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Abstract

We have investigated the feasibilities and accuracies of the identifications of RR Lyrae stars and quasars from the
simulated data of the Multi-channel Photometric Survey Telescope (Mephisto) W Survey. Based on the variable
sources light curve libraries from the Sloan Digital Sky Survey (SDSS) Stripe 82 data and the observation history
simulation from the Mephisto-W Survey Scheduler, we have simulated the uvgriz multi-band light curves of RR
Lyrae stars, quasars and other variable sources for the first year observation of Mephisto W Survey. We have
applied the ensemble machine learning algorithm Random Forest Classifier (RFC) to identify RR Lyrae stars and
quasars, respectively. We build training and test samples and extract ∼150 features from the simulated light curves
and train two RFCs respectively for the RR Lyrae star and quasar classification. We find that, our RFCs are able to
select the RR Lyrae stars and quasars with remarkably high precision and completeness, with purity= 95.4% and
completeness= 96.9% for the RR Lyrae RFC and purity= 91.4% and completeness= 90.2% for the quasar RFC.
We have also derived relative importances of the extracted features utilized to classify RR Lyrae stars and quasars.
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1. Introduction

The Multi-channel Photometric Survey Telescope
(Mephisto; Yuan et al. 2020) is a wide-field survey telescope
with a 1.6 m primary mirror. Mephisto has a field of view of
∼2.36 deg2. It is equipped with three CCD cameras and is
capable of imaging the same patch of sky in three bands
simultaneously. The telescope will be installed at Lijiang
Observatory in the Southwest of China before the end of 2021.
During 2022 and 2031, Mephisto will carry out a ten-year
survey program which have two components: the Mephisto-W
survey and the Mephisto-D, H and M surveys (Er et al. in
preparation). All the observing time of the first year of the
survey (2022) will be allocated to the Mephisto-W survey. The
full survey area (the northern sky of ∼27,000 deg2 of decl.
between −21° and 75°) will be imaged several times in both
the ugi and vrz filter combinations over the year, using pairs of
20-second exposures (Lei et al. 2021; Chen et al. submitted).
Two key science goals of the Mephisto-W Survey are the
Galactic archeology, and the studies of the distant galaxies and
cosmology. The RR Lyrae variable stars are important tracers
for the study of the Milky Way (e.g., Sesar et al. 2010; Ablimit
& Zhao 2017; Ablimit & Zhao 2018; Griv et al. 2020; Hattori
et al. 2020; Liu et al. 2020; del Pino et al. 2021; Ablimit et al.
2021). Large sample of quasars will allow us to probe their
nature (e.g., Kuo & Hirashita 2012; Pasquet-Itam &
Pasquet 2018) and to constrain the cosmological parameters
(e.g., Khadka et al. 2021; Mediavilla & Jiménez-Vicente 2021).

Thus to identify the RR Lyrae stars and quasars from the data
of the Mephisto-W survey and to obtain their complete and un-
contaminated samples are fundamental to achieve those key
science goals of the Mephisto-W survey.
Chen et al. (submitted) have presented the the Mephsito-W

Survey Scheduler (MWSS) and provide the simulations of the
first year observations of the Mephisto-W Survey. In the
current work, we have simulated the Mephisto-W survey
observations of variable objects, including the RR Lyare stars,
quasars and other variable sources, based on Chen et al.
simulation and the light curve libraries of variable objects from
the literature. We have trained Random Forest Classifiers
(RFCs) to identify RR Lyrae stars and quasars from the
simulated data of Mephisto-W Survey and obtained the
accuracies and completeness of the classifiers.
In Section 2, we introduce how we simulate the observations

of different variable objects of the Mephisto-W survey. In
Section 3 we describe the RFCs we adopted to identify RR
Lyrae stars and quasars. In Section 4 we show our results,
which are discussed and summarized in Section 5.

2. Simulated Data

The process of the realizations of the Mephisto-W Survey
observed RR Lyrae stars, quasars and other variable sources
includes two steps: the simulation of the observing cadence of
the Mephisto-W Survey and that of the light curves of the
individual variable sources.
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For the cadence simulation, we adopt the Simulation 1 from
Chen et al. (submitted) in the current work. Chen et al.
(submitted) have presented an adaptive scheduling algorithm
for the Mephisto-W Survey. The scheduler can simulate the
observational results of the Mephito-W survey with giving
models of the telescope, weather conditions and other
environmental variables. Chen et al. have provided two sets
of simulation results for the first year observation of the
Mephisto-W Survey. In the current work, we adopt the first
simulation, i.e., Simulation 1 from Chen et al. For Simulation 1,
48.1% and 30.7% of the survey fields would be targeted by the
Mephisto respectively in the ugi and vrz filter combinations for
more than five times. In the current work, we focus on the
Sloan Digital Sky Survey (SDSS; York et al. 2000) Stripe 82
region, where most of the fields will be targeted by the
Mephisto five times in a year for both the ugi and vrz filter
combinations.

