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Abstract

Measuring the stellar parameters of A-type stars is more difficult than FGK stars because of the sparse features in
their spectra and the degeneracy between effective temperature (Teff) and gravity (log g). Modeling the relationship
between fundamental stellar parameters and features through machine learning is possible because we can employ
the advantage of big data rather than sparse known features. As soon as the model is successfully trained, it can be
an efficient approach for predicting Teff and log g for A-type stars especially when there is large uncertainty in the
continuum caused by flux calibration or extinction. In this paper, A-type stars are selected from LAMOST DR7
with a signal-to-noise ratio greater than 50 and the Teff ranging within 7000 to 10,000 K. We perform the Random
Forest (RF) algorithm, one of the most widely used machine learning algorithms to establish the regression
relationship between the flux of all wavelengths and their corresponding stellar parameters (Teff) and (log g)
respectively. The trained RF model not only can regress the stellar parameters but also can obtain the rank of the
wavelength based on their sensibility to parameters. According to the rankings, we define line indices by merging
adjacent wavelengths. The objectively defined line indices in this work are amendments to Lick indices including
some weak lines. We use the Support Vector Regression algorithm based on our new defined line indices to
measure the temperature and gravity and use some common stars from Simbad to evaluate our result. In addition,
the Gaia Hertzsprung-Russell diagram is used for checking the accuracy of Teff and log g.
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1. Introduction

The A-type stars encompass a bewildering array of stellar
types, and many horizontal-branch stars shown in the A-type
star region on the Hertzsprung-Russell (HR) diagram suggest
their evolutionary states. The fundamental stellar atmospheric
parameters (Teff and log g) are the basis for astrophysics study
of A-type stars, and estimation of these parameters are often
from strong Balmer spectral lines. For low-resolution spectra,
line index is an effective method to extract spectral features and
has been widely used in astronomical research. Cenarro (2001)
used the line index to calculate the Ca II flux and measured
stellar atmospheric parameters to determine the effective
temperature. Covery et al. (2007) wrote IDL programs to use
Hammer line index to automatically classify stellar spectra. Yi
et al. (2014) also added the features extracted from the
spectrum using the Random Forest (RF) algorithm on the basis

of Coveryʼs program as a new feature index and applied it to
the spectral classification of M dwarfs, and proving that the
improved feature index has a better performance in the
classification of M dwarfs. Inspired by the work of Yi et al.
(2014), we apply RF in A-type stars to define new spectral line
indices representing features for low-resolution spectra, and
this specific definition of line indices of A-type stars is sensitive
to their stellar parameters.
Among all definitions of line index systems, the Lick index

is one of the most widely used line index systems applied in
many spectral analysis fields. The line indices for A-type stars
released by LAMOST were calculated following the definition
of the Lick system, which includes most of the prominent
absorption lines. Hou et al. (2014) described the details of lines
of A-type stars for low-resolution spectra. The advance of
using Lick indices is that the error of flux calibration and radial
velocity measurement can be ignored and the noise has little
effect on the line indices. Tan et al. (2013) used line index as
the training feature of sky survey data in the measurement
process of stellar atmospheric physical parameters, and
obtained the best regression model in the training of linear
regression. Wang et al. (2014) used the Lick line index and

Research in Astronomy and Astrophysics, 22:025017 (6pp), 2022 February https://doi.org/10.1088/1674-4527/ac41c5
© 2022. National Astronomical Observatories, CAS and IOP Publishing Ltd. Printed in China and the U.K.

* Supported by the National Science Foundation for Young Scientists of China
Grant No. 11800313. and the Joint Research Fund in Astronomy (U2031142)
under cooperative agreement between the National Natural Science Foundation
of China (NSFC) and Chinese Academy of Sciences (CAS). Technology
Innovation Center of Agricultural Multi-Dimensional Sensor Information
Perception, Heilongjiang Province.

