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Abstract

Recent investigations have derived the relation between the near-field plane amplitude and the surface deformation
of reflector antenna, namely deformation-amplitude equation (DAE), which could be used as a mathematical
foundation of antenna surface measurement if an effective numerical algorithm is employed. Traditional algorithms
are hard to work directly due to the complex mathematical model. This paper presents a local approximation
algorithm based on artificial neural network to solve DAE. The length factor method is used to construct a trial
solution for the deformation, which ensures the final solution always satisfies the boundary conditions. To improve
the algorithm efficiency, Adam optimizer is employed to train the network parameters. Combining the application
of the data normalization method proposed in this paper and a step-based learning rate, a further optimized loss
function could be converged quickly. The algorithm proposed in this paper could effectively solve partial
differential equations without boundary conditions such as DAE, which at the same time contains the first-order
and the second-order partial derivatives, and constant terms. Simulation results show that compared with the
original algorithm by Fast Fourier transform, this algorithm is more stable and accurate, which is significant for the
antenna measurement method based on DAE.
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1. Introduction

The surface deformation of the antenna affects its perfor-
mance and high frequency observation efficiency seriously,
especially for large diameter antenna (Ruze 1966). Many
mature schemes such as radio holography (Rahmat-Samii 1984;
Morris et al. 1988; Baars et al. 2007), phase retrieval
(Morris 1996; Yaccarino & Rahmat-Samii 1997) and photo-
grammetric (Subrahmanyan 2005) are widely employed to
measure the deformation precisely so that the active surface
system of the antenna could be controlled accurately to
compensate the deformation (Wang et al. 2014). However,
these methods are usually limited by elevation angles,
measuring frequency, and signal-to-noise ratio (S/N) in
practical measurements. As a result, the accuracy and speed
of the measurement will be affected to some extent. The near-
field measurement method to get the deformation only by
scanning the amplitude of a planar grid has been proposed
based on geometry optics (GO), which could be realized when
the antenna is in any elevation angle, independent of frequency,
and the scanning plane could be selected in reactive near-field
region which has an ideal S/N (Huang et al. 2017). The core
part of this method is the deformation-amplitude equation
(DAE), which reveals the relation between the amplitude of the

near-field plane and the surface deformation. However, DAE is
a partial differential equation (PDE) which simultaneously
includes the deformation term and its first-order and second-
order terms. The traditional methods for solving PDE, such as
the finite difference method (FDM) and the finite element
method, are difficult to solve DAE.
With the development of computer science, more and more

kinds of approximators are applied to engineering problems.
Artificial neural network (ANN) has the property of universal
approximation (Cybenko 1989). Let σ be any continuous
sigmoidal function. Then finite sums of the form

( ) ( ) ( )G x y x , 1
j

N

j j
T

j
1

å a s q= +
=

are dense in ( )C In , where yj ä Rn and aj, θ ä R are fixed. In
denotes the n-dimensional unit cube, [ ]0,1 n. ( )C In denotes the
space of continuous functions on In. In other words, given any

( )f C InÎ and ε> 0, there is a sum, ( )G x , of the above form,
for which

∣ ( ) ( )∣ ( )G x f x x I, for all . 2ne- < Î

The theorem above proves that for any continuous function
in a complete space, there always exists a neural network with
as few as a single hidden layer, which has arbitrarily small
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difference from the objective function at any point. Therefore,
the neural network method has strong approximation ability,
which could theoretically achieve arbitrary precision when
approximating a continuous multivariate function. The tradi-
tional methods for solving PDE are generally limited to regular
domains such as rectangle and circle. The neural network
method could solve PDEs in irregular domains, and even it
does not need to modify the domain with complex geometry
structure (Rudd & Ferrari 2015). Besides, with the increase of
the number of discrete sampling points, the computational
complexity of traditional PDE algorithms may increase
exponentially. However, the calculation process of feedforward
neural network is independent parallel computing, which
means that the computational complexity of the algorithm
increases linearly (Shirvany et al. 2009).

