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Abstract

Exact solutions to the Einstein field equations for class I spacetime symmetry in relativistic stars are generated. The
symmetry provides a relation between the gravitational potentials that lead to generalized solutions of the Einstein
field equations. We choose one of the gravitational potentials on a physical basis, which allows us to obtain the
other gravitational potential via an embedding approach. It is therefore possible to generate a model with
astrophysical significance. The model generated satisfies physical properties like stability, causality, regularity,

equilibrium and energy conditions.
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1. Introduction

Unifying gravitational potentials in astrophysics helps to
understand the geometry of spacetime and interior structures of
stellar objects. To understand the behavior and physical properties
of relativistic objects, the Einstein field equations are essential
mathematical tools (Rahaman et al. 2012). Studying the structure
and properties of stellar objects is achieved by examining their
fluid matter distribution. Schwarzschild (1916) found the first exact
solution of the Finstein field equations for astrophysical objects,
which opened the way to investigate different models arising from
field equations to describe realistic stellar objects. The investigation
by Tolman (1939) extended the Schwarzschild model more
realistically and connected astrophysical models with data-based
facts. The main feature is to consider symmetric properties since
this simplifies models to many astrophysical problems. In
particular, spacetime symmetry is used to study the nonlinear
effects of gravitation and electromagnetic fields. Embedding
spacetime into a higher dimensional flat space is a useful approach.
Class I spacetime has been used to predict the form of the exact
solutions for compact stellar objects (Bhar et al. 2016; Maurya &
Govender 2017; Mathias et al. 2021).

Schlaefli introduced the concept of embedding in Euclidean
space and indicated that any n-Riemannian manifold V" could be
embedded in an m-dimension pseudo-Euclidean space E™ with

="%D (Singh et al. 2017a). The required extra p
dimensions of the pseudo-Euclidean space that embeds V" in
E™ is called the class of the manifold V", and must be less than
or equal to the number p =m —n or n =D Ror instance, the
maximum embedding class p of relativistic spacetime V* is 6.
Embedding in five-dimensional flat spacetime, class I spacetime,
has been successfully used in various extensive studies to
model stellar objects. The embedding approach gives addi-
tional differential equations named the Karmarkar condition

(Maurya & Maharaj 2018). Therefore, the Karmakar condition
helps to solve the Einstein field equations.

Research in relativistic astrophysics includes pressure anisotropy
as an important ingredient in modeling systems of compact stellar
objects. This is important in finding physical solutions of the
Einstein field equations that describe realistic stars (Stephani et al.
2003). Bowers & Liang (1974) discussed the importance of local
anisotropy in relativistic fluid models. Furthermore, Herrera &
Santos (1997) addressed the impact of local anisotropy in the
matter distribution and suggested its inclusion for several physical
processes in compact astrophysical objects with large density of
about 10" gcmf3 . Dev & Gleiser (2002) demonstrated that
pressure anisotropy in stellar objects is associated with mass,
structure and redshift which can all change for different values of
the magnitude of anisotropy. Other research describing the
physical effect of anisotropy and verifying the significance of
non-zero anisotropy in modeling stellar objects has been conducted
by Lighuda et al. (2021), Maurya & Maharaj (2017), Murad
(2016), Murad & Fatema (2015), Ngubelanga et al. (2015),
Sharma & Ratanpal (2013), Sunzu et al. (2014a, 2014b), and
Sunzu et al. (2019).

In general relativity, more researchers on symmetry of class I
spacetimes have considered the additional restrictions on gravita-
tional potentials (Gedela et al. 2018; Pandya & Thomas 2019).
Models that incorporate embedding show that the Karmarkar
condition allows one to choose forms of gravitational potentials to
develop new stellar models as described by Maurya & Govender
(2017), Murad (2018) and Maurya & Maharaj (2017). In seeking a
generalized solution to the Einstein field equations with spherical
symmetry when implementing the Karmarkar condition, we
impose restrictions on the metric functions. We specify the
gravitational potential z(x) on a physical basis. Then, through the
Karmarkar condition we obtain the other gravitational potential