1

mailto:sunweimin@hrbeu.edu.cn
https://doi.org/10.1088/1674-4527/ac41c5
https://crossmark.crossref.org/dialog/?doi=10.1088/1674-4527/ac41c5&domain=pdf&date_stamp=2022-02-02
https://crossmark.crossref.org/dialog/?doi=10.1088/1674-4527/ac41c5&domain=pdf&date_stamp=2022-02-02


applied the partial least-squares regression method for the
measurement of the atmospheric physical parameters. The
result of the partial least-squares regression model is not only
consistent with the parameters of Sloan Stellar Parameter
Pipeline (SSPP) released but also the partial least-squares
regression can reduce the computational complexity, speed up
the training process. Pan et al. (2015) pointed out different
sensitivities of spectral lines to the effective temperature of
main-sequence stars. They used line index as input of Support
Vector Machines (SVM) to do the classification of stars.

However, there are only strong lines in the Lick system that
are not enough for the correct parameterization of A-type stars.
Thus, we are motivated to accurately estimate the Teff and log g
for A-type stars and get relatively weak features that are
sensitive to the stellar parameters. To obtain the possible
additional features, we choose to use the decision tree based RF
algorithm to extract more features other than Balmer lines and
Calcium HK, etc. RF is a regression method that has been used
in several astronomical research. For example, Bai et al. (2019)
applied RF to the stellar effective temperature regression for the
second Gaia data release with the precision of about 191 K,
based on the combination of the stars in four spectroscopic
surveys.

In this work, we use LAMOST DR7 released A-type spectra
with full wavelength as input of RF algorithm to establish the
regression model for stellar parameters. Then we rank the
wavelength according to the sensitivity to the parameters and
obtain the most sensible lines finally. We then define the line
indices for these lines and compare them to Lick indices. Using
the newly defined indices, we employ Support Vector
Regression (SVR) to estimate the stellar parameters for A-type
stars. The result of temperature and gravity from our method
agrees with those from LAMOST. Cross-matching with
Simbad, we get around 200 common stars with published
parameters. A comparison of parameters is conducted to the
common star. In addition, we calculate the absolute magnitude

for the star with Gaia parallax and use the HR diagram to check
our result.
The article is organized as follows. In Section 2, we

introduce the LAMOST data we used. In Section 3, we present
the application of RF regression in deriving Teff, log g and [Fe/
H] of A-type stars from full spectra and definition of specific
line indices for parameter determination of A-type stars.
Section 4 introduces the application of SVR to estimate stellar
parameters using our defined indices, and also presents HR and
Keil diagrams to check the parameters we compute, and
Section 5 summary the work in this paper.

2. Data

2.1. LAMOST Released Spectra of A-type Stars

The published LAMOST DR7 catalog includes 599,762
A-type star spectra, which were obtained during the pilot
survey and 7 yr regular surveys. There are two formats for the
A-type star catalog: i.e., FITS and CSV. The full spectra
ranging from 3700 to 8800 Å are used as input of the RF
algorithm in the first run. The class of these stars contains both
spectral type and luminosity class provided by the LAMOST
analysis pipeline. We also compare our defined index system
with the line indices published in the LAMOST LRS Line-
Index Catalog of A-Type Stars. The comparison includes kp12,
Halpha12, and Hgamma12 are the Ca II-K, Halpha, and
Hgamma. Teff and log g are from the catalog LAMOST LRS
Stellar Parameter Catalog of A, F, G, and K Stars, in which
parameters of 114,208 A type spectra are included. Cross-
matching with Gaia EDR3, we obtained 108,581 stars with
good parallax. We also remove some spectra classified as
A-type but with a temperature lower than 7000 K. An example
is shown in Figure 1 titled “spec-55859-f5907_sp15-081.fits”,
of which the effective temperature is 6833 K and class is A9V-
type. Thus, we selected A-type stellar data with temperatures
from 7000 to 12,500 K and S/N greater than 50.