ANN has been widely used in engineering fields, such as
predicting and solving turbulence models (Ling et al. 2016;
Duraisamy et al. 2019), molecular dynamics models (Zhang et al.
2018). The core reason to use ANN is also that these engineering
problems involve complex mathematical models including
irregular boundary conditions (BCs) and high-order partial
differential terms, which are difficult to be solved by traditional
algorithms. van Milligen et al. (1995) proposed the use of ANN to
solve a two-dimensional ideal magnetohydrodynamic plasma
equilibrium without finite differences and coordinate transforma-
tions, which proved the technique is especially promising for
solving complex PDE and straightforward to implement. The
length factor method for solving boundary value problems is
proposed using ANNs for irregular domain boundaries with
mixed Dirichlet or Neumann BCs, which ingeniously reduces the
error caused by irregular BCs (McFall & Mahan 2009). The deep
Ritz method combines variational theory and ANN to get the
numerical solution of the Poisson equation and its boundary
conditions precisely (Yu et al. 2017).

In this paper, an ANN approximator is proposed to fit the
deformation function based on the relation between the near-
field amplitude and the surface deformation. The satisfactory
and repeatable simulation results prove that ANN can be used
as a conventional algorithm to solve DAE. One of the problems
in solving DAE is that it needs a method which can
approximate the deformation function locally at each discrete
point because of the unknown boundary condition, so that the
error caused by the boundary condition will not spread to the
whole domain. Therefore, the length factor method is employed
to make the trial solution satisfy the boundary conditions.
When using ANN approximator whose training process is
nearly a black box, most engineering applications have the
problem of too long training time. A special method of
preprocessing the training data for solving complex PDE is
proposed in this paper, which effectively speeds up the
convergence process of the algorithm. A global step-based
learning rate is employed to reduce the training time and make
the loss decline smoother during the training process.

2. Mathematics

2.1. DAE Method

The core part of amplitude method is DAE which reveals the
relationship between the surface deformation and nearfield
amplitude. The geometry of a reflector antenna is shown in
Figure 1.
The smooth parabola in the figure represents the ideal state

of the antenna when there is no surface deformation. The wavy
curve represents the surface deformation of the antenna. Point
O is the feed, which is located at the focal point of the antenna
where the coordinate is (0, 0, F) and F is the focal length. The
dashed line in the top of the figure denotes a planar nearfield
and P denotes a random point of this plane. The near-field
plane is h meters from the origin of the coordinate. The
corresponding reflection point of P on the ideal antenna surface
and realistic antenna surface is M and M

*

, respectively. The z-
direction projection of M on the realistic antenna is M**. The
angles between the line segments OM and OM

*

and the vertical
direction are θ and θ

*

.
The surface of ideal antenna, a rotating paraboloid, is

given as

( ) ( )z x y F4 . 30
2 2= +

Let δ denote the normal component of deformation. The
surface of deformed antenna can be expressed as

( )z z . 40 d= +*

The electric field of the electromagnetic wave radiated by the
feed which is reflected by ideal antenna and realistic antenna
with deformation is denoted as E and E

*

respectively. To get
DAE, E and E

*

need to be calculated, which can be expressed
as Equations (5) and (6) based on geometrical optics theory,
respectively

( ) ( ) ( ) [ ( )] ( )E P D M E M jk d dexp , 5OM MP= - +

( ) ( ) ( )
[ ( )] ( )

E P D M E M
jk d dexp . 6OM M P

=
´ - +

* * * *
* *

Figure 1. The geometry of a reflector antenna.
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Here ( )D M is the divergency coefficient of the ray-tube which
connects point P and M and can be calculated by the law of
conservation of energy. The j in the above formula denotes
imaginary unit. The k denotes wavenumber. The dOM denotes
the Euclidean distance between point O and M. The dMP has a
similar meaning. According to the geometric properties of the
paraboloid, all the rays emitted from focal point become
parallel after being reflected by ideal antenna. Therefore, ( )D M
equals 1 in Equation (5).

It can be shown that ( )D M* can be approximately expressed
as (Huang et al. 2017):

( )
( )

[( ) ( ) ] ( )
7

D M

G U G V G U V

1

1
.

x x y y x y
2d d d d

»
+  + + + + + +

*

Here ∇2 denotes Laplacian operator. The subscripts x and y
means taking the derivative of x and y. The G, U and V in the
above equation are expressed as:

( )
( )

( )
( )

( )

G F
x y Fh

x y F

U
Fx x y Fh

x y F

V
Fy x y Fh

x y F

2
4

4
,

4 4

4
,

4 4

4
. 8

2 2

2 2 2

2 2

2 2 2 2

2 2

2 2 2 2

=
+ -
+ +

=
- + -

+ +

=
- + -

+ +

According to Equations (5)–(8), the DAE is given as below
(Huang et al. 2017)

