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Abstract

Spectral and timing properties of accretion flows on a black hole depend on their density and temperature
distributions, which in turn come from the underlying dynamics. Thus, an accurate description of the flow which
includes hydrodynamics and radiative transfer is a must to interpret the observational results. In the case of non-
rotating black holes, a pseudo-Newtonian description of surrounding spacetime enables one to make significant
progress in predicting spectral and timing properties. This formalism is lacking for spinning black holes. In this
paper, we show that there exists an exact form of a “natural” potential derivable from the general relativistic (GR)
radial momentum equation. Use of this potential in an otherwise Newtonian set of equations allows to describe
transonic flows very accurately as is evidenced by comparing with solutions obtained from the full GR framework.
We study the properties of the critical points and the centrifugal pressure supported shocks in the parameter space
spanned by the specific energy and angular momentum, and compare with the results of GR hydrodynamics. We
show that this potential can safely be used for the entire range of Kerr parameter −1< a< 1 for modeling of
observational results around spinning black holes. We assume the flow to be inviscid. Thus, it is non-dissipative
with constant energy and angular momentum. These assumptions are valid very close to the black hole as the infall
timescale is much shorter as compared to the viscous timescale.

Key words: black hole physics (159) – Kerr black holes (886) – relativity (1393) – hydrodynamics (1963) –
shocks (2086)

1. Introduction

The accretion of matter onto black holes is widely believed
to be a fundamental physical process that has played a
significant role in the theories of quasars, active galactic nuclei
(AGNs) and compact binary systems (e.g., Lynden-Bell 1969;
Pringle & Rees 1972; Pringle 1981). It has been extensively
studied during the past five decades. Early studies of an
accretion disk employed the standard thin disk model of
Shakura & Sunyaev (1973) that used the Newtonian potential
to describe the gravitational field of the black hole and assumed
a Keplerian distribution of accreting matter. The standard disk
model is incomplete in the sense that the radial drift velocity of
the accreting matter is neglected and the inner boundary
condition at the horizon was not taken care of, and instead, the
inner edge of the disk was chosen to coincide with the
marginally stable orbit, i.e., three Schwarzschild radii, for non-
rotating black holes. The relativistic version of the standard
disk model was formulated by Novikov & Thorne (1973)
though it still has the same limitations. The entire flow is
assumed to be subsonic even though the black hole accretion is
necessarily transonic and definitely supersonic on the horizon.
Although the standard disk model could explain the thermal

component of the black hole accretion disk spectrum, it is
unable to explain the non-thermal power-law component. With
the observation of high-energy X-rays and γ-rays it was
realized that a typical accretion flow configuration cannot be
made of a standard disk alone and it should have a hot
component which also could be a rapidly falling, transonic, low
viscosity flow in the form of an advective corona of the
standard disk.
In regions very close to a black hole, the general relativistic

(GR) effects play a crucial role. However, to avoid the
complexity of general relativity, the pseudo-Newtonian
approach has been devised that allows one to use the equations
of Newtonian hydrodynamics but with pseudo-potentials
instead of the Newtonian potential that aspire to mimic the
corresponding relativistic effects. In the case of accretion
around a non-rotating black hole, Paczynsky & Wiita (1980,
hereafter PW80) proposed a pseudo-Newtonian potential that
captured the salient features of the spacetime around a
Schwarzschild black hole quite accurately. In particular, it
correctly reproduces the locations of both the marginally stable
and marginally bound circular orbits, though the specific
energies at these orbits deviated by a few percent. This
potential has been used in numerous works to study the
structure and physical properties of accretion flows around a
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non-rotating black hole (Matsumoto et al. 1984; Abramowicz
et al. 1988; Kato et al. 1988; Chakrabarti 1989; Chakrabarti &
Titarchuk 1995; Yang & Kafatos 1995; Hawley & Krolik 2001)
with a good deal of success.

In reality, however, most of the astrophysically relevant
black holes are expected to possess considerable angular
momentum and they can even be close to maximally spinning
with a= 1, a being the angular momentum per unit mass of the
black hole (Bardeen 1970). Therefore, the important feature
that needs to be incorporated in models of accretion disks is the
rotation of the black hole. However, solving the hydrodynamic
equations which include radial and rotational motions using the
full GR framework is itself a challenging task. When the
viscous effects, magnetic fields and radiative transfer are
included, a proper formulation of the problem is often very
difficult. In such cases, a sufficiently accurate result with all the
salient features with lesser computational complications
becomes very handy and may motivate one to carry out
numerical simulations to study stabilities of those solutions.
Carrying out spectral fits using each data set with theoretical
models and eventually studying evolution of physical para-
meters of the flow utilizing a massive number of data sets
requires a formalism which should not be time consuming. This
should also be accurate enough so that the errors that creep in
for not using strict GR equations are within the observational
errors. Several attempts have been made to propose pseudo-
Newtonian potentials to study accretion processes around Kerr
black holes (e.g., Chakrabarti & Khanna 1992; Artemova et al.
1996; Semerák & Karas 1999; Mukhopadhyay 2002; Chakrabarti
& Mondal 2006). All these potentials were formulated with
specific constraints and they have their own limitations.