https://orcid.org/0000-0002-1967-2849
https://orcid.org/0000-0002-1967-2849
https://orcid.org/0000-0002-1967-2849
https://orcid.org/0000-0002-8780-3927
https://orcid.org/0000-0002-8780-3927
https://orcid.org/0000-0002-8780-3927
mailto:jefta@aims.ac.za
https://doi.org/10.1088/1674-4527/ac51c6
https://crossmark.crossref.org/dialog/?doi=10.1088/1674-4527/ac51c6&domain=pdf&date_stamp=2022-03-17
https://crossmark.crossref.org/dialog/?doi=10.1088/1674-4527/ac51c6&domain=pdf&date_stamp=2022-03-17

Research in Astronomy and Astrophysics, 22:045007 (9pp), 2022 April

y(x) by applying the integrability condition. This enables us to
solve the Einstein field equations by generating a model that fully
describes the behavior of relativistic stars. The solutions obtained
are used to examine the applicability of the physical boundary
conditions of compact stars.

2. Einstein Field Equations

The Einstein field equations describe the gravitational
behavior of astrophysical objects. This is done by considering
the spacetime local coordinates (x N=(t, r, 0, ¢) whose interior
line element takes the Schwarzschild form

ds? = —e’Vdt? + erdr?
+ r2(d6? + sin® 0d¢?), (1

where »(r) and A(r) are functions for the gravitational
potentials. The exterior Schwarzschild spacetime for a
relativistic fluid sphere takes the form

ds? =—(1 = 2MYar 4 (1 - 21) a2
+ r2(d6? + sin® 0de?), 2)

where M stands for the total mass of the stellar object. The
Einstein field equations for the distribution of anisotropic fluids
are given by

i i 1 i

where T; and R} are respectively the energy momentum tensor
and the Ricci tensor, and R represents the scalar curvature. The
energy momentum tensor for the distribution of anisotropic
matter is evident in models of Maurya & Maharaj (2017) and
Bhar et al. (2017b) given by

= puiy + poxg X+ W' = XX - g, “)

where the contravariant quantity v’ is the four-velocity vector
and ' is the unit spacelike vector in the radial direction. The
quantities p, p, and p, stand for matter density, radial pressure
and tangential pressure respectively.

In view of the line element (1) together with (3) and (4), the
anisotropic field equations become

1 — -\ 7/\)\/
8mp(r) = ——— + =2, (52)
r r
Ve A 1 —e?
8mp,(r) = — — (5b)
r r
-2 !/ /
8np, (r) = e—(ZV” + 2 —UN+ v a), (5¢)
4 r r
A= 87T(pt - Pr)
" 5V V/Z v+ N e/\ —1
e LA + — - + .
( 2 4 4 2r r2
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The primes indicate differentiation with respect to the radial
distance r and A stands for the pressure anisotropy. For
isotropic pressure A =0, p,=p,. Geometrized units are
employed in which the coupling constant and the velocity of
light are regarded as unity (G=c=1).

3. Class I Condition

Embedding of spacetimes can be used to generate models for
compact stellar objects. The fundamental symmetric tensor b,,3
satisfying the necessary and sufficient Gauss—Codazzi condi-
tions for embedding four-dimensional spacetime into higher
dimensional Euclidean space is described by Eisenhart (1966).
They are given by the equations

R;u/aﬁ = E(buabuﬁ - buﬁbua)a (63)
0= bul/;a - bﬂa;ys (6b)

where ¢ = +1 and semicolons stand for covariant differentia-
tion. Riemann curvature tensor components with non-zero
values are obtained from the line element (1). This helps to
generate the non-zero values of the fundamental form b,
corresponding to Equation (1). The non-zero components of the
Riemann curvature tensor include

I/// V/z N/

Riyjg = —e’| — + — — , Ta
1414 ( 2 , 1 ) (7a)
R2323 = —€>‘ }"2 sin29 (e)‘ — 1), (7b)