∣ ( )∣
∣ ( )∣

[( )

( ) ] ( ) ( )

E P

E P
G U G

V G U V

1

. 9

x x

y y x y

2
2d d

d d

» +  + +

+ + + +
*

⎜ ⎟
⎛
⎝

⎞
⎠

The Fast Fourier transform (FFT) method is used in the
original algorithm (Huang et al. 2017), which omitted
[( ) ( ) ] ( )U G V G U Vx x y y x yd d d+ + + + + because it is much
smaller than 1+G∇2δ. Therefore, the DAE becomes a Poisson
equation, and G∇2δ could be regarded as the convolution of
the Laplace operator to the deformation. Then the deformation
could be solved in the frequency domain because convolution
in time domain is equivalent to multiplication in frequency
domain.

2.2. Optimization Function and Trial Solution

Suppose that a second order differential equation can be
expressed as:

( ( ) ( ) ( )) ( )x x x x xG D, , , 0, . 102y y y  = Î

It is assumed that the boundary condition S of Equation (10)
has been given. D⊂ Rn is the domain of definition. ( )xy is the
solution to be solved. To solve the above problem, the domain
and boundary of the equation must be discretized. Then

Equation (10) can be written as:

( ( ) ( ) ( )) ˆ ( )x x x x xG D, , , 0, . 11Hi i i i i
2y y y  = " Î

Here D̂ denotes the discretization of D.
Now supposed ( )x p,t iy is a trial solution, where p is the

adjustment parameter. Then the above formula can be
transformed into an optimization problem with constraints,
which are the boundary conditions S, as follows:

( ( ( ) ( ) ( ))) ( )
ˆ

x x p x p x pGmin , , , , , , . 12
x D

i t i t i t i
2

i

å y y y 
Î

In this way, we can try to find the numerical solution of the
original differential Equation (10) by optimizing the adjustment
parameters to find the minimum value of the function G on the
premise of satisfying the constraint conditions.
In fact, it is naturally for us to associate the above

optimization problem with artificial neural network. The
adjustment parameters can be realized by the weight coefficient
and deviation in each layer of the neural network. If we select
an appropriate form of trial solution, the neural network could
keep adjusting each parameter by a certain amount of training.
Then the numerical solution of the differential equation can be
obtained.
A feasible trial solution can be given as (McFall &

Mahan 2009):

( ) ( ) ( ( )) ( )x x x x pA F N, , . 13ty = +

Here ( )x pN , is a feedforward neural network stochastic
objective function with multiple inputs and a single output,
containing the adjustment parameter p. It is supposed that
function F is always zero on the boundary. Function ( )xA
satisfies the boundary conditions, which do not contain
adjustment parameters. Noted that through the form of the
trial solution in Equation (13), it always satisfies the boundary
condition regardless of the output value of the neural network.
Therefore, the original optimization problem with constraints
has been transformed into an unconstrained optimization
problem.

2.3. Network Parameters and Gradient Calculation

For the optimization function G in Equation (12), the
optimizing process is the training process of the neural
network. In this process, the value of function G, which is
the loss of the neural network, decreases continuously and
tends to zero. To calculate the loss, not only the output value of
the network, but also the first-order and second-order partial
derivatives of the network output to each input are needed. At
the same time, in the process of loss reduction, we need to
calculate not only the gradients of neural network output to
network parameters such as weights and deviations in each
layer, but also the gradients of these first-order and second-
order partial derivatives to network parameters.

3
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Suppose ( )x pN , has a single hidden layer, as shown in
Figure 2, which contains h active neurons, and the output layer
is a linear combination of hidden layers. The activation
function is sigmoid function, which is given as:

( ) ( )x
e

1

1
. 14

x
s =

+ -

The first-order and second-order partial derivatives of the
sigmoid function to the inputs can be expressed as
Equations (15) and (16), respectively

( ) ( ) ( )d

dx
x 1 , 15s s s= -

( ) ( )( ) ( )d

dx
x 1 1 2 . 16

2

s s s s= - -⎛
⎝

⎞
⎠

First, for an input vector ( )x x x x x, , , n1 2 3=  , the output of the
neural network ( )x pN , can be expressed as:

( ) ( )N v z . 17
i

h

i i
1

å s=
=

Here vi is the weight of the ith neuron in the hidden layer to the
output, and zi is given as:

( )z w x b . 18i
j

n

ij j i
1

å= +
=

Here wij is the weight of the jth neuron in the input layer to the
ith neuron in the hidden layer, and bi is the deviation of the ith
neuron in the hidden layer. Therefore, from Equations (17) and
(18), the partial derivatives of the output N to each input of the
network can be expressed as:

( )( )N

x
v w . 19

k

j
k

i

H

i ij
k

i
k

1
å s

¶
¶

=
=

Here ( )
i
ks denotes the kth order partial derivatives of the

sigmoid function σi.