We have adopted a method similar to that of Oluseyi et al.
(2012) to simulate the Mephisto-W Survey observations of
variable sources. To assess the capability of characterizing RR
Lyrae stars from the Legacy Survey of Space and Time
(LSST), Oluseyi et al. (2012) have undertaken extensive
simulations of RR Lyrae starlight curves from the LSST
operation simulations and the SDSS Stripe 82 photometric
measurements. In the current work, the simulations are also
based on the SDSS Stripe 82 observations. Ivezić et al. (2007)
have provided SDSS ugriz light curves of 67,507 variable
sources in the SDSS Stripe 82 region, including 483 RR Lyrae
stars (Sesar et al. 2010; Süveges et al. 2012), 9,258 quasars
(Palanque-Delabrouille et al. 2011), and 57,766 other variable
sources. All objects have an average of ten observations in each
of the ugriz passbands.

The filter set of the Mephisto includes six uvgriz passbands,
which are very similar to that of the SkyMapper (Bessell et al.
2011; Wolf et al. 2018). As the Mephisto filters are still under
developing, in the current work, we simply adopt the
SkyMapper uvgriz bands as the Mephisto filters. We first
transform the SDSS ugriz photometric magnitudes to the
SkyMapper uvgriz magnitudes. We cross-match the SDSS
Stripe 82 Standard Star Catalog (Ivezić et al. 2007) to the
SkyMapper Southern Survey Data Release 2 (SMSS DR2;
Onken et al. 2019). In Figure 1, we show the correlations
between the SkyMapper and SDSS magnitudes. The Sky-
Mapper u, v, g, r, i and z magnitudes are simply converted from
the SDSS u, u, g, r, i and z respectively by linear transforming
relationships, as,

u u0.936 1.183, 1SMSS SDSS ( )= * +

v u0.938 0.739, 2SMSS SDSS ( )= * +

g g1.012 0.353, 3SMSS SDSS ( )= * -

r r1.001 0.009, 4SMSS SDSS ( )= * +

i i1.003 0.045, 5SMSS SDSS ( )= * -

z z1.004 0.036. 6SMSS SDSS ( )= * -

Based on the above equations, we are then able to obtain the
idealized Mephisto uvgriz light curves of the RR Lyrae stars,
quasars and other variable sources from their SDSS ugriz light
curves and finally produce the Mephisto “observed” light
curves of the individual objects.
The cadence simulation from Chen et al. (submitted)

provides us the observing time and the observing conditions
of the fields in the SDSS Strip 82 for the first year observation
of the Mephisto-W Survey. For the periodic objects such as the
RR Lyrae stars, Cepheids and eclipsing binaries, etc, we
calculated their phases f at the individual epochs based on their
periods P and the start time of each period f0. We then derived
the idealized magnitudes of the individual objects at each epoch
based on linear interpolation of their phase-folded light curves.
To produce realistic observations, random Gaussian noises are
added to the idealized magnitudes based on the photometric
errors calculated from the observing conditions (Lei et al.
2021).
For the non-periodic objects, such as the quasars, we are not

able to predict their magnitudes at given epochs. We thus
randomly selected five SDSS observations which were taken
within one calendar year and manually changed their observing
time to the same time of the same day of the year 2022. Similar
as the periodic objects, the Gaussian random noises were
added. In Figure 2 we show two examples of the simulated
light curves in the Mephisto uvgriz bands for both the periodic
and non-periodic objects.

3. Classification Algorithms

We use a machine learning algorithm, the Random Forest
Classifier (RFC; Breiman 2001), to identify the RR Lyrae stars
and quasars in the current work. RFC is an ensemble learning
method for classification which fits a number of decision tree
classifiers and uses all the weak classifiers collaboratively to
improve the predictive accuracy and control over-fitting. The
SCIKIT-LEARN package for PYTHON (Pedregosa et al. 2011) is
adopted to build the RFCs in the current work. Based on the
simulated Mephisto light curves of different variable sources,
we have built separate RFC models for identifying the RR
Lyrae stars and quasars, respectively. For the identification of
RR Lyrae stars, the sample containing all the 483 RR Lyrae
stars in the SDSS Strip 82 region (Sesar et al. 2010) is adopted
as the positive sample and a sample containing 483 randomly
selected non-RR Lyrae stars from Ivezić et al. (2007) is
adopted as the negative sample. For the identification of
quasars, a sample containing 91073 quasars is adopted as the
positive sample and a sample containing 9107 randomly
selected non-quasars is adopted as the negative sample.