1
R =—rNX, (70)
2
L. 2 1 ,V—\
Riyzq = 3 sin“ 6 v'eV . (7d)

The non-zero components of the symmetric tensor b,z
corresponding to Equation (1) include by, b,,, b33 and b4
with b33 = by, sin®6. Then, incorporating all the non-zero
components, Equation 6(a) gives the relation

Ri212R3434 + Ri224R1334
b

Ris1a =
Ry323

®)

which is known as the Karmarkar condition (Karmarkar 1948).
For class I spacetimes, Equation 6(a) must satisfy Rj3,3 =0
(Pandey & Sharma 1982; Singh et al. 2017b). The embedding
process essentially maps the four-dimensional spacetime into a
higher dimensional Minkowski space. Consequently the light
cone structure of the manifold is mapped into flat spacetime
and may be interpreted in these terms.

Substituting (7) into (8) leads to the nonlinear differential
equation

== 4 ©)



Research in Astronomy and Astrophysics, 22:045007 (9pp), 2022 April

which can be solved to provide an equation relating the
gravitational potentials 1(r) and A(r). This is given by

5= C+ Hf @ — 1)dr, (10)
where C and H are constants of integration.

4. A Transformation

To obtain solutions for the Einstein field equations via the
embedding approach, we first transform the system (5). The
transformation of the system (5) is equivalent to that of Durgapal
& Bannerji (1983). This is done by introducing the independent
variable x and new metric functions y and z defined as

x=Gr? z(x)=e 0, yx) = e 11

With Equation (11), the system expressed in Equation (5) becomes

87p(x) = Cl(l —L zz), (12a)
X

8p, (x) = q(z 22— ﬁ) (12b)
y X

87p, (x)
. . %)
=C1(2le+(21+xz'.)z—xzy—2+z'.), (12¢)
y y

y
. .0
8rA = Cl(z(Zx Y xy—z)
y y

+ z’(l + xi) 1= Z), (12d)
y X

where dots denote differentiation with respect to x. When
A =0, the pressure becomes isotropic.

5. Generating a New Model

In generating a new model, we apply the solution of the
nonlinear differential equation obtained from embedding
spacetime into flat space as shown in (10). Expressing the
solution (10) in terms of the transformed variables x, y and z,
we obtain an equivalent equation given as

2
B 1 l—z
y(x)_(c+2Hf | - dx). (13)

Studies in general relativity use different techniques when
describing the properties and structure of stellar bodies. The
approach of transforming the field Equations (5) has been done by
several researchers applying different techniques. Manjonjo et al.
(2018, 2019) imposed conformal symmetry on the spacetime
manifold. The conformal Killing vector was used with the Einstein
field equation to provide a relationship between gravitational
potentials. Also, Matondo et al. (2018) generated realistic stellar
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models by incorporating the conformal Killing vector into the
Einstein field equations. Another technique is to use equations of
state relating the energy density and the pressure of the stellar
object. Maharaj et al. (2014) and Sunzu et al. (2014a, 2019)
utilized the linear equation of state. Sunzu & Mashiku (2018)
adopted the quadratic equation of state to generate exact solutions.
The Van der Waals equation of state was applied by Thirukkanesh
& Ragel (2012) where the metric function z is specified.

In generating stellar models, previous research on class I
spacetime limited only the forms of gravitational potentials e A and
¢”. This is shown in models by Arkani-Hamed et al. (1998),
Baskey et al. (2021), Bhar (2015), Bhar et al. (2015, 2017a),
Errehymy et al. (2021) and Maharaj & Govender (2005). This
approach is useful in solving the Einstein field equations. In this
work, the field equations are transformed, and the Karmarkar
condition is applied to provide an equation relating the
gravitational potentials. For class I spacetimes, the approach of
transforming the field equations and Karmarkar condition has not
been employed before.