In this paper, we derive the exact form of the effective
potential by identifying a term as the radial force in the radial
momentum equation in the corotating frame in Kerr geometry.
This potential correctly reproduces the locations of both the
marginally stable and marginally bound orbits in the full range
of the spin parameter and is free from any a priori constraints.
The same form of the potential was used earlier by Dihingia
et al. (2018) for relativistic accretion flows. However, we treat
the effective potential as a true pseudo-Kerr (PK) potential in
the sense that except for borrowing this potential from GR, we
follow the same formalism as was applied in Chakrabarti
(1989, hereafter C89) where a hybrid model was examined in
Schwarzschild geometry. We study the transonic solutions and
classify the parameter space based on the number of critical
points and the type of flow topology. We also discuss the
formation of shocks in accretion and in winds and present a
comparison of our results with those obtained from the full GR
formalism for various sets of parameters. We find that all GR
results in Kerr geometry are reproduced with very high
accuracy. One successful flow solution which explains the
spectral properties of accretion flows is the two component
(Keplerian and sub-Keplerian) advective flows as presented in

Chakrabarti & Titarchuk (1995, hereafter CT95). The so-called
quasi-periodic oscillations (QPOs) become a natural conse-
quence of resonance oscillation of the shocks (Chakrabarti
et al. 2015). A proper fit of data requires the rates of the two
components as well as the shock location and the compression
ratio of the flow across it. Since the latter quantities are
reproduced accurately using our PK potential, the procedure
of CT95 can be utilized in Kerr geometry and the spin can be
determined along with the black hole mass from the fit of each
data set.
In the next section, we present the basic equations governing

a thin, axisymmetric accretion flow in the equatorial plane of
the Kerr geometry. In Section 3, we carry out the critical point
analysis and classify the parameter space based on the
multiplicity of critical points and the nature of flow solutions.
In Section 4, we investigate shock formation in accretion and
winds and compare with GR results. Finally, in Section 5, we
make the concluding remarks.

2. Basic Flow Equations

2.1. The Background Metric and the Model Assumptions
of the Flow

We consider a thin, stationary and axisymmetric accretion
flow in the equatorial plane of a Kerr black hole. We adopt the
geometrized units G=M= c= 1, where G is the gravitational
constant, M is the mass of the black hole and c is the speed of
light, such that the units of mass, length and time areM, GM/c2

and GM/c3 respectively. A polytropic equation of state is
chosen for the accreting matter, p= K(s)ργ, where p and ρ are
the isotropic pressure and the matter density respectively, γ is
the adiabatic index (assumed to be constant throughout the
flow, and is related to the polytropic index n by γ= 1+ 1/n)
and K(s) is a measure of the specific entropy s of the flow
which remains constant for an adiabatic flow. The entropy, and
thus K(s), can change only across a shock due to generation of
entropy.
We choose cylindrical coordinates (t, r, f, z) and vertically

integrate the flow equations. The half-thickness of the flow,
H(r), is assumed to be much smaller than the cylindrical radius,
i.e., H(r)= r. The vacuum metric in and near the equatorial
plane of a Kerr black hole is of the form (Novikov &
Thorne 1973)

f w= -
D

+ - +
D

+ds
r

A
dt

A

r
d dt

r
dr dz , 12

2
2

2
2

2
2 2( ) ( )

where a is the spin parameter, Δ= r2− 2r+ a2, A= r4+
r2a2+ 2ra2 and ω= 2ar/A.
The event horizon of the black hole is located at
= + -r a1 1 2 1 2( ) , i.e., at the outer root of Δ= 0. The

self-gravity of the disk matter is neglected and the central plane
of the accretion disk is assumed to coincide with the equatorial
plane of the black hole.
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2.2. Relativistic Hydrodynamics and the Effective
Potential

We assume a perfect fluid characterized by pressure p, rest
mass density ρ and specific internal energy ε, defined in the
local rest frame of the fluid. We may write the stress-energy
tensor of the fluid as

r= +mn m n mnT h u u pg , 2( )

where

e r= + +h p1 3( )

is the specific enthalpy. The unit flow vector uμ satisfies the
normalization condition uμu

μ=−1 which is conserved along
the flow lines.