2.2. Removing Contamination of Negative Index Values

To obtain a robust relationship between stellar atmospheric
parameters and spectral features for A-type stars, a clear sample
without affection emission lines from stellar disks or exchange

Figure 1. A pipeline classified A9V-type star “spec-55859-f5907_sp15-081.
fits”, whose Teff is 6833.16 K.

Figure 2. OOB(Out-Of-Bag) error and decision tree number in the random
forest.

2

Research in Astronomy and Astrophysics, 22:025017 (6pp), 2022 February Chen, Sun, & He



of material between binaries is necessary. We checked the line
indices of A-type stars released by LAMOST and remove those
spectra having negative index values.

3. Random Forest Prediction Analysis

The random forest (RF) algorithm, which belongs to the
ensemble learning method in machine learning, is a combina-
tion of supervised prediction models. It can handle high-
dimensional data sets with good advantages and hold thousands
of input variables. The model can output the importance of
variables and establish a model for setting the variables of the
data set. All decision trees depend on the corresponding
random vectors. All the vectors are independent and identically
distributed, and the most important variables are determined by
reducing the dimensionality. Finally, the results of the
classification tree are summed, and the accuracy of the
prediction model is improved. Even with a large number of
missing data, RFs can also maintain accuracy.

3.1. Random Sampling in the Whole Dataset

From the total A-type data set of around 80 thousand spectra
described in Section 2.1, we randomly sample the data set to
train the model. Section 3.3 will introduce the method for
calculating the distance between different data points through

an RF, thus realizing the regression. When the data set is not
verified, the outside prediction error can be calculated, the
category corresponding to the sample points that are not used
when the tree is generated can be estimated by the spanning
tree, and the outside prediction can be obtained by comparing
with the real category.

3.2. Normalization

Before establishing the RF model, we remove the pseudo-
continuum of each spectrum to keep spectral lines. We use a
ninth-order polynomial to fit each spectrum, removing those
points outside 3σ from the fitted curve, and iteratively repeat
the fitting four times. Then the intensity of each spectrum is
rectified by dividing the observed spectrum by the pseudo-
continuum.

3.3. Random Forest Algorithm

All vectors in the RF are independent and identically
distributed. Random forests are randomizations of column
variables and row observations of data sets, generating multiple
classification numbers. Finally, the results of classification trees
are aggregated. Compared to neural networks, RFs reduce
computation and improve prediction accuracy. Moreover, this
algorithm is not sensitive to multicollinearity, and it is

Figure 3. Distribution of the three physical parameters Teff (effective temperature), and log g (surface gravity), and Fe/H (chemical abundance) from A-type stellar
spectra published by LAMOST.
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sufficiently robust to process missing data and non-
balanced data.

The RF algorithm for prediction and regression mainly
includes N randomly selected sample units from the original
data to generate decision or regression trees, and m<M

randomly selected variables at each node as the candidate
variables of the segmentation node. The number of variables at
each node should be consistent. The full wavelength spectra as
input of the RF and the results of each decision or regression
tree are integrated to generate predicted values. In the training

Table 1
Identification of Elements Sensitive to Parameters based on the Location of the First 30 Feature Points

ID Name Vacuum Wavelength Importance for Teff

1, 3, 4, 9,18, 20 Ca II K 3933, 3935, 3934, 3936, 3932, 3931 0.495, 0.090, 0.054, 0.005, 0.002, 0.002
2, 5, 6,13 Co I Mn I Cr I V I 4110, 4109, 4111, 4112 0.128, 0.037, 0.025, 0.004
7, 11, 14, 15, 24 Fe I Mn I Ti I Cr I 3980, 3978, 3982, 3979, 3981 0.007, 0.005, 0.004, 0.003, 0.002
8, 22 CN 3879, 3878 0.006, 0.002
10, 21, 25, 29 Fe I 3898, 3899, 3906, 3900 0.005, 0.002, 0.002, 0.002
12 Ca I 4108 0.005
16 Heta 3970 0.003
17 CH 3963 0.002
19 Fe II 4097 0.002
23, 26 Fe I 4107, 4106 0.002, 0.002
27 Mg I 3903 0.002
28 Ca I 4098 0.002
28 Fe I 3977 0.002