2.4. ANN Algorithm for DAE

It is obvious that DAE, namely Equation (9), is a PDE
including constant term, deformation term, the first-order
derivative term and the second-order derivative term. There-
fore, it is easy to get the amplitudes if the deformation is given,
but on the contrary, it is hard to solve the deformation directly
by traditional algorithms. However, this problem can be
transformed to solve the loss optimization by means of ANN
method, where the loss function is constructed as:

{ [( )
( ) ] ( ) } ( )

G U G

V G U V EA

loss 1

. 20
x x

y y x y

2

2

d d
d d

= +  + +
+ + + + -

Here ( )∣ ∣
∣ ∣

EA E

E

2
=

*
is obtained by near-field measurement or

simulation. G, U, V are all discrete matrices related to the
geometric size of the antenna reflector, the near-field measure-
ment distance and the number of sampling points. Then the
solution of DAE is equivalent to a deformation δ which
satisfies the minimization of loss in Equation (20).
When using the ANN method to solve the deformation, it is

necessary to construct a trial solution first, and a boundary
condition is needed according to Equation (13). However, the
deformation on the boundary of the reflector surface is never a
prior information in actual measurement so that we need to
assume a boundary condition. First, the core reason to assume a
boundary condition is that the algorithm is difficult to converge
when solving partial differential equations by ANN without
boundary conditions. Therefore, the trial solution must be
constrained by boundary conditions. Second, the essence of the
ANN method to solve deformation is loss minimization and
function fitting. Compared with traditional methods such as the
FDM, the ANN method will lead to a relatively small overall
migration error when using inaccurate boundary conditions. In
this paper, the subsequent simulation will prove that the error
of boundary condition will only affect the boundary and its
adjacent region when using neural network method to solve the
deformation.
We first assume that the deformation boundary of the

antenna surface is zero. The trial solution of the surface
deformation δ can be written as:

( ) ( ) ( ( ))
( ) · ( ) ( )

x x x x p
x x p

A F N
L N

, ,
, . 21

td = +
=

Here ( )xA 0= . ( )xL is boundary function which makes the
trial solution always zero on the boundary. Because the
reflector is a rotating paraboloid, whose boundary is circular,
we have

( ) ( )L x y x y
D

,
2

. 222 2
2

= + - ⎛
⎝

⎞
⎠

Obviously, because the inputs are the Cartesian coordinates
of the sampling points, the first-order and second-order partial

Figure 2. The geometry of a reflector antenna.
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derivatives of the trial solution ( )xtd to the inputs could be
shown as:

· ·
· ·

· ·
· · ( )

x N L N
y N L N

N x N L N
N y N L N

2 ,
2 ,

2 4 ,
2 4 . 23

x x

y y

xx x xx

yy y yy

d
d
d
d

= +
= +
= + +
= + +

Here Nx, Ny, Nxx, Nyy denote the first-order and second-order
partial derivatives of the net output to the inputs, respectively,
which are given as Equation (24)

( · ( ) · )
( · ( ) · ( ) · · )
( · ( ) · )
( · ( ) · ( ) · · ) ( )

[ ]

[ ] [ ]

[ ]

[ ] [ ]

N w v

N w w v

N w v

N w w v

1 ,

1 1 2 ,

1 ,

1 1 2 . 24

x

xx

y

yy

0

0 0

1

1 1

s s
s s s
s s
s s s

= - ´
= - - ´
= - ´
= - - ´

Once each term in Equation (20) is expressible, the network
is ready to start training.

3. Simulation

3.1. Simulation Conditions

Let R1=U+Gx, R2= V+Gy, H=Ux+ Vy, FA= EA− 1,
and Equation (20) can be changed to Equation (21) as below

[ ( ) ] ( )G R R H FAloss . 25x y
2

1 2
2d d d d=  + + + -

According to Section 2.1, G, H, R1, R2 can be calculated
directly once the height of scanning plane is determined. To get
FA, it should first simulate the amplitudes ∣ ∣E and ∣ ∣E* in
Equation (9) by geometry optics (GO) method, respectively.
The conditions of simulation are listed as Table 1.

