woo et al. (2018).

5. Results

This section presents the results of experiments described in
Section 4. The outcomes of each experiment and the
comparative analysis are listed in the following two
subsections.

5.1. The Case of Single Type Inliers and Single Type
Outliers

Experiment 1. We apply three methods illustrated in Section 3
to the testing set comprising images of Completely round
smooth galaxies as inliers and images of Cigar-shaped smooth
galaxies as outliers. Five metrics, i.e., Area under the ROC
(AUC), Recall, F1 score, accuracy, and runtime, are utilized to
evaluate outlier detection performance of the three methods.
The results are shown in Table 3. Apparently, the attCAE_

KNN approach obtains the best performance in all metrics. For
instance, the recall using CAE_KNN is 31%~ higher than
KNN, reaching 57%, while the recall using attCAE_KNN is

19%~ higher than CAE_KNN, which can reach 76%. Notably,
the runtime of attCAE_KNN is also superior to other methods,
and it is 4%~ of that of KNN alone.

Experiment 2. The second testing set contains images of
Completely round smooth galaxies as inliers and images of
Edge-on galaxies as outliers, as for the experimental parameters
are similar to experiment 1. As is shown in Table 4, the results
are also similar to experiment 1. One of the reasons is that the
differences between inliers and outliers are both well
distinguished in the first and second experiments.

Experiment 3. This experiment is similar to the previous one,
except we adopt images of In-between smooth galaxies as
outliers. However, as is shown in Table 5, the experimental
results are different from previous ones because the similarity
between inliers and outliers in this test set is less significant
than the previous ones. Though including CAE and attention
mechanism brings improvement, it is less considerable than the
first two cases. For example, concerning recall, the CAE_

KNN is 4%~ higher than KNN and only reaches 15%, while
the recall of using attCAE_KNN is higher than CAE_KNN by

7%~ and reaches 22% only. It reveals that the definition of the
outliers detection problem is crucial for outlier detection.
According to the results, identifying smooth elliptical galaxies
with specific ellipticity is not a practical outlier detection
problem.

Experiment 4. Similarly, we adopt images of Spiral galaxies as
outliers in this experiment. As expected (see Table 6), this
experiment’s results are better than experiment 3 but worse
than experiments 1 and 2 because the distinguishability
between inliers and outliers in this testing set is more noticeable
than that in case 3 but less than cases 1 and 2 (mainly due to the
PSF smearing). The most noteworthy difference between
completely round-smooth and face-on Spiral galaxies is
detailed structures and colors; thus, we hope the improvement
of CAE and attention mechanism would be more significant
when applying the methods to data from space-born telescopes.

Table 3
Results of Experiment 1 (The Bold Entries Highlight our Results.)

AUC recall f1 acc Time

KNN 0.83 0.26 0.26 0.85 >4 h
CAE_KNN 0.94 0.57 0.57 0.91 10 min
attCAE_KNN 0.97 0.76 0.76 0.95 10 min

Table 4
Results of Experiment 2 (The Bold Entries Highlight our Results.)

AUC recall f1 acc Time

KNN 0.83 0.25 0.25 0.85 >4 h
CAE_KNN 0.95 0.56 0.56 0.91 10 min
attCAE_KNN 0.98 0.78 0.78 0.96 10 min

Table 5
Results of Experiment 3 (The Bold Entries Highlight our Results.)

AUC recall f1 acc Time

KNN 0.64 0.11 0.11 0.82 >4 h
CAE_KNN 0.68 0.15 0.15 0.83 10 min
attCAE_KNN 0.71 0.22 0.22 0.84 10 min

Table 6
Results of Experiment 4 (The Bold Entries Highlight our Results.)

AUC recall f1 acc Time

KNN 0.68 0.15 0.15 0.83 >4 h
CAE_KNN 0.77 0.24 0.24 0.84 10 min
attCAE_KNN 0.81 0.29 0.29 0.86 10 min

9

Research in Astronomy and Astrophysics, 22:085006 (11pp), 2022 August Han et al.



5.2. The Case of Single Type Inliers And Multiple Type
Outliers

The above experiments primarily explore the feasibility of
unsupervised approaches for outlier detection with testing sets
containing single type inliers and single type outliers. This sub-
section demonstrates an experiment in a more realistic case,
i.e., the testing set contains a single type of inliers plus multiple
types of outliers.

Experiment 5. We consider images of Completely round
smooth galaxies as inliers and images of In-between smooth,
Cigar-shaped smooth, Edge-on and Spiral as outliers. The
experimental results are shown in Table 7, the attCAE_KNN
still achieves the best performance. The recall of CAE k_ NN
reaches 43%, 21%~ higher than KNN, and the recall of
attCAE_KNN is 10%~ higher than CAE_KNN, reaching to
53%. It is easy to conclude that the missing points in this
experiment are dominated by In-between smooth galaxies.