In a stationary (∂/∂t= 0) and axisymmetric (∂/∂f= 0)
spacetime the conserved quantities are

= = - fhu huand , 4t ( ) 

where  and  are conserved energy and angular momentum
respectively, ut is the specific binding energy and uf is the
azimuthal component of the unit flow vector.

The basic equations of relativistic hydrodynamics are the
energy-momentum conservation equations

 =m
mnT 0 5( )

and the continuity equation

r =m
mu 0. 6( ) ( )

Projecting Equation (5) onto the space orthonormal to the unit
flow vector using the projection tensor, hμν= gμν+ uμuν,
yields the relativistic Euler equations

r  + + ¶ =m
m

n mn m n
mh u u g u u p 0. 7( ) ( )

The radial component of this equation can be put into the form
(Chakrabarti 1996a, hereafter C96)

g g

r

+
D

- + +

+
D

+ =

f f
u

du

dr r
a r

A B

r
u

A B

r

h r
u

dp

dr

1

1
0, 8

2
2

3
2

2

6

2
2

⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝

⎞
⎠

( )

where

=u u ,r

g w= -
D

W -f

-A

r
1 ,

2

4
2

1 2
⎡
⎣⎢

⎤
⎦⎥

( )

and

= W - - WB a r1 .2 2 3( )

Here, Ω= uf/u t is the angular velocity of the flow with
respect to the stationary observer and = = - fl u ut  is the
conserved specific angular momentum of the flow. The

quantity B can be expressed as

= -
W
W

-
W
W+ -

B 1 1 9⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

in terms of the angular velocities W =  
-r a3 2 1( )

corresponding to prograde (+) and retrograde (−) Keplerian
orbits, respectively.
It is convenient to choose a frame that corotates with the

same angular velocity Ω of the flow, the corotating frame, in
which the radial velocity is defined by Abramowicz et al.
(1996)

g =
-

=v
v

v
u g

1
, 10v

r
rr2 1 2
1 2

( )
( )

so that the radial velocity in the corotating frame is given by

= +
D -

v
r u u

1 . 11
r r2

1 2
⎛
⎝

⎞
⎠

( )

This implies v= 1 at the horizon (Δ= 0), i.e., the infall
velocity at the horizon equals the speed of light, independent of
the mass and spin of the black hole. Since the sound speed is
always much less than the speed of light, the flow is supersonic
at the horizon. This velocity can be defined in other ways (e.g.,
V in C96). Thus, the black hole accretion process is necessarily
transonic in nature (see also Chakrabarti 1990).
In the corotating frame, Equation (8) takes the form

g
g

r
+

D
+ =f

v
dv

dr

A B

r h

dp

dr

1
0. 12v

2
2

4
( )

In analogy with Newtonian hydrodynamics, the second term
can be identified as the gradient of the effective potential at the
equatorial plane of Kerr geometry, such that the radial force is
given by

g
= -

F
= -

D
f

F r
d

dr

A B

r
. 13eff

2

4
( ) ( )

The corresponding effective potential obtained from the force is

F = +
- +

+ - + -
r

r r r a

r a l r a l
1

1

2
ln

2

2
. 14eff

2 2

3 2 2 2
⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )
( ) ( )

( )

This potential correctly reproduces the locations of both the
marginally stable and marginally bound orbits for the entire
range of the spin parameter in Kerr geometry. The corresp-
onding gravitational potential Φ obtained by using l= 0 in the
above expression of Φeff is used in the calculation of the
vertical height of the flow. Some other potential obtained in a
more complex way (see, e.g., Dihingia et al. 2018) also agrees
with the one given above which is obtained in a straightforward
manner when proper frame is chosen.
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2.3. Equations Governing a Transonic Flow

We assume a steady-state and axisymmetric accretion flow
in equilibrium in a direction transverse to the flow at the
equatorial plane of a Kerr black hole. We do not consider any
dissipation in the flow, so the specific angular momentum l of
the accreting matter remains constant. In the non-relativistic
limit, the accretion flow is characterized by v= 1 (i.e., the
Lorentz factor γv= 1) and specific enthalpy h∼ 1 all through-
out. Thus, the radial momentum equation in the steady state in
the PK formalism becomes,

r
+ +

F
=v

dv

dr

dp

dr

d

dr

1
0. 15eff ( )