ID Name Vacuum Wavelength Importance for logg

1, 2, 8 Co I Mn I Cr I V I 4110, 4111, 4112 0.065, 0.055, 0.010
3, 10, 11 Eu I Ba II Si II 4130, 4129, 4131 0.025, 0.008, 0.008
4, 23 Fe I CH 4181, 4180 0.022, 0.005
5, 6,18 Fe I 3966, 3967, 3960 0.013, 0.011, 0.007
7, 15, 24, 25, 27, 28, 30 Ca II K 3933, 3835, 3937, 3932, 3934, 3936,3931 0.011, 0.007, 0.005, 0.005, 0.005, 0.004
9 CH 4345 0.008
12, 22 Ti I Fe I Ca I 3956, 3957 0.008, 0.006
13 CN 3860 0.007
14,20 La II, Fe I, Ti I 3989 3988 0.007,0.006
16 Cr I Fe I 4142 0.007
17 Fe I 3909 0.007
19 CH Co I 3873 0.007
21 CH Cr I 4339 0.006
26 La II Fe I Cr I 3949 0.005
29 Mn I Ti I Fe I 4026 0.005

ID Name Vacuum Wavelength Importance for [Fe/H]

1 Fe I Ti I 4078 0.176
2 Sr,II 4077 0.106
3 Mn I 4131 0.051
4, 20, 30 Fe I 4032, 4037, 4069 0.048, 0.008, 0.006
5, 6,10 Fe I Fe II 3969, 3965, 3966 0.016, 0.014, 0.011
7, 16 CH Mn I 4033, 4034 0.014,0.009
8, 21, 25 Ni,I Fe I 4142, 4140, 4141 0.014,0.009,0.007
9, 15, 18, 19,23,27 Fe I 3920, 3918, 3939, 3937, 3940, 3936 0.011, 0.009, 0.009, 0.008, 0.007, 0.007
11 Eu,II 4129 0.010
12,13,14 Fe I 3954, 3952, 3953 0.010, 0.010,0.010
17 Y,II 3950 0.009
22 Mn I Ti I Fe I 4132 0.007
24 HBeta 4861 0.007
26 Fe I Cr I 4337 0.007
28 Ca II K 3933 0.006
29 CH 4345 0.006
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process, multiple decision trees will be generated, and each
decision tree will produce a corresponding prediction output
according to the input data set. The number of decision trees is
a key parameter in the RF algorithm, the larger the number of
decision trees, the better the regression results, the longer time
consumption. In this work, we used 3800 decision trees as well
as the number of input spectral data points. The remaining
parameters were set to the default values.

The out-of-bag (OOB) error—which is an unbiased estimate
of the generalization error whose result approximates the K-th
tree fold cross-validation which requires additional computa-
tion —and the decision tree number in the RF are shown in
Figure 2. The number of trees is about 500 to realize the
regression. The difference for each split is less than 1. Mean of
squared residuals is 4926.627, in addition, Var value is 96.57,
which comply with the requirements of Section 3.

We rank the wavelength according to the importance of the
parameters and then identify the spectral lines where the first 30
feature points for Teff, log g and [Fe/H] are located by
searching for the line table from Moore et al. (1966). The
details are listed in Table 1. We only listed the main elements
contained in spectral lines with low-resolution. The first
column lists the feature ID. In order to make the table more
concise, features that fall on the same absorption line are placed
in the same entry. The second column shows the name of the
line in which feature points are located. The third column lists
the vacuum wavelength corresponding to each spectral line.
The fourth column shows the importance of the corresponding
feature determined with the RF algorithm.
As listed in Table 1, we group the conjuncted wavelengths as

spectral features. To obtain the most sensitive lines to three
parameters, we consider top one or two features for each
parameter. Then, we defined three most important features,
Ca II K at 3933 Å, blended feature of Co I, Mn I, Cr I, and V I

Figure 4. Checking the Teff and log g with both on the HR (left panel) and Keil (right panel). Red dots in both panels represent A-type stars with the parameter
estimated through line indices.

