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Abstract

Predicting seeing of astronomical observations can provide hints of the quality of optical imaging in the near
future, and facilitate flexible scheduling of observation tasks to maximize the use of astronomical observatories.
Traditional approaches to seeing prediction mostly rely on regional weather models to capture the in-dome optical
turbulence patterns. Thanks to the developing of data gathering and aggregation facilities of astronomical
observatories in recent years, data-driven approaches are becoming increasingly feasible and attractive to predict
astronomical seeing. This paper systematically investigates data-driven approaches to seeing prediction by
leveraging various big data techniques, from traditional statistical modeling, machine learning to new emerging
deep learning methods, on the monitoring data of the Large sky Area Multi-Object fiber Spectroscopic Telescope
(LAMOST). The raw monitoring data are preprocessed to allow for big data modeling. Then we formulate the
seeing prediction task under each type of modeling framework and develop seeing prediction models through using
representative big data techniques, including ARIMA and Prophet for statistical modeling, MLP and XGBoost for
machine learning, and LSTM, GRU and Transformer for deep learning. We perform empirical studies on the
developed models with a variety of feature configurations, yielding notable insights into the applicability of big

data techniques to the seeing prediction task.

Key words: methods: data analysis — methods: statistical — telescopes

1. Introduction

Observation quality has been a key issue for both the
construction and daily operations of optical telescopes.
Astronomers and observers are much concerned about
improving observation quality such that high-quality observa-
tional data can be collected in an efficient way (Garcia-Lorenzo
et al. 2009; Qian et al. 2018). As the hardware of an
observatory is relatively immobile, the observation quality is
mostly determined by astronomical observing conditions such
as temperature, humidity and atmospheric pressure (Zhang
et al. 2015). In general, small-scale and irregular fluctuation of
air temperature or moisture may result in atmospheric
turbulence that can disturb the propagation of light through
the atmosphere and thus degrade the resolution of ground-
based telescopes (Roddier 1981; Brunner 1982).

Seeing is an important parameter of the quality of
astronomical images. In essence, it quantifies the blurring of
the image of an astronomical object due to turbulent airflows
in the atmosphere of Earth (Chromey 2016). One common
measure of seeing is the angular diameter of the long-
exposure image of a star, which is calculated by the full width
at half maximum of its optical intensity (Tokovinin 2002).
Practically, Differential Image Motion Monitor (DIMM)

(Vernin & Munoz-Tunon 1995; Sarazin 1997; Liu et al.
2010) has been widely used for assessing astronomical seeing
for its high accuracy and ease of operation and maintenance.

Monitoring seeing is of paramount importance for most
ground-based optical astronomy observatories (Roddier et al.
1990; Benkhaldoun et al. 2005; Xin et al. 2020). Seeing can be
used as an indicator for site characterization (Bradley et al.
2006) and observation scheduling (Tsapras et al. 2009). As
different types of observations require particular seeing
conditions, observation plans should be adjusted to the changes
of seeing to ensure that the most suitable observations are
performed under given seeing conditions, thus maximizing the
use of instruments. Furthermore, the knowledge of seeing can
help design and optimize telescope instruments such as the
ventilation system (Good et al. 2003) and the temperature
control system (Miyashita et al. 2003).

More recently, seeing prediction has been attracting an
increasing amount of research attention in the optical astronomy
community. For example, the Maunakea observatories conducted
quantitative analysis of the impacts of various factors on seeing
including wind shear and atmospheric stability patterns (Lyman
et al. 2020), and realized a forecast of the nightly average seeing
with machine learning techniques (Cherubini et al. 2021); the
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Paranal observatory built a short-term turbulence prediction
system by using three machine learning algorithms, i.e., random
forests, multilayer perceptron and long-short term memory (Milli
et al. 2019); Kornilov approached forecasting seeing as an auto-
regressive problem and the linear auto-regressive integrated
moving average (ARIMA) model is used for forecasting
(Kornilov 2016); Giordano et al. demonstrated the importance
of the local specificity of a given site in predicting seeing
(Giordano et al. 2021). Seeing prediction is considered as a
substantial utility for building and upgrading modern optical
telescopes as it is a key to enabling the so-called “flexible
scheduling” of astronomical observation activities. Astronomy
telescopes, as precious scientific facilities, are commonly
receiving a large number of observation requests and even
oversubscribed. Thus, the scheduling system is vital to ensure the
most efficient use of observation time and maximize scientific
yields. If some degree of predictions of seeing of a telescope is
possible, more suitable observation activities, of which the
required observation conditions will be just satisfied in the near
future, can be pre-scheduled. This can result in a more robust and
dynamic scheduling, in contrast to the traditional post-scheduler
where observation activities have to be passively adapted to
observation conditions.