This is of the same form as in C89 written for the Schwarzs-
child geometry, except that the final term now contains the
gravity, centrifugal, Coriolis and spin–orbit coupling terms in a
nonlinear way. The conserved specific energy of the flow is
obtained by integrating the radial momentum equation and is
given by

g
= +

-
+ F

v a

2 1
, 16s

2 2

eff ( )

where as is the sound speed and Φeff is the effective potential
(Equation (14)). Since we are dealing with a thin flow in
vertical equilibrium, the vertical component of flow velocity is
very small as compared to the radial component. The continuity
equation can be integrated to obtain, apart from a geometric
factor, the mass conservation equation given by (C89)

r=M vrH r , 17( ) ( )

where

= F¢ -H r a r 18s
1 2 1 2( ) ( ) ( )

is the half-thickness of the flow that is obtained by equating the
vertical component of the force due to the gravitational
potential Φ (i.e., Φeff for l= 0) and the pressure gradient force.
Here, prime (′) represents the derivative d/dr with respect to r
in flat geometry. It is useful to express the mass conservation
equation (Equation (17)) in terms of the flow velocity and the
sound speed as (C89)

= F¢+ -a vr . 19s
n2 1 3 2 1 2( ) ( )

This quantity µ K Mn  is the entropy accretion rate of the
flow that changes only at the shocks due to generation of
entropy (C89). The Rankine–Hugoniot shock conditions
presented for a strictly one-dimensional flow (Landau &
Lifshitz 1959) are modified in the following way (C89):

the continuity of energy flux across the shock

=+ -, 20( ) 

the continuity of mass flux across the shock

=+ -M M , 21( ) 

and the pressure balance condition

+ S = + S+ + + - - -W v W v . 222 2 ( )

Here, the subscripts “−” and “+” indicate, respectively, the
quantities just before and after the shock, whereas, W and Σ are
the pressure and matter density, integrated in the vertical
direction (see, e.g., Matsumoto et al. 1984) given by,

ò r rS = =
-

z I Hd 2 23
H

H

n ( )

and

ò= =
-

+W p z pI Hd 2 , 24
H

H

n 1 ( )

where = +I n n2 2 1n
n 2( !) ( )! and n is the polytropic index.

The modification (C89) of Rankine–Hugoniot relations was
needed to ensure that the weakest shock in a flow with vertical
equilibrium has unit compression ratio.

3. Critical Point Analysis

The radial velocity gradient of the accretion flow obtained by
differentiating Equations (16) and (19) with respect to r and
eliminating das/dr is given by,

=
F¢ - F
+ F¢

- F ¢ -
+

dv

dr

na r

n r
v

na

n v

3

2 1

2

2 1
. 25s s

2

eff

2

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )
( ) ( )

( )

Since the flow is subsonic (v< as) at large radii and crosses
the horizon supersonically (v> as) into the black hole, the
denominator () of Equation (25) must vanish at an
intermediate location. Therefore, to have a smooth solution
across that location, the numerator ( ) must also vanish to
keep dv/dr finite. Such a location is the critical point (rc) or
sonic point of the flow. Thus, dv/dr is well-defined and regular
at the critical point only if = = 0  and this yields the
following critical point conditions:

=
+

v
n

n
a

2

2 1
26c sc

2 2⎛
⎝

⎞
⎠

( )

and

=
+ F ¢F¢
F¢ - F

na
n r

r

2 1

3
, 27sc

c

c

2 eff( ) ( )

where the subscript “c” denotes the quantities evaluated at the
critical points. Note that since asc

2 is positive, we must have
F ¢ > 0eff at the critical point. This implies that B> 0 in
Equation (12). This puts a constraint on the angular momentum
of the flow and from Equation (9), one finds that this condition
boils down to the fact that the flow has to be sub-Keplerian at
the critical points, i.e., l< lKep. In all the cases of inviscid flows
studied in Chakrabarti (1990), this was shown in the context of
accretion around non-rotating black holes using the PW80
potential.
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From Equation (26), one can calculate the Mach number at
the critical point as,

= =
+

M
v

a

n

n

2

2 1
. 28c

c

sc
( )

This is of the same form as the flow in vertical equilibrium in
full general relativity (C96) and also using PW80 potential for
flows around non-rotating black holes (C89).

Since the radial velocity gradient has the form dv/dr= 0/0
at r= rc, we apply the l’Hospital rule to calculate (dv/dr)c at
the critical point as

=
-  -dv

dr

B B AC

A

4

2
, 29

c

2
⎛
⎝

⎞
⎠

( )

where

=
+
+

A
n

n

4 1

2 1
, 30a

( ) ( )

=
+

F ¢B
n

G
4

2 1
, 30beff ( )