3 The Palanque-Delabrouille et al. (2011) catalog contains 9258 quasars,
among which 9107 have more than five visits during a calendar year.
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3.1. Training Features

The simulated light curves of the objects in the positive and
negative samples have been transformed into sets of features,
which are adopted as the input parameters of the RFC models.
We adopt different sets of training features for the RR Lyrae
star and quasar RFC models, respectively.

3.1.1. RR Lyrae Star RFC Training Features

Vicedomini et al. (2021) have transferred the LSST
simulated light curves into a set of features that represent the
peculiar characteristics of the variables. With the extracted
features as input parameters, Vicedomini et al. (2021) have
carried out several Machine Learning algorithms to identify
different types of supernovae. In the current work, we adopted
all the statistical parameters from Vicedomini et al. (2021)
which are listed as follows for the RR Lyrae star RFC.

1. Amplitude (ampl): half of the difference between the
maximum and the minimum magnitudes.

2. Beyond1std (b1std): the fraction of observations that
have magnitudes outside the 1σ range from the mean
value.

3. Flux percentage ratio (fpr): the ratio between two flux
percentiles Fn,m, where Fn,m is the difference between the
flux values at nth and mth percentiles. In the current work,

we adopt five flux percentile ratios: fpr20= F40,60/F5,95,
fpr35= F32.5,67.5/F5,95, fpr50= F25,75/F5,95, fpr65=
F17.5,82.5/F5,95, and fpr80= F10,90/F5,95.

4. Lomb–Scargle periodogram (ls): the period from the
Lomb–Scargle periodogram. For the identification of RR
Lyrae stars, we adopted period limits from 0.2 to 1.2 day.
We note that for both the RR Lyrae stars and quasars, we
are not likely to obtain the true periods of the objects.
This is because that we have only simulated measure-
ments at four to five epochs.

5. Linear trend (lt): the slope of the light curve by a
linear fit.

6. Median absolute deviation (mad): the median value of the
fluxes deviated from the median value.

7. Median Buffer range percentage (mbrp): the fraction of
observations that have magnitudes with 10% from the
median value.

8. Magnitude ratio (mr): the fraction of observations that
have magnitudes above the median value.

9. Maximum slope (ms): the maximum value of slopes
calculated from the observations at successive epochs.

10. Percent difference flux percentile (pdfp): the ratio
between the difference of the fifth and the 95th percentile
flux (converted to magnitudes), and the median
magnitude.

Figure 1. Relationships between the SkyMapper uvgriz magnitudes and the SDSS ugriz magnitudes for the individual stars in the SDSS Stripe 82 Standard Star
Catalog. The black lines show the best-fit linear relations.
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11. Pair slope trend (pst): the fraction of flux measurements
that are larger than the former ones in the last 30 couples
of consecutive observations.

12. R Cor Bor (rcb): the fraction of observations that have
magnitudes below 1.5 mag with respect to the median
value.

13. Small Kurtosis (kurt): the fourth-order momentum
divided by the square of the variance.

14. Skewness (skew): the third-order momentum divided by
the variance to the third power.

15. Standard deviation (std): the standard deviation of the
observed fluxes.

We have light curves of objects in six uvgriz passbands,
which resulted 114 input features as the Vicedomini et al.
statistical parameters for each RR Lyrae star or non RR
Lyrae star.
In addition to the Vicedomini et al. (2021) statistical

parameters, we have also adopted the statistical parameters
listed as follows.

Figure 2. Examples of simulated light curves for a periodic object (RR Lyrae star; upper panels) and a non-periodic object (quasar; bottom panels). For the periodic
object, its observed (left) and simulated (right) light curves are plotted as functions of phase. For the non-periodic object, its observed (left) and simulated (right) light
curves are plotted as functions of modified Julian dates. For the quasar, we also show the best-fitted DRW models.
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1. Colors (color): the colors derived from the average
magnitude values of two bands, color mag magi j= - ,
where i and j are the indices of the filters. In this paper we
have adopted 15 colors: u v u g,¯ ¯ ¯ ¯- - , u r u i,¯ ¯ ¯ ¯- - ,
u z¯ ¯- , v g v r,¯ ¯ ¯ ¯- - , v i¯ ¯- , v z g r g i, ,¯ ¯ ¯ ¯ ¯ ¯- - - ,
g z r i,¯ ¯ ¯ ¯- - , r z¯ ¯- and i z¯ ¯- .