Design the global smooth deformation on the main reflector
surface of the antenna as shown as Equation (26) and
Figure 3(a). G, H, R1, R2 are given as Figures 3(c)–(f),
respectively

( )
( )

[ ( )]

x y

F e

sin

50

1

1
26

F

D

F

D x y

2 2
2

0.6 0.4 2 2
d =

+ +

+ - - +

where F denotes the focal length and D denotes the diameter of
the antenna.

Finally, after simulation we get the near-field plane
amplitudes of the antenna without deformation and with
deformation, ∣ ∣E and ∣ ∣E* , and FA is calculated as
Figure 3(b). All the coefficients in the loss function have been
obtained so far. They will be fed to the ANN to start training.

3.2. Training Flow

This section mainly describes the process to realize solving
DAE by means of ANN. Adam optimizer is employed to train
the network parameters, which uses both the first-order and the
second-order momentum vector. Using large scale data sets,
Kingma & Ba (2014) proved that Adam can effectively solve the
actual deep learning problem, and the convergence efficiency is
significantly better than other optimization algorithms.
Based on the Adam optimization algorithm, the main steps

of the method to solve DAE are listed below and shown in
Figure 4.

(a) Define the number of discrete sampling points in the
solving area and divide the meshing grid. The coordinates
of each point are fed to the neural network as the inputs of
the network.

(b) Define the network parameters w, b, v and conduct the
forward calculation. In this paper, a single hidden layer
with a width of 100–200 neurons is used. Based on an AI
framework, the computational graph is then to be
constructed.

(c) According to Equation (24), define the first-order and
second-order partial derivatives of output N to the inputs
by using the characteristics of sigmoid activation
function.

(d) Define the boundary function L and its first and second
partial derivatives outside the calculation diagram. Import
the coefficients G, H, R1, R2. After being transformed into
corresponding shapes, they are fed to the neural network
as the inputs to calculate the loss value.

(e) Start training with appropriate hyperparameters, a step-
based global learning rate α is used in this paper.

(f) Calculate the gradient and propagate back to update the
network parameters w, b, v, or use an optimizer such as
Adam for automatic training, as shown as Figure 5. This
step is an iterative process and it is also the core of the
algorithm. The Adam optimizer pseudo-code and some
default settings of hyperparameters used in this paper is
given by Figure 5.

By setting the number of iteration steps or error threshold of
the loss to end the training, the solution could be obtained once
the network parameters θt converge.

3.3. Data Preprocessing

The data preprocessing of ANN mainly has five parts
including data importing, data shape transformation, data set

Table 1
Simulation Conditions

Diameter of
the Antenna

Focal
Length

Height of Scan-
ning Plane Frequency

D/m F/m h/m f/GHz
110 33 33 0.3

Source Taper
angle

Number of field
points(x ∗ y)

Magnitude of δ (Mδ/mm)

Gaussian feed 79°. 61 256 ∗ 256 1.2

5
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Figure 3. The assumed deformation 1, coefficients in loss function and the near-field simulation results. (a) The first assumed deformation in this paper. (b) The FA
simulation result in near-field. (c)–(f) The values of G, H, R1, R2.

Figure 4. The flow chart of the ANN algorithm to solve the deformation.
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dividing, data normalization and data encapsulation. This
section mainly discusses the data normalization method for
solving DAE by ANN.

Different kinds of the original training data have different
measurement units and the numerical distribution ranges differ
a lot, which will make the training of neural network difficult to
converge. Therefore, we must preprocess the sampling data
first, and normalize the range of each kind of data to the same
level and eliminate the correlation between different groups so
that to obtain the ideal results.

The input data of the neural network are all the coordinates
of the sampling points on the X–Y plane parallel to the aperture
surface, which ranges from −55 (m) to 55 (m). However, FA
ranges from −3× 10−3 to 3× 10−3, and the supposed
deformation ranges from −6× 10−4 (m) to 6× 10−4 (m).
Obviously, each array of training data has a huge numerical
difference from each other. We have tried to solve DAE using
the original data without normalization, which results in a huge
initial loss. During 200,000 steps of training in nearly 7h, the
loss value is always fluctuating and the decline is slow, as
shown in Figure 6(a). It is obviously that we failed to get the
accurate solution.