=
+

F ¢ -
¢
F ¢ + F C

n
G

G

G

2

2 1
, 30ceff eff eff ( )

and where = F¢ - F F¢G r r3 2c c( ) . Using the critical point
conditions in Equation (16), one can calculate the conserved
specific energy  of the flow as a function of the critical point
location rc and specific angular momentum l of the flow.
Depending on the choice of the parameters ( l a, , ), the
accretion flow may possess multiple critical points through
which the matter enters into the black hole. The nature of the
critical points depends on the radial velocity gradients at the
critical points. The critical point is saddle-type when the values

of (dv/dr)c are real and of opposite signs, whereas the critical
point is center-type when (dv/dr)c becomes imaginary.
For a flow with angular momentum above a critical value,

i.e., l> lc, the flow possesses three critical points, two saddle-
type critical points flanking a center-type critical point. The
origin of the center-type critical point is attributed to the
angular momentum of the flow, whereas the existence of the
inner saddle-type critical point is a purely GR effect (Liang &
Thompson 1980). It is necessary for a globally acceptable
transonic solution, although not sufficient, that the flow must
pass through at least one saddle-type critical point. However,
for a significant region of the parameter space the flow can also
experience a discontinuity or a shock transition after passing
through the outer critical point first. The post-shock flow
subsequently passes through the inner critical point before
entering the horizon of the black hole.
In Figures 1(a)–(c), we plot the variation of the specific

energy of the flow as a function of the location of the critical
points for various angular momenta for the spin parameters (a)
a= 0.0, (b) a= 0.5 and (c) a= 0.9. The specific angular
momenta for which the curves have been drawn are, from the
topmost curve, (a) l= 2.8, 2.935, 3.1, 3.2, 3.3, 3.4, (b) l= 2.4,
2.567, 2.7, 2.8, 2.9, 3.0 and (c) l= 2.0, 2.121, 2.2, 2.3, 2.4, 2.5
respectively. The dashed curves in all the cases correspond to
the critical angular momentum lc such that for l< lc the number
of critical points is always one, whereas for l> lc three critical
points are possible depending on the specific energy of the
flow. For a particular value of the specific energy of the flow
and spin parameter of the black hole, the critical points are
obtained as the intersections of the constant energy (horizontal)
lines with the constant angular momentum curves. Critical points
with negative slope of the curve correspond to saddle-type critical

Figure 1. Variation of the specific energy of the flow with the location of critical points for (a) a = 0.0, (b) a = 0.5 and (c) a = 0.9 for different values of specific
angular momentum using our PK potential. The curves are drawn for (starting from the topmost curve), (a) l = 2.8, 2.935, 3.1, 3.2, 3.3, 3.4, (b) l = 2.4, 2.567, 2.7, 2.8,
2.9, 3.0 and (c) l = 2.0, 2.121, 2.2, 2.3, 2.4, 2.5, respectively. Dashed lines are drawn for critical angular momenta lc such that for l < lc, there is only one critical point
in the flow.
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points, whereas those with positive slope correspond to center-
type critical points.

In Figures 2(a)–(c), we classify the parameter space spanned
by ( l, ) for the flow solutions that allow multiple critical
points for the spin parameters (a) a= 0.0, (b) a= 0.5 and (c)
a= 0.9. Four distinct regions of the parameter space are
identified, marked as O, A, W and I, based on the number of
critical points and the type of the solution topology. The
solution with parameters from the regions O and I has only the
outer and the inner critical points respectively. On the other
hand, parameters from the regions A and W correspond to the
solutions that contain two saddle-type critical points and a
center-type critical point in between them. In general, the
entropies of the two saddle-type critical points are different,
except on the curve separating the regions A and W where the
entropy is the same. In region A, the inner critical point has a
greater entropy than the outer critical point and shocks may
form only for accretion flows, whereas in region W, the outer
critical point has a greater entropy than the inner critical point
and shocks may form only for winds. In Figures 3(a)–(c), we
present a comparison of the entire parameter space for multiple
critical points using our PK approach with the parameter space
obtained using a full GR approach for the spin parameters (a)
a= 0.0, (b) a= 0.5 and (c) a= 0.9. For a= 0.0, we also
compare the parameter space obtained using the PW80
potential. We find that the parameter space using the PK
approach is in good agreement with that obtained from a GR
perspective for the entire range of the spin parameter.

4. Solutions Containing Shocks

To classify the shock solutions based on the flow parameters, it
is convenient to obtain a quantity that remains invariant
at the shock locations (C89, C96). In order to calculate
the shock invariant, we rewrite the energy conservation

equation (Equation (20)), the entropy accretion rate equation
(Equation (19)) and the pressure balance equation (Equation (22))
in terms of the Mach number M= v/as of the flow as

+ = ++ + + - - -M a na M a na
1

2

1

2
, 31s s s s

2 2 2 2 2 2 ( )

=
F¢

+
+ +

+M a r

r
, 32s

n
s

s

2 1 3 2

( )
( )

( )


=
F¢

-
- -

+M a r

r
, 33s

n
s

s

2 1 3 2

( )
( )