2. Mean values of the real-time colors (mrcolor): the
average values of the real-time colors, mrcolor

rcolor= , where rcolor is the real-time color. For the
Mephisto-W Survey, the observations are made in either
the ugi or vrz filter combinations. Thus we would have
six real-time colors: u− g, u− i, g− i, v− r, v− z and
r− z, for which the magnitudes are obtained at the
same time.

3. Amplitudes of the real-time colors (ampcolor): the differen-
ces between the maximum and the minimum values of the
real-time colors, ampcolor rcolor rcolormax min= - .

In total, we have adopted 141 input parameters for the RR
Lyrae star RFC.

3.1.2. Quasar RFC Training Features

For the quasar RFCmodel, we used also all the 141 parameters
adopted by the RR Lyrae star RFC. In addition, similar as in the
works of MacLeod et al. (2010) and Yang et al. (2021), we have
adopted the Damped Random Walk (DRW) parameters,
including the timescale of DRW τ and the long-term deviation
of variability σ, as the input features of the quasar RFC model.
The JAVELIN program is adopted to fit the light curves in each
passband to calculate the DRW parameters τ and σ (Zu et al.
2013), which resulted 12 additional input features.

4. Experiment

The performances of the RR Lyrae star and quasar RFCs are
based on some statistical estimators. For a given class (i.e., RR
Lyrae star or quasar), we define TruePositive as the number of
objects which are correctly classified as the class; FalsePositive
as the number of objects which are wrongly classified as the
class, but their correct classifications are not the class;
TrueNegative as the number of objects which are correctly
classified as not the class, and FalseNegative as the number of
objects which are wrongly classified as not the class, but their
correct classification are the class. We then have:

Purity
TruePositive

TruePositive FalsePositive
, 7( )=

+

Completeness
TruePositive

TruePositive FalseNegative
. 8( )=

+

Purity of the RFC model is also named as precision. It is the
percentage of that a certain type of classification is true.
Completeness of the RFC model is also named as recall. It is

the percentage of the correctly classified objects for a given
class of objects.
We divided both the positive and negative samples into the

same number of subsets. Each time, we select some of the
subsets for RFC model training and the remaining subsets for
testing the trained classifiers. The values of purity and
completeness of each classifier are recorded and finally we
present the averaged performances.

4.1. Performance of the RR Lyrae Star Identification

The RR Lyrae star positive and negative samples contains
both 483 objects. They are divided into 48 subsets, which are
noted as S1, S2, S3, ..., S47 and S48. The last subset (S48)
contains 13 RR Lyrae stars and 13 non RR Lyrae objects; and
the other 47 subsets all contain 10 RR Lyrae stars and 10 non
RR Lyrae objects. We train the RR Lyrae star RFC model 48
times. At each time, 36 subsets are selected as the training
sample and the other 12 subsets as the test sample. For
example, at the first time, the subsets S1, S2, S3, ..., S35 and
S36 are adopted as the training sample and the remaining
subsets (S37, S38, S39, ..., S47 and S48) as the test sample. At
the second time, the subsets S2, S3, S4, ..., S36 and S37 are
adopted as the training sample and the remaining subsets (S38,
S39, S40, ..., S48 and S1) as the test sample.
We present the averaged performance of our RR Lyrae

classifiers in Table 1. We find a high performance of our RR
Lyrae RFC. The precision of RR Lyrae star classification can
achieve 95.4% and the recall 96.9%, which clearly demon-
strates the high efficiency of selecting RR Lyrae star from the
data of the Mephisto-W Survey.
For the RR Lyrae star RFC, we have adopted 141 input

features for classifier training. We have examined the relative
importance of these input features. Because we have trained the
RR Lyrae star RFC 48 times, for each trial, we also record the
important score of every input feature. We show the averaged
scores of 20 most important features in the upper panel of
Figure 3. The most important features are standard deviations
(std), percent difference flux percentiles (pdfp), amplitudes
(ampl), maximum slopes (ms), colors (color) and mean values
of the real-time colors (mrcolor). In particular the std and pdfp
in the g-band are two most important features.