The normalization method used first is that suppose x¢=
[ ]1, 1 ,x

55
Î - [ ]y 1, 1 ,y

55
¢ = Î - [ ]FA 1, 1FA

0.003
¢ = Î - , and

then the loss function becomes

( )G R R
H FAloss

55 55 55
. 27

x y
2

1 2
2d d d

d=
 ¢
´

+
¢ + ¢

+ ¢ - ¢⎜ ⎟
⎛
⎝

⎞
⎠

Here [ ]0.003 0.2, 0.2d d¢ = Î - is the solution to be solved
of Equation (27), and the deformation δ could be easily
obtained by denormalization from d¢ after training. By means of
this kind of normalization, the network parameters will
converge fast, as shown in Figure 6(b). After data normal-
ization, the decline speed of loss is significantly improved, and
the fluctuation of the loss curve is reduced. Although we could
already solve the deformation in this way, this algorithm still
cannot be applied to real-time compensation for the deforma-
tion of large reflector antenna, because its operation time is
not fast enough to meet the requirement of a real-time
measurement.
It is observed that the numerical change of the input

data can be compensated by adding adjustment coefficients in
the loss function. Now consider to further adjust the normal-
ization method. The main idea is to enlarge the numerical
range of the deformation terms and reduce the constant terms
so that the impact of the network output on the loss function is
increased.
Assume [ ]x 1, 1 ,x

55
¢ = Î - [ ]y 1, 1 ,y

55
¢ = Î - FA¢=

[ ]0.2, 0.2FA

0.015
Î - , and the loss function is changed into

( )

G R R

H
FA

loss
55 55 100 55 100

100
. 28

x y
2

1 2

2

d d d

d

=
 ¢

´ ´
+

¢ + ¢
´

+
¢
- ¢

⎜
⎛
⎝

⎞
⎠

Here ( ) [ ]1.5 10 4, 44d d¢ = ´ Î -- . The loss curve is shown
in Figure 7. Compared to the former curves, the initial loss is

Figure 5. The main loop and the default settings of the Adam algorithm.
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small and we can get the solution only by 500–1000 steps of
training with 25–41 s.

3.4. Simulation Results

Based on the algorithm described in Section 3.2 and the data
normalization method as Equation (3.4), we solved the
deformation from DAE and compared the results δr with the
assumed deformation δ. To make a quantitative comparison,
root-mean-square error (rms) and relative root-mean-square
error (RRMS) are introduced as

[ ( ) ( )]
( )

m n m n

N
rms

, ,
, 29m n r

2

2

d d
=

å å -

where N= 256 denotes the number of discrete points in the x or
y direction

( )
M

RRMS
rms

. 30=
d

Here Mδ denotes the magnitude of δ.
As is shown in Figure 8(b), the error of the solution by ANN

is RRMS = 9.76%. Figure 8(a) shows the comparison of the
solving result, dotted line in red, and the original supposed
deformation, the full line in black, on the cutline of X= 0. We
perform 1000 steps of training on GPU, RTX2060, with the
training time of 40 s. In fact, we have already obtained an
accurate solution by 500 steps of training in 24.59 s. The
training messages are listed in Table 2. In engineering practice,
one of the disadvantages of using the ANN method to solve
PDE is that the fitting time is too long. However, by using the
normalization method in Section 3.3 of this paper, the time-
consuming of about 30 s is acceptable.

If we use the original algorithm by the FFT method
described in Section 2.1 to solve the deformation 1, the
accuracy is excellent, which has an error of RRMS = 9.13%.

However, each point on the boundary of the assumed
deformation 1 as Equation (26) is zero, which is unrealistic
for the real antenna. Now suppose deformation 2 is expressed
as Equation (31), which is the result of deformation 1 shifted in
the X–Y plane

( )( ) ( )

( )
[ ( ( ) ( ) )]

x y

F

e

sin 25 25

50
1

1
. 31

F

D

F

D x y

2 2
2

0.6 0.4 25 252 2

d =
+ + + +

´
+ - - + + +

We keep the electromagnetic simulation conditions
unchanged, and use the totally same algorithm and the same
network parameters. The supposed deformation 2 and the final
solution by ANN are shown as Figures 9(a) and (b),
respectively.
The error of the solution for deformation 2 is RRMS =

9.11%, as shown in Table 3, which keeps the same level from
the accuracy of the solution for deformation 1.