Notably, recall and f1 values are the same in all the
experiments because we define the most distant 10% objects to
the center of the cluster of inliers in feature space as outliers
during the detection of outliers, while the fraction of outliers in
the testing set is 10%. Consequently, FN equals FP, then recall
will equal precision, and hence recall equals f1 as well.
However, when the chosen fraction does not equal the actual
value, recall and f1 are not the same. The actual fraction of
outliers is unknown in real cases; thus, it is impossible to
choose a perfect fraction, and one needs to choose a rational
fraction to define outliers according to specific scientific goals.
We set the fraction to be 5% and 15%, in addition to illustrating
comparative results. As is shown in Table 7, when the
definition of outliers is the most distant 5% objects to the center
of the inlier cluster, recall decreases to 0.37, precision
increases to 0.74, and f1 is 0.5. Whereas, when the definition
of outliers is the most distant 15% objects to the center of the
inlier cluster, recall, precision, and f1 become 0.67, 0.44, and
0.53 separately. Accordingly, if one plans to obtain a sample of
outliers with high completeness, a greater fraction (e.g., 15%)
is needed, while if the goal is to find rare objects with
noticeable and wired features efficiently, a lower fraction (e.g.,
5%) is practical.

6. Discussion and Conclusions

In this study, we explore the feasibility of applying
unsupervised learning to detect outliers in the data of galaxy
images. First, we construct three methods, which are built upon
the KNN, CAE + KNN, and attCAE_KNN separately. To
evaluate the performance of the approaches, we organize two sorts
of data sets based on the data of galaxy images given by the
project of galaxy zoo challenge published on Kaggle. One group
of testing sets includes inliers containing a single type of galaxy
morphology plus outliers containing a single type of galaxy
morphology; the other group of testing sets is similar to the first
ones for inliers but with multiple types of galaxy morphology in
the outliers. Comparing the results of applying three approaches to
all the testing sets, we find that attCAE_KNN achieves the best
performance and costs the least runtime, though its superiority is
limited in the case of the testing set with a substantial similarity
between inliers and outliers.
Specifically, KNN is usable for outlier detection, but its

performance and efficiency are deficient. For instance, the best
recall is 0.25, even when the testing set (testing set 1) has
significant differences between inliers and outliers. The main
reason for the shortcomings is the outdated procedure for
extracting features. Therefore, we involve CAE as a module for
feature extractions, and then the recall reaches 0.56 in the case
of testing set 1. We further employ the attention mechanism to
improve the stability of the feature extraction module, and the
best recall goes to 0.78 in the case of testing set 1. Repeating
the above process in other testing sets that contain single type
inliers and single outliers, attCAE_KNN performs the best and
costs the least runtime, and one can see more details in
Tables 3–6.
To test the feasibility of the three methods in a more realistic

context, we create testing set 5, containing single type inliers
and multiple types outliers. As is expected, attCAE_KNN is
still superior to the other two methods. For instance, its recall is
0.53, but the recalls of CAE_KNN and KNN are 0.43 and 0.22,
respectively. As is shown in Table 7, the advantage of
attCAE_KNN is evident over all five metrics. Hence, we can
conclude that outlier detection in galaxy images is feasible by
combing CAE and KNN, and the performance can be enhanced
by involving the attention mechanism further. Besides, we
implement a comparative investigation with different defini-
tions of outliers when detecting them with our methods. The
results in Table 7 demonstrate that a tighter definition of
outliers leads to higher precision but lower recall, while a
looser definition of outliers leads to lower precision but higher
recall; nevertheless, the overall AUC is stable.
The structures of the testing sets used in the paper are

relatively simple compared to real observations because we
focus on assessing the feasibility of unsupervised approaches.
To make our unsupervised approach suitable for real observa-
tions, we are forming a module to reduce any complex case

Table 7
Results of Experiment 5 (The Bold Entries Highlight our Results.)

AUC recall precision f1 acc Time

KNN 0.77 0.22 0.22 0.22 0.84 >4 h
CAE_KNN 0.85 0.43 0.43 0.43 0.87 10 min
attCAE_KNN 5% 0.87 0.37 0.74 0.50 0.92 10 min
attCAE_KNN 10% 0.87 0.53 0.53 0.53 0.92 10 min
attCAE_KNN 15% 0.87 0.67 0.44 0.53 0.88 10 min
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(multiple types inliers + multiple types outliers) to the simple
one employed in this paper (single type inliers + multiple types
outliers) by combining human inspection and supervised
learning. Then, we will apply the pipeline to actual survey
data, such as KiDs, DES, and DESI legacy imaging surveys, to
test its applicability and reliability. Also, to further improve the
performance of approaches, particularly attCAE_kNN, we plan
to optimize the architectures and hyper-parameters while
applying them to observational data. Last but not least,
defining the boundary of inliers and outliers is key to the
outlier detection task, as is shown in the results in testing set 3.
Hence, we will adopt a data-driven strategy to investigate the
optimal definition of the boundaries according to specific
scientific purposes.

In summary, unsupervised approaches, especially when we
involve CAE and the attention mechanism, are feasible for outlier
detection in the data sets of galaxy images. It is foreseen that
unsupervised approaches can mine astronomical outliers so as to
expand the boundary of human knowledge of the Universe in the
big data era. On the other hand, the unsupervised approaches can
also detect misclassified samples in standard supervised classifica-
tion, similar to outlier detection, with no additional efforts.
Accordingly, an ideal pipeline for classifying astronomical objects
might need to combine supervised and unsupervised manners.
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