( )


and

g
g

g
g

g
g

-
+ =

-
+

n n
+

+
+

-

-
-

a
M

a
M

2

3 1

2

3 1
, 34s s2 2

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )  

where ν= (3γ− 1)/(γ− 1) and rs is the shock location. From
Equations (31)–(34) it becomes clear that only the entropy is
discontinuous across a shock, and we obtain the shock
invariant quantity as

g
g

g
g

=
- +
+ -

=
- +

+ -

+ +

+

- -

-

C
M M

M

M M

M

3 1 2

2 1

3 1 2

2 1
. 35

2

2

2

2

[ ( ) ( )]
( )

[ ( ) ( )]
( )

( )

In Figure 4, we plot the variation of the specific energy 
with the entropy accretion rate  at all the critical points of the
flow for a= 0.5 and l= 3.0. The branches AMB and CMD
correspond to the inner and the outer saddle-type critical points,
respectively, and the branch BC corresponds to the center-type
critical point. However, a flow can pass smoothly through both
the saddle-type critical points simultaneously only if the flow
makes a discontinuous transition in between them. It is

Figure 2. Division of the parameter space according to the different types of flow solutions using our PK potential for (a) a = 0.0, (b) a = 0.5 and (c) a = 0.9. The
regions are marked as O, A, W and I depending on the multiplicity of the critical points. Flows with parameters from regions O and I have only one critical point,
whereas regions A and W correspond to accretion and wind solutions that allow multiple critical points.
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important to note that the flow generally prefers to pass through
a shock because the entropy of the subsonic branch of the post-
shock flow is higher as compared to the entropy of the
supersonic branch of the pre-shock flow. Shocks in accretion
flows are possible only when the entropy at the inner critical
point is greater than that of the outer critical point, i.e., when
the condition >in out

   is satisfied. For shocks in winds,
the corresponding condition is <in out

   . Thus, from the

figure, it is clear that shocks in accretion are possible only for
the horizontal transitions below M, where the curves AB and
CD intersect, and shocks in winds are possible only for the
horizontal transitions above M. Thus, as a consequence of the
second law of thermodynamics, a shock always connects two
flow solutions with different entropies and the post-shock
entropy must be higher than the pre-shock entropy. Examples
of shock transitions for two different values of the specific
energy are also shown in the figure as the horizontal arrows aa
and ww for two different values of the specific energy.
In C89 (see also Chakrabarti 1990), it was found that in

inviscid flows, the shock conditions are satisfied at four
different locations, denoted by rs1, rs2, rs3 and rs4. However,
only rs2 and rs3 were found to be useful for the study of shocks
in accretion and winds. It was also shown that only rs3 is stable
for accretion, whereas only rs2 is stable for winds (Chakrabarti
& Molteni 1993). At the shock r= rs, the shock strength ( ) is
the ratio of the pre- and post-shock Mach numbers, and the
compression ratio () is the ratio of the post- and pre-shock
vertically integrated matter density. In Figures 5(a)–(c), we
display the variation of (a) shock location, (b) shock strength
and (c) compression ratio for a= 0.5, as a function of the
specific energy of the flow. Each set of curves are plotted for
different values of the specific angular momenta (marked on
the set), where the left and right segments of each set
correspond to accretion and winds, respectively. Further, the
stable shock locations are represented by solid curves and the
unstable shock locations by dashed curves. A comparison with
the GR values is also presented, shown in red color. It may be
noted that the stable shocks in accretion are formed at larger
radii when the specific energy of the flow is increased. One can
also observe that with increase in angular momentum the
centrifugal barrier becomes stronger and stable shocks are
located farther away from the black hole.

Figure 3. Comparison of the entire parameter space for multiple critical points using our PK potential with full GR approach (C96) for (a) a = 0.0, (b) a = 0.5 and (c)
a = 0.9. For comparison, in (a), we also plotted the parameter space obtained using the PW potential (PW80).

Figure 4. Plot of the variation of the specific energy of the flow as a function of
the entropy accretion rate for a = 0.5, l = 3.0. A flow with parameters from the
segment AMB passes through the inner saddle-type critical point, whereas a
flow with parameters from the segment CMD passes through the outer saddle-
type critical point. The segment BC corresponds to the unphysical, center-type
critical point.
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We now present shock solutions for accretion and winds for
two sets of parameters and compare with the full GR solutions
(C96). We illustrate shock solutions where the Mach number
(M= v/as) of the flow is plotted as a function of the radial
distance. In Figure 6(a), we choose the parameters a= 0.5,
l= 3.0 and = 1.003 . The two saddle-type critical points and
the corresponding values of the entropy accretion rates are
found to be rin= 3.61, rout= 185.30, = ´ -2.819 10in