In this paper, we aim to explore predictive analysis of seeing
of optical telescopes. Motivated by recent success of big data
techniques in a wide array of scientific domains such as
molecular biology (Lépez-Rubio & Ratti 2021) and climate
science (Dueben & Bauer 2018), we focus on data-driven
prediction of seeing by a systematic exploitation of statistical
modeling, machine learning and deep learning techniques. This
study makes use of the monitoring data of the Large sky Area
Multi-Object fiber Spectroscopic Telescope (LAMOST),
including the historical meteorological data, interior sensor
data and seeing measurements. A series of seeing prediction
models are constructed to equip LAMOST with a certain ability
of predictive monitoring of seeing during night-time
observations.

As a data-driven study, we first construct the data set that can
be used for developing seeing prediction models with big data
techniques. Through correlation analysis on the LAMOST’s
monitoring data, we select a number of data fields highly
related to the target seeing as the feature variables for seeing
prediction. The monitoring data are collected from different
sources (e.g., all-sky cameras, in-dome temperature sensors and
DIMM), heterogenous in data type, value range, sampling
frequency, etc. We thus perform preprocessing on the raw
monitoring data and generate normative data sets that can
facilitate the application of various data-driven approaches.

Next, we use diverse types of big data techniques to develop
seeing prediction models. Specifically, two traditional statis-
tical models (i.e., ARIMA and Prophet), two traditional
machine learning algorithms (i.e., multilayer perceptrons and
XGBoost), and three emerging deep learning algorithms (i.e.,
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LSTM, GRU and Transformer) are exploited in this study. We
also explore the combination of different types of big data
techniques to achieve better prediction performance. The
seeing prediction task is formulated under each type of these
big data frameworks and then the corresponding predictive
model is developed.

Through extensive empirical study on the LAMOST’s
seeing monitoring data set, we systematically evaluate the
effectiveness of data-driven seeing prediction approaches, as
well as the importance of feature variables in seeing prediction.
The hybrid approaches to integrating machine learning and
deep learning achieve the best performance, while XGBoost, as
an elaborate machine learning algorithm, is surprisingly
competitive for the seeing prediction task.

The rest of the paper is arranged as follows. Section 2
describes the data sources and preprocessing of the data set.
Section 3 presents the formulations and models of seeing
prediction under various big data frameworks, while Section 4
reports the empirical results of each model. Finally, we
summarize the findings with thoughts for future work in
Section 5.

2. Dataset Construction
2.1. Data Sources

In this study, we use the monitoring data of the Large sky
Area Multi-Object fiber Spectroscopic Telescope (LAMOST,
also known as the Guo Shou Jing Telescope) (Cui et al. 2012)
as the data source. LAMOST is installed with astronomical site
monitoring systems and in-dome sensing systems to monitor
indispensable information about observation conditions and the
status of astronomical facilities. According to previous
theoretical and empirical studies (Coulman 1985; Coulman
et al. 1986), astronomical seeing is mostly determined by
meteorological status and the atmosphere in the immediate
locality of the telescope and its dome. Therefore, while being
subject to the data privacy issue, we have access to use the
following types of monitoring data in this study.