All physical quantities in the system (12) are defined in terms
of three partial differential equations with five unknown
variables A(x), v(x), p(x), p{x) and p«x). Conditions with
physical significance on the distribution of matter in the system
(12) such as regularity and stability will limit choices made for
the gravitational potential A(x). To solve system (12), we first
need to integrate Equation (13) by specifying the gravitational
potential z(x). We choose the gravitational potential z(x) to be

7(x) = ; (14)
1+x
The motivation behind choosing this form of gravitational
potential is to generalize the particular solutions obtained from
previous works. The choice is regular and continuous
throughout the interior of the stellar object. Particular solutions
with similar choices of gravitational potential have been
generated using equations of state. These are found in the
Finch & Skea (1989) model for a linear equation of state. In our
work, we utilize the Karmarkar condition with the choice of
metric functions (14) to generate general exact solutions to the
Einstein field equations with embedding into Euclidean space.
Using Equations (13) and (14), we have
_ (2C+ H(A +x)?

1
y() 1 , (15)

where A, is a constant of integration.
Using Equations (14) and (15), the matter variables and the
gravitational potentials in Equation (12) become
(2C + H (A + x))?

e’'(x) = 1 s (16a)

) =1+ x, (16b)
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GQB + x)
R (16¢)
p() = — GQRC + H(—4 + A +x)) , (164)
8r(1 + x)(2C + H(A + x))
_ G(-2C+ H@E — A + )
P = T P C T HA +x) (16e)
p,(x) —p,(x)=A

T 87(1 + x)22C + HA + x))

where C, H and A, are real constants and should be chosen
such that p(x) > 0, p(x) >0, p(x) >0 and ¢” > 0. In this case
some constants may take negative values (4, C, H < 0). This
is also discussed in Section 6. However, in our case the
anisotropy is nonzero which allows for a wider range of
behavior as shown in Thirukkanesh & Maharaj (2008). The
solution in (16) describes the feature of anisotropic stellar
objects in the absence of an electric field. The solution in (16) is
for the system of field equations in (12) which were formulated
by transforming the field equations in (5). These equations
were also used by Schwarzchild to generate the first particular
solution describing compact astrophysical objects. The system
(16) describes a solution to the Einstein field equations which
utilizes the embedding approach of class I spacetime. These
complement earlier treatments (Maurya & Govender 2017;
Murad 2018; Bhar 2019).

6. Analysis of the Physical Properties

The system (16) satisfies several physical conditions that are
appropriate for the behavior of an astrophysical object. These
conditions include regularity, stability, causality, energy
conditions, equilibrium, mass—radius relation and matching
conditions.

6.1. Regularity Condition

The regularity of the fluid anisotropic model is assessed by
observing if the model is free from physical and geometric
singularities. It is observed in Figures 1 and 2 that at the center
(r=0), the metric potentials have the values e¢” >0 and
e =1 respectively. This demonstrates that the metric
potentials in the star’s interior are regular, non-negative and
finite. In addition, the metric potential ¢~ * is monotonically
decreasing toward the surface. Similar profiles to this form of
the gravitational potential were obtained by Bhar et al.
(2017b, 2017c) and Singh et al. (2017a).

The essential aspects also shown in the new model are the
profiles of the matter variables p, p, and p; being non-negative
and monotonically decreasing as they approach the surface of
the star. The sketches of these matter variables from
Figures 3-5 affirm that the values at the center are at the
highest points.

Mathias et al.
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Figure 1. Potential ¢” vs. radial interval.
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Figure 2. Potential ¢~ * vs. radial interval.

6.2. Stability Through Adiabatic Condition

The stability of the model is described by considering the
adiabatic index I'. For an isotropic model, I" should satisfy the
condition

d
p_|2Ep ) 4 17
p, dp 3

Effective models in general relativity, with anisotropic
pressures, play a critical role in analyzing the stability of the
model. Stability of the anisotropic model is tested as indicated



Research in Astronomy and Astrophysics, 22:045007 (9pp), 2022 April

0.12

[0 T N PPt OO P UP R PPUOE SOPRPPRPSPPRPP

0.10-
0.09) oo O N PP ST

< 0.08f

0.04 i 1 1 i
0.0 0.2 0.4 0.6 0.8 1.0

r

Figure 3. Energy density vs. radial interval.
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Figure 4. Radial pressure vs. radial interval.

in the paper by Maurya & Maharaj (2017) given by

4 pOPrO r

F>§l+3ﬂ' prO_pZO

9’
1P’ ol 10’ ol

(18)

where the subscript 0 represents central values. From Figure 6
we observe that the adiabatic index satisfies the condition
r> % everywhere inside the compact star.