Table 2
List of Three New Defined Line Indices for Parameter Regression

Name
Index Band-
pass (Å) Left Band (Å) Right Band (Å)

Ca II K 3929–3937 3920–3922 4006–4010
Blend(Co I Mn I

Cr I V I)
4109–4113 4103–4106 4115–4120

Sr II 4076–4078 4073–4075 4080–4082

Table 3
Effective Temperature Teff as Predicted by Random Forest Algorithm with

Three New Indices as Input

Input Teff Prediction
Ca II K Blended Sr II fit lwr upr

2.88 5.88 5.88 8000.029 7977.766 8022.293
2.58 5.58 5.58 7887.576 7857.422 7917.731
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lines ranging from 4109 to 4112 Å, and Sr II at 4077 Å. The
detailed definitions are listed in Table 2, including the feature
name, index bandpass, and two sidebands.

3.4. Random Forest with New Defined Line Indices

In the RF algorithm, each tree grows to its maximum extent,
and there is no branch-pruning process. Using training data that
perform better in regression analysis can result in improved
learning model characteristics. In this step, we made an RF
temperature model using Ca II K, Blended Co I Mn I Cr I V I,
and Sr II as input rather than using full spectra, the effective
temperature is predicted as shown in Table 3.

4. Verification with SVR Algorithm

SVR is one of the best regression algorithms that focuses on
handling overall error and tries to avoid outlier issues better
than algorithms like linear regression. SVR builds a hyperplane
in an N-Dimensional vector space, where we aim to keep data
points inside the hyperplane for regression. We tried the SVR
algorithm using the software package Sklearn with the newly
defined line indices as input. Comparing with LAMOST stellar
parameter catalog, the precision is 123 K for Teff, 0.32 dex
log g, and 0.28 dex for [Fe/H] respectively.

4.1. Verification with Gaia Data

We cross match our sample with Gaia using Topcat to obtain
parallax of these A type stars, and then calculate their absolute
magnitudes. We plot them on both the HR and Keil diagrams to
verify the regression results shown in Figure 4.

4.2. HR Diagram of A-type Stars

A schematic representation of how rotation affects the
position of a star in the HR diagram, shown as Figure 4. In any
case, a rotating star generally appears to be above the main
sequence. Rotation displaces a star in the HR diagram.
Consider a star seen in the equatorial plane. If it were possible
to increase this star’s rotational velocity, we would see it move
to the right and down, which toward cooler temperatures and
lower luminosities. On the other hand, a star seen pole-on
toward higher luminosities would move generally upwards in
the HR diagram. Neither of these paths is necessarily parallel to
the main sequence, and so a rapidly rotating main-sequence
star, no matter the orientation, tends to lie above the main
sequence. The A-type and early F-type stars have detected

subtle differential effects in the spectra and photometry of rapid
rotators, even those that are seen pole-on.

5. Discussion

Because line index would not be seriously affected by noise,
it is a good feature representation of stellar spectra especially
with low S/N ratio. In this work, we re-define a line index
system using the RF algorithm. We apply the system in the
LAMOST DR7 and get very good prediction performance. The
indices are verified with SVR, and the correctness is verified by
using Gaia data. The result shows that the RFs are a very useful
tool for feature extraction dealing with high-dimensional data.
For unbalanced data sets, RFs provide an effective way to
balance data set errors to achieve balanced errors. Using our
newly defined line index system for A type stars to predict the
stellar parameters of A-type stars, we can avoid the effect of
interstellar extinction and degeneration of parameters.
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