2.1.1. Weather Data

An automatic weather station is set up as one of the
infrastructure facilities of LAMOST that monitors a number of
atmospheric parameters including humidity, air temperature
and pressure, wind speed and direction, cloud cover, etc.
Table 1 shows the metadata of the weather data used in this
study.

2.1.2. Interior Temperature Sensing Data

As the thermal monitoring system, a number of temperature
sensors are deployed at various positions inside LAMOST,
e.g., under No.l sub-mirror of the primary mirror, and on the
east of the focal surface. Because the temperature fluctuation is
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Table 1
The Metadata of the Weather Dataset
Field Range Unit Example

1 Temperature [—15,35] °C 21.61

2 Relative humidity [10,100] 59.72
3 Air pressure [890,950] mb 902.37
4 Wind speed [0,20] ms- 2.01

5 Wind direction [0, 205] F 130.7
6 Dew point [0, 15] °C 14.84
7 Rain probability [0,100] % 11.21
8 Timestamp o 190827232601

one important factor in air turbulence that can affect seeing
conditions, we choose to use temperature sensing data as
feature variables, of which the metadata is shown in Table 2.

2.1.3. Seeing Data

The collected seeing data of LAMOST comprises two
elements: the site seeing and the total seeing. Specifically, the
site seeing is mainly determined by the atmospheric conditions
of the astronomical site of LAMOST (i.e., Xinglong Observa-
tory), and monitored by using a DIMM telescope (Liu et al.
2010); the total seeing is measured according to the imaging
qualities of four guiding cameras located on the focal surface of
LAMOST (illustrated in Figure 1). In order to obtain the total
seeing of observations of LAMOST, we adopt the FWHM
(Full Width at Half Maximum) method Tokovinin (2002), of
which the calculation pipeline is depicted in Figure 2. There are
specifically five stages in the pipeline:

1. For each of the four guiding cameras, observers first
select a certain number of unsaturated bright stars (i.e.,
those with relatively low magnitude, but not over-
exposed) in the sky area where its assigned guiding star
is located.

2. The images of selected unsaturated bright stars are
captured by guiding cameras, usually with an exposure
time between 20 and 30 s.

3. Based on the images of selected unsaturated bright stars,
the FWHM of each representative star is calculated by
using Source Extractor (SExtractor) software packages.

4. To reduce the bias of single observations, the FWHMs of
all the unsaturated bright stars selected by the four
guiding cameras are averaged.

5. The raw value of the mean FWHM (in pixel) is
transformed into the value of seeing (in arc-second).

The metadata of the seeing data set are shown in Table 3.
Here, the total seeing reflects the overall observation quality,
which is determined by various factors including seeing
conditions, optical system, etc. Thus, in general, Site seeing
KTotal seeing. In this study, the site seeing is taken as one of
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Figure 1. The four guiding cameras of LAMOST."

Table 2
The Metadata of the Interior Temperature Dataset
Field Range Unit Example
1 Sensor Id 108108
2 Temperature [—15, 35] °C 4.75
3 Position West of FP bracket
4 Timestamp 191115145005

the feature variables and the total seeing as the target variable;
that is, we aim to predict total seeing by learning from
historical monitoring data composed of the above feature
variables.

2.2. Data Preprocessing

Before applying big data techniques, an indispensable step is
to preprocess the collected monitoring data. In particular, we
perform two main types of preprocessing, i.e., normalization
and alignment, on the above data sets.

2.2.1. Normalization

As shown in Tables 1, 2 and 3, the fields of the data set are of
different value ranges and units. For example, the values of
seeing range in [0, 5], while that of air pressure range in [890,
950]. Because many machine learning algorithms are sensitive
to data scales (Singh & Singh 2020), we apply min-max feature
scaling on each field of the monitoring data set, which can be
formulated as:

e M
max, —min,
where x and x’ are the values before and after normalization.
min, and max, are the minimum and maximum values of the
corresponding field of x.
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Figure 2. Total seeing calculation pipeline.