Figure 6. The loss curve of the training without and with data normalization.

Figure 7. The loss curve of the training with data normalization as
Equation (28).
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Figure 8. The solution by ANN for the assumed deformation 1.

Table 2
The Results of Solving Deformation 1 by ANN

Deformation 1 Mδ = 1.2 mm Adam Optimizer 256 ∗ 256 f = 0.3 GHz

Total steps Network structure Initial learning rate Decay steps Decay rate Time/s(GPU) RRMS/%
500 2, 200 ∗ 1, 1 0.2 50 0.96 24.59 9.88
1000 2, 200 ∗ 1, 1 0.2 50 0.96 40.90 9.76
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Note that in the process of solving deformation 2, we still
assume that the deformation boundary of the antenna surface is
zero, which is not consistent with the actual deformation 2.
However, the accuracy of the final solution is not significantly
reduced, which proves the feasibility of the proposed algorithm
for solving DAE with unknown boundary conditions.
Figure 10(a) shows the error between the calculated deforma-
tion 2 and the setting value. It is obvious that the error mainly
comes from the boundary due to the fact that the length factor
we set is all zero on the boundary. The error inside the
boundary is not increased because the ANN algorithm is a local
approximation method.

As a comparison, the solution of the original algorithm by
FFT method has an error of RRMS = 42.77%, as shown as
Figure 10(b), which means that it totally fails to obtain the
deformation. From the scale mark in the figure, we can see that
the solution by FFT algorithm has an overall deviation, which
is caused by the boundary deformation. The simulation results
for deformation 2 prove the instability of the original algorithm.
In particular, when the boundary of the antenna reflector is
deformed seriously, the solution contains a huge error. On the
contrary, the algorithm based on ANN proposed in this paper is
stable enough due to the property of local approximation.

4. Summary

Based on DAE, a local approximation algorithm to solve the
surface deformation of antenna reflector using ANN as the
stochastic objective function. First, Length factor method is
employed to construct the trial solution of the objective
deformation, which converts solving the DAE into an
unconstrained optimization problem because the trial solution
always satisfies the boundary conditions. Simulation results
show that this method can minimize the impact of the unknown
boundary conditions on the overall solution accuracy. As is a
fact, the boundary of the deformation is hard to get in advance.
We use a neural network with a single hidden layer and
sigmoid activation function. The advantage of sigmoid function
is to make the partial derivatives of the stochastic objective
function to each network input to be expressed easily. As a
result, it is convenient to define each term in DAE and the
design of loss function could be done. The Adam approximator
is used to train the network parameters, which adds the first-
order and second-order momentum factors besides the global
learning rate we have set. This optimization method intelli-
gently adjusts the gradient descent direction and speed. In
addition, we compare the effects of different data normalization
methods, and finally select the optimal data normalization

Figure 9. The assumed deformation 2 and the solution by ANN for it.

Table 3
The Results of Solving Deformation 2 by ANN

Deformation 2 Mδ = 1.2 mm Adam Optimizer 256 ∗ 256 f = 0.3 GHz

Total steps Network structure Initial learning rate Decay steps Decay rate Time/s(GPU) RRMS/%
500 2, 200 ∗ 1, 1 0.2 50 0.96 23.91 9.25
1000 2, 200 ∗ 1, 1 0.2 50 0.96 40.33 9.11
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method based on changing the design of the loss function.
Combined with a step-based global learning rate, the overall
convergence time of the algorithm is greatly reduced, and the
solution accuracy of the deformation is improved.

The main contributions of this paper are as follows.

(1) A local approximation algorithm based on ANN is
proposed to solve PDE with unknown boundary
containing constant term, zero-order term, the first-
order derivative term and the second-order derivative
term simultaneously, which is hard to be solved by
traditional algorithms. It is applied to the engineering
model of antenna deformation measurement, which
effectively solves the problem of low accuracy of the
original algorithm when the boundary deformation is
large. As a result, the RRMS of the solution could be
stabilized within 10% and the error by the original
algorithm may reach the level of RRMS = 42.77% in
some cases.

(2) A data preprocessing method for PDE is proposed so that
the accuracy of the solution is improved and the
convergence speed of the ANN reach a satisfactory level.
In this paper, it only needs 500 steps of training to get the
solution with 256× 256 sampling points in 25–41 s,
which is significant for the actual antenna real-time
measurement.
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