5
and = ´ -1.475 10out

5 . Since >in out
   , a stable shock

is formed in accretion and the shock location is found to be
rs3= 28.58 of shock strength = 4.63 . The corresponding
GR values are rin= 3.50, rout= 186.81, = ´ -2.74 10in

5 ,
= ´ -1.491 10out

5 , rs3= 32.29 and = 4.43 . In

Figure 6(b), we choose the parameters a= 0.5, l= 3.0 and
= 1.007 . The two saddle-type critical points and the

corresponding values of the entropy accretion rates are found
to be rin= 3.58, rout= 69.44, = ´ -3.197 10in

5 and
= ´ -4.868 10out

5 . Since <in out
   , a stable shock is

formed in winds and the shock location is found to be
rs2= 7.28 of shock strength = 3.66 . The corresponding GR
values are rin= 3.47, rout= 71.11, = ´ -3.12 10in

5 ,
= ´ -5.001 10out

5 , rs2= 6.89 and = 3.88 . As a con-
sequence of the second law of thermodynamics which requires
that the post-shock entropy must be higher than the pre-shock
entropy, i.e., >+ -

   , the parameters for stable shocks in
accretion and winds are mutually exclusive (C89, C96). Note

Figure 5. Variation of (a) shock location, (b) shock strength and (c) compression ratio with the specific energy of the flow in accretion and winds for different angular
momenta l = 2.8, 2.9, 3.0. The spin parameter is chosen to be a = 0.5. The stable shock locations are plotted as solid curves and the dashed curves represent the
unstable shock locations. The left and right segments of each set of curves for a particular angular momentum correspond to accretion and winds, respectively. We also
compare the results obtained using full GR considerations (C96), shown in red color.

Figure 6. Comparison of the shock solutions in (a) accretion and (b) winds for the parameters (a) = = =a l0.5, 3.0, 1.003 and (b) = = =a l0.5, 3.0, 1.007
with full GR solutions (C96), shown in red color. The vertical arrows indicate the stable shock transitions rs3 for accretion and rs2 for winds.
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that although the flow has a shock-free solution (passing
through rout for accretion and through rin for winds), the flow
chooses to pass through a shock because the shock solution is
of higher entropy.

We now study the nature of shock solutions in prograde and
retrograde accretion flows, and compare with the full GR
solutions (C96). In Figure 7(a), we feature a shock solution in
prograde flow with parameters a= 0.95, l= 2.3 and = 1.001 .
The two saddle-type critical points and the corresponding
values of the entropy accretion rates are found to be rin= 1.69,
rout= 592.84, = ´ -4.784 10in

5 , = ´ -2.962 10out
6

and the stable shock is located at rs3= 14.32 of shock strength
= 11.31 . The corresponding GR values are rin= 1.66,

rout= 594.32, = ´ -4.108 10in
5 , = ´ -2.973 10out

6 ,
rs3= 18.29 and = 10.44 . In Figure 7(b), we depict a shock
solution in retrograde flow with parameters a=−0.95, l= 4.0
and = 1.0025 . The two saddle-type critical points and the
corresponding values of the entropy accretion rates are
found to be rin= 7.72, rout= 210.42, = ´ -1.509 10in

5 ,
= ´ -1.086 10out

5 and the stable shock is located at
rs3= 47.47 of shock strength = 3.44 . The corresponding
GR values are rin= 7.43, rout= 211.98, = ´ -1.478 10in

5 ,
= ´ -1.097 10out

5 , rs3= 53.41 and = 3.30 . The shock
locations for a retrograde flow are found to be farther away
from the black hole than those for a prograde flow. Thus, we
find that the results obtained using the PK approach are in close
agreement with the corresponding GR results.

We observe that the parameter space for multiple critical
points gradually shifts toward the higher specific energy and
lower angular momentum edge as the spin parameter is
increased. This also means that the energy range for allowed

shock transition increases with the spin parameter. Clearly this
occurs due to spin–orbit coupling and this reveals the role of
the centrifugal barrier in the formation of shocks. Thus, the spin
of the black hole plays a crucial role in determining the
structure of accretion disks.