Table 3
The Metadata of the Seeing Dataset
Field Range Unit Example
1 Site seeing [0, 5] Arc second 1.17
2 Total seeing [0, 5] Arc second 2.48
3 Timestamp e . 191118201820

2.2.2. Synchronization

The weather station, temperature sensors and DIMM
telescopes of LAMOST operate independently with different
configurations (e.g., sampling rates), making the monitoring
data collected in an asynchronous mode. One direct conse-
quence is that most monitoring data seem to be missing if
queried at a specified point of time. Figure 3 illustrates an
example of asynchronous monitoring data from three sensors.
As shown in Figure 3(a), only the data of sensor A are available
at the query time 22:20:03, whereas the data of sensors A and B
are missing due to different sampling rates. To facilitate further
analysis and modeling, it is thus necessary to synchronize all
the sensing samples. To this end, we first specify a fixed
sampling rate (e.g., 10 s in Figure 3(b) depicted by red frame),
then for each source of the monitoring data, calculate a
representative value for each sampling period. Actually, there
are three possible cases to be considered, which are illustrated
by sensors A, B and C in Figure 3(b), respectively:

Case A Single sample in the given sampling period. As the
simplest case, the value of the single sample will be
selected as the representative value.

The guiding cameras of LAMOST adopt the full-frame CCD architecture.
The total number of pixels is 2092[H] x 2093[V], and the size of each pixel is
24um[H] x 24um[V].

Case B No sample in the given sampling period. The average
of the values of nearby samples will be used as the
representative value. To be more specific, the two most
proximate samples before and after the given sampling
period will be selected for calculation. Note that the nearby
sample will be discarded if its proximity to the given
sampling period exceeds a specified threshold.

Case C Multiple samples in the given sampling period. The
average of the values of internal samples will be used as
the representative value.

After calculating representative values, we can generate a
normative data set in the sense that each field of the monitoring
data mentioned in Section 2.1 synchronously takes one specific
value in each sampling period.

2.3. Temperature Difference Feature Generation

Air of a stable temperature, whether cold or hot, does not
necessarily lead to turbulence. Exactly, small-scale and
irregular fluctuation of temperature, rather than the level of
temperature, affects seeing conditions. In order to directly
introduce the temperature fluctuation information into big data
modeling, we calculate the difference in temperature between
every pairs of temperature sensors so as to generate the
temperature difference feature variables, in addition to the
temperature feature variables shown in Table 2. Actually, there
are more than two hundred temperature sensors deployed inside
LAMOST, resulting in a huge number of sensor pairs
(~50,000) to be considered when calculating temperature
difference features. This will inevitably bring a great computa-
tional burden when applying machine learning or deep learning
algorithms, and more seriously, causes the so-called ‘the curse
of dimensionality’ (Verleysen & Frangois 2005) that can result
in poor prediction performance.
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Figure 3. An example of asynchronous monitoring data.

In this study, we perform feature selection on the massive
temperature difference features to retain the most relevant ones
for seeing prediction. Specifically, we calculate the Pearson
correlation coefficient between either temperature features or
temperature difference features and the total seeing on the
LAMOST’s monitoring data set, which can be formulated as:

D Y [0 b))
I, @ = 022, 0p — 7)?

where x, is a value of a temperature/temperature difference
feature at timestamp ¢, and y, is the value of total seeing at the
same time. X and y are the average value of the feature and
seeing, respectively.

Then, we select the N temperature difference features with
the highest Pearson correlation coefficients for the subsequent
seeing prediction modeling.

To verify the usefulness of temperature difference features,
we depict the Pearson correlation coefficients of all the
temperature features and the top-500 temperature difference
features on the LAMOST monitoring data set, as shown in
Figure 4. Both of these two types of features are sorted
according to the Pearson correlation coefficients. It can be seen
that there is a significant margin between the two curves of
temperature difference features and temperature features. In
fact, any of the top-500 temperature difference features are
much more relevant w.r.t. seeing than all temperature features.
This provides empirical evidence for the rationale of generating
temperature difference features.