6.3. Causality Condition

Causality requires the speed of sound inside the stellar
interior to be less than the speed of light. The tangential and
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Figure 5. Tangential pressure against radial distance.

Figure 6. Stability vs. radial interval.

radial speeds of the model in (16) are given by the formula

7) d
V2= p,’ v = iy
dp dp

It is observed from Figure 7 that the speed of sound increases
monotonically away from the center with v> < 1 and v* < 1.
This behavior obeys the structure of realistic stellar models.
Similar structure is also observed in the work of Maharaj &
Mafa Takisa (2012), Maurya & Govender (2017) and Maurya
& Maharaj (2018).

We have also used the concept of cracking to examine the
stability of our anisotropic model as introduced by Herrera
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Figure 7. Sound of speed vs. radial interval.

(1992). Abreu et al. (2007) showed that the anisotropic fluid
distribution of matter is potentially stable if the radial pressure is
larger compared to tangential pressure with 0 < v — vt2 < land
—1 < v? —v? < 0. With the help of graphical representation in
Figure 8, our anisotropic model is stable. This is in agreement with
the model generated by Maurya & Maharaj (2018).

6.4. Energy Conditions

A realistic stellar model should satisfy the energy conditions
that include null energy condition (NEC), weak energy
condition (WEC), strong energy condition (SEC) and dominant
energy condition (DEC). Any realistic physical model must
satisfy the following energy conditions

NEC: p > 0,

WEC: p—p, 20,p—p, 2

SEC: p—2p, —p, =20,
p—3p.20,p—3p

DEC: p —Ip| 2 0, p — |p,|

=

il

2 =0,
2 20

(Jape et al. 2021). From Figures 9 and 10 it is clear that our
model satisfies all conditions for energy within the stellar
interior.

6.5. Equilibrium Conditions

The equilibrium condition of the model is examined by
considering different forces. The generalized Tolman—Oppen-
heimer—Volkoff (TOV) equation describes the equilibrium
condition for anisotropic fluid distributions (Tolman 1939)
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Figure 8. Criterion of cracking vs. radial interval.

0.09

FEnergy Conditions
o
o
~

0.05

0.03 1 i i 1
0.0 0.2 0.4 0.6 0.8 1.0

r

Figure 9. Energy condition vs. radial interval.

given by

2A d,
28 _dp,

r dr r

mg(p +p,) s
- 2 ¢

19)

where m,(7) is the effective gravitational mass. The equilibrium
condition is determined by the equation

Ei+ Fy+ F =0, (20)

where F, is anisotropic force, F, is gravitational force and Fj, is
hydrostatic force. We obtain different but equivalent forms for
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Figure 10. Energy condition vs. radial distance.

mg(r), Fo, Fg and F), in terms of variables in Equation (11) as

mg(x) = x%y%z%z,
y
Fg _ mg(x) (p + pr(x»y%z%,
d
F—— p,(x),
dx
X2

The sum of these three forces satisfies Equation (20) as
indicated in Figure 11.

6.6. Mass—Radius Relation

For any physically valid star model, according to Buchdahl
(1959), the ratio of mass to radius must satisfy the condition
% < g Mak & Harko (2003) defined a generalized relation-
ship to find the ratio of mass to radius given by

k x 1
M@ =" fo p(y)yidy,

Gx2
= 21
(1 +x) @D

The above mass function satisfies the properties of the
physical star model for a compact astrophysical object, and this
is verified in Figure 12.
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Figure 12. Mass vs. radial interval.