5. Concluding Remarks

Explanation of the iron-line features and the temporal
properties of accretion flows around black holes often requires
that the black holes have a significant amount of intrinsic spin,
e.g., GRO J1655-40 (Reis et al. 2009), V404 Cygni (Walton
et al. 2017) and EXO 1846-031 (Draghis et al. 2020). One way
to obtain the spins would be to identify the QPO frequencies in
softer spectral states when the accretion flow is dominated by
the Keplerian disk (see Reynolds 2021, for a recent review). In
the Two Component Advective Flow (TCAF) paradigm
of CT95, spectral and timing properties of massive and
supermassive black holes are explained using hydrodynamics
and radiative transfer around Schwarzschild black holes
where PW80 potential is applied. Since the boundary of the
Compton cloud is always found to be far away from the black
holes in harder states, fitting of parameters remained accurate
even when the spin parameter is significant. However, to fit the
observational data as the spectral state becomes softer, one
requires that the equations are solved very close to a Kerr black
hole. This is a very challenging task in full GR formalism. Thus
a pseudo-Newtonian approach for a spinning black hole would
be very useful, especially when the evolution of flow
parameters is studied through fitting a large quantity of
observed data.

Figure 7. Comparison of accretion shock solutions in (a) prograde flow and (b) retrograde flow for the parameters (a) = = =a l0.95, 2.3, 1.001 and (b)
= - = =a l0.95, 4.0, 1.0025 with full GR solutions (C96), shown in red color. The stable shock transitions rs3 for accretion flows are indicated by the vertical

arrows in both the cases.
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While a large number of such potentials are present in the
literature, and some efforts have been made to use them in
obtaining transonic flow properties in Kerr geometry (e.g.,
Mondal & Chakrabarti 2006; Dihingia et al. 2018), we found
that these were either not applicable for all spins, or were used
incorrectly, mixing relativistic and non-relativistic equations,
defeating the spirit of a pseudo-potential approach. The latter
cases are difficult to assess since it is uncertain as to what
extent results are influenced by the potential or the relativistic
equations. Also, the potentials were not derived in a
straightforward way and mostly put in an “ad hoc” manner.
In the present paper, we derived the potential from the radial
force term in the GR radial momentum equation written in the
corotating frame. This was done so as to have the closest
possible analogy with the respective Newtonian force compo-
nents. The potential was obtained directly integrating the force
term while “Newtonizing” the other terms of the same equation
using the limit of unit Lorentz factor. Thus the novel aspect of
our work is that we followed a truly Newtonian approach,
which includes usage of an appropriate potential in non-
relativistic Newtonian fluid dynamic equations and yet we
could reproduce the transonic properties of a flow in vertical
equilibrium as obtained in the context of full GR formalism
(C96) very accurately. In particular, classifications of the
parameter space based on the number of critical points of the
flow, the nature of the solution topologies and calculated shock
locations are all within a few percentage of error even when we
used the near extreme Kerr parameter. The shock strengths and
the compression ratios were also found to be very similar. It
can be noted that the shock location directly gives the size of
the Compton cloud and along with the shock strength and
accretion rates, one gets the optical depth and temperature of
the cloud (CT95), essential to obtain the power-law spectrum.
These flow properties, which are the basis of the TCAF
paradigm, remain very similar to those obtained in full GR
formalism. We found that the shocks in accretion flows around
high spin black holes will form much closer to the black hole as
compared to those for non-rotating black holes, and therefore
the QPOs would have higher frequencies (Chakrabarti et al.
2015). Also, the angular momentum required to form shocks
for rapidly spinning black holes is much lower due to the spin–
orbit coupling. Our result for a non-rotating black hole is, in
fact, better than those obtained using PW80 potential. There-
fore, the effective potential Φeff can be used to study accretion
flow around a Kerr black hole for the entire range of the spin
parameter −1< a< 1. Thus, our formalism paves the way to
fit data with the TCAF solution and extract both mass and spin
parameters of the black hole in the system.

In this paper, we have studied inviscid accretion flows in the
equatorial plane of Kerr geometry using the PK formalism
presented here. Although, in reality, accretion is driven by the
viscosity due to turbulent motion of the matter in the disk, the
infall timescale is very short compared to the viscous timescale

(the characteristic timescale for angular momentum transport) in a
region close to the black hole where the spacetime curvature
plays a significant role. This means that there is practically no
dissipation of the angular momentum during the radial drift of
matter in such a region (Kozlowski et al. 1978) and the flow
behaves like an inviscid flow in some sense. Away from the
black hole, the viscosity plays a major role and the transport of
angular momentum is possible within the infall timescale. In fact,
as in earlier results with the PW80 potential (Chakrabarti 1996b),
we anticipate that in the presence of viscosity, the flow will have
weaker shocks and the central critical points will be of “spiral”-
or “nodal”- type as opposed to “circle”-type. In Chakrabarti
(1996b), it was shown that with high enough viscosity, the flow
becomes a Keplerian accretion disk while at the same time
passing through the innermost saddle-type critical point. It is of
interest to check whether this behavior still persists in Kerr
geometry. In a future work, we will address these issues using our
PK formalism. The results would be reported elsewhere.
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