4.2. Performance of the Quasar Identification

The quasar positive and negative samples contains both 9107
objects. They are divided into 91 subsets. The last subset contains

Table 1
The Averaged Values of Purity and Completeness of the RR Lyrae Star RFC

RR Lyrae star Non RR Lyrae star

Average Purity 0.954 0.969
Average Completeness 0.969 0.953
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107 quasars and 107 non quasars, while the other subsets contain
100 quasars and 100 non quasars. Similar to the training of the
RR Lyrae star RFC, we have trained the quasar RFC 91 times. At
each time, 68 subsets are adopted as the training sample and the
remaining 23 subsets as the test sample. We present the averaged
performance of the quasar classifiers in Table 2. The precision of
quasar classification is 91.4% and the recall is 90.2%. The
performance of the quasar classifiers are not as good as the RR
Lyrae star classifiers. However, it is still possible for us to select
the quasar candidates from the Mephisto-W Survey for the
considerably high precision and recall.

We have also examined the relative importance of the input
features for the quasar RFC, which is presented in the bottom
panel of Figure 3. The most important features are the colors
(color), mean values of the real-time colors (mrcolor) and the
DRW parameters (τ and σ). Particularly, the color v g¯ ¯- and
mrcolor u− g are two most important features.

5. Discussion and Conclusions

The Mephisto-W survey will target the whole northern sky
of ∼27,000 deg2. All the available time in the first year of the
survey will be dedicated to Mephisto-W. The full survey area

Figure 3. Important scores of 20 most important input parameters for the RR Lyrae star (upper) and the quasar (bottom) RFCs, respectively.

6

Research in Astronomy and Astrophysics, 22:025004 (8pp), 2022 February Lei et al.



will be imaged four to five times over the year, in both the ugi
and vrz filter combinations. The present work is related to the
key sciences of the Mephisto-W survey, with special emphasis
to the identifications of RR Lyrae stars and quasars.

In order to explore the feasibilities and accuracies of
selecting RR Lyrae star and quasar from the first year
observation of the Mephisto-W Survey, we have simulated
the uvgriz multiband light curves of the RR Lyare stars, quasars
and other variable objects based on the Mephisto-W Survey
Scheduler simulation and the light curve catalogs of the
variable sources from the SDSS Stripe 82 observations. We
then trained RFCs for the RR Lyrae stars and quasars and
investigated the accuracies and recalls of the classifiers.

For the RR Lyrae star identification, we have built positive and
negative samples containing 483 RR Lyrae stars and 483 non RR
Lyrae stars, respectively. 141 observation features were extracted
from their simulated light curves and were applied to the RR
Lyrae star RFC training. We have obtained average values of
95.4 and 96.9% respectively for the precision and completeness
of the RR Lyrae star RFC, which indicate that we are able to
select RR Lyrae star from the Mephisto-W survey data with very
high efficiency. For the quasar identification, we have built
positive and negative samples containing 9107 quasars and 9107
non quasars, respectively. 153 training features are adopted. The
trained RFC can select the quasars with a precision of 91.4% and
a completeness of 90.2%.

RFC adopts bagging and random feature sampling methods,
which has good resistance to noise. Using the same method as
Breiman (2001), we have tested the noise effect of our
classifiers. We artificially set the input labels of 5% objects in
the training sample to the wrong labels. This noise injection
leads to errors of 0.04% and 0.4% for the RR Lyrae star and
quasar RFCs, respectively. This indicates that the RFC method
is insensitive to noises and the classifier is stable.

The Mephisto telescope is planned to obtain its first light in
the end of 2021 and the Mephisto-W Survey will target the
whole northern sky of 27,000 deg2. Although the Mephisto-W
survey fields would be targeted by the telescope for only four to
five times in a year, we are still able to identify the RR Lyrae
stars and quasars with high accuracies. This is benefited from
the high accuracy real-time colors obtained by the Mephisto-W
survey, Comparing to the traditional method which select RR
Lyrae stars and quasars from (period) analysis of light curves of
the individual objects, our machine learning algorithm takes
much less time and computing resources. It will be powerful

for the modern large-scale time domain surveys, which will
deliver observations of billions sources. In addition, our
method do not require many epochs observations, which saves
the telescope time and enables us to cover much larger areas.
Our method can be applied directly to the Mephisto data

once it is available. The algorithm can also be applied to the
data of other time-domain surveys, such as the Zwicky
Transient Facility (ZTF; Mahabal et al. 2019; Graham et al.
2019; Bellm et al. 2019), Wide Field Survey Telescope
(WFST; Chen et al. 2019; Lou et al. 2020), LSST and China
Space Station Telescope (CSST; Zhao et al. 2016; Yuan et al.
2021; Sun et al. 2021; Cao et al. 2021a; Cao et al. 2021b).
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