6.7. Matching Condition

We consider the exact solutions from the new model by
matching the solution of interior line element (1) and exterior
line element (2) at the surface of the star. The matching
condition is determined as indicated in Thirukkanesh & Ragel
(2012). This is done by taking r =R at the boundary. Then
Equations (1) and (2) give

—1
et = (1 - ZTM) , (22a)
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V=1-—. 22b
e 7 (22b)

In gg, substituting Equation (14) into Equation 22(a), we
obtain the constant C; in terms of M and R,
2M

T RR - 2M) 23)

G

In gy, substituting Equation (15) into Equation 22(b), we
obtain the constant of integration C in terms of Cy, M and R

C:(l—GRz)(h—zﬂ). (24)
4 R

With Equations (23) and (24), we can obtain C in terms of M
and R as

o E)
2(R — 2M) R

Vanishing of the radial pressure at the boundary p;_gy=0
gives the constant of integration H in terms of M and R

H:l( 1_2%). (26)

Matching of the exact solutions is represented by
Equations (23), (25) and (26). The constants C and H are
expressed in terms of M and R.

7. Discussion

In this paper, our objective was to extend the characteristics
of the embedding approach to the solution of stellar bodies.
This is done by the transformation of matter variables in the
system (12) so as to form a new exact solution to the Einstein
field equations. The Karmarkar condition provides a relation
between the metric potentials y(x) and z(x). This generates a
new exact solution by choosing the gravitational potential z(x)
on a physical basis. By doing this, a model with acceptable
behavior is developed as indicated in the system (16). The
analysis of the generated model is established through
graphical representation using the Python programming
language for the following constants: H=15.6, C = —14 and
A =8.

The representation in the graphs for the metric functions
(e~ *, e) and the matter variables shows that p, p, and p, are
well behaved inside the stellar object as given in Figures 1-5.
In this model, we have demonstrated that the stability condition
through adiabatic index is satisfied as I' > % (Maurya &
Maharaj 2018). This is clearly seen in Figure 6. Stability of the
model can also be examined by using the speed of sound and
speed of light; this feature is known as the causality condition.
The tangential and radial speed of sound must either be
monotonically decreasing or increasing and does not exceed the
speed of light, that is v, v> < 1 (Abreu et al. 2007). Moreover,

Mathias et al.
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Figure 13. Compactness vs. radial interval.

if the tangential speed of sound is greater than the radial speed
of sound, then the model is potentially stable, that is
w2 — w2 < 1; this method is known as the “cracking method.”
Figures 7 and 8 indicate that all the necessary causality
properties for an astrophysical object are satisfied.

Our generated model satisfies the energy conditions, which
are strong, weak, dominant and null, as displayed in Figures 9
and 10. Furthermore the equilibrium condition by TOV is
verified by the addition of the anisotropic force, hydrostatic
force and gravitational force, and its sketch is depicted in
Figure 11. The exact solutions developed in system (16) are
well behaved since the properties and structure of the rela-
tivistic star model like mass and compactness increase mono-
tonically, similar to the works by Hansraj (2017), Moopanar &
Maharaj (2013) and Singh et al. (2017b). The plots for mass
and compactness of the model are shown in Figures 12 and 13,
respectively. The anisotropy is monotonically increasing and
consistent with the physical requirement of relativistic stars.
This can be clearly seen in Figure 14. We obtain an exact
solution which is free from physical singularities as ¢" >0,
e M9>0,0 < pAx) < 00, 0 < px) < oo, 0< p(x) <ocoin the
range of radius 0 <x < 1.

To this end, in our embedding study, we have observed that
the use of class I spacetime or the Karmarkar condition into
Euclidean flat space leads to a new exact solution. This was
achieved by making a simple choice for a variable z(x) in (13).
Other potential z(x) choices could also lead to physically
interesting models.

The exact solution (16) is given in terms of elementary
functions. It is therefore possible to find the physical quantities
of observational interest such as stellar masses, stellar radii,
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Figure 14. Measure of anisotropy vs. radial interval.

luminosities and surface redshifts. The values obtained can be
compared with known astronomical objects as prepared by
Gedela et al. (2019) and Bisht et al. (2021).
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