Furthermore, we investigate the redundancy of temperature-
related features. The Pearson correlation coefficients of feature
pairs within either temperature features and temperature
difference features are calculated and shown in Figures 5(a)
and (b), respectively. It is apparent that the correlations among
temperature difference features are much lower than that of
temperature features.

@)

Txy

3. Seeing Prediction Modeling

Based on the LAMOST’s monitoring data set, we explore
the use of a series of big data techniques to construct seeing

—— Temperature
—— Temperature difference

Pearson correlation coefficient

200 300 400

Features

Figure 4. The relevance between temperature-related features and seeing.

prediction models, in which the weather conditions, site seeing,
and interior temperature information (including temperature
values and their differences) are treated as feature variables,
and the total seeing as the target variable. Following the
development path of big data techniques, we choose to employ
three types of big data techniques, i.e., statistical model,
machine learning and deep learning, in this study. Furthermore,
we also develop hybrid models by combining heterogeneous
techniques for the seeing prediction task.

3.1. Statistical Modeling

As most advanced big data techniques derive from statistical
theories and models Franke et al. (2016), we start our
exploration on seeing prediction from the traditional statistical
modeling perspective. In essence, the seeing data of optical
telescopes can be viewed as a type of time series data because
the values of seeing evolve over time and exhibit temporal
correlations. Thus we employ a classical statistical modeling
technique—the autoregressive model. Under the autoregressive
framework, the prediction model outputs seeing at a future
timestamp according to historical seeing. Formally, seeing
prediction can be written as:

Vi = i O i-p) 3)
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Figure 5. Correlation analysis of temperature-related features.

where ¢ is the target timestamp, and {y, i, ---,y,_s} are the
seeing observations in a recent window before ¢ with the size
of 6.

We specifically used two types of autoregressive methods—
ARIMA (auto-regressive integrated moving average) and
Prophet—to construct seeing prediction models.

3.1.1. ARIMA

The ARIMA model is a traditional statistical analysis model
for time series data (Box et al. 2015), and has wide applications
in predicting time series from social, economic and engineering
areas, due to its flexible modeling capability. The ARIMA
model is essentially a combination of the differenced
autoregressive model (AM) with the moving average model
(MA), which can be formulated as:

)4
vdyt = Z [e TR det,i + &

i=1

+ Zq: Bi—i* €—i “4)

i=1

where {y,_i, ---,y,—,} are the p lagged observations called
“autoregressive” terms, and {¢,_;, -+ ,6_,} are the ¢ random
errors of the respective lags called “moving average” terms.
{oy—1, -+ ,04p} and {B,_4, ---,B8,—,} are the corresponding
coefficients to be estimated, respectively. Vy, denotes the d-th
order differences of y, that can be written recursively:

det — Vd_ly, _ vd—lyt_] (5)

In particular, V'y, =y, — y,_y, and V°y, =y,

3.1.2. Prophet

Prophet, proposed by Facebook in 2017, is a popular time
series prediction model that is powerful in handling daily
periodicity with large outliers and shifts in trends, as well as
multiple periods of seasonality (Taylor & Letham 2018). The
Prophet model elaborately approaches time series prediction by
a combination of three functions of time plus an error term:

)’)\t = g(yl,...’ytil) _|_ S(yl’”.’ytfl)
+ h(yls'“sytfl) + €t (6)

The growth function g(-) models the non-periodic trend of
the data, which has further three options: linear growth, logistic
growth, and flat (no growth over time). The seasonality
function s(-) approximates arbitrary smooth seasonal effects
by using a Fourier series. The holiday function A(-) is used to
adjust predictions when a holiday or major event may affect the
prediction. The Prophet model is estimated in a fully Bayesian
manner to allow for automatically identifying model character-
istics such as the selection of changepoints.

3.2. Machine Learning

Traditional autoregression models like ARIMA and Prophet
make seeing predictions by using observations of seeing from
previous time steps; however, they are insufficient in terms of
exploiting the feature observations (i.e., meteorological status
and temperature sensings) of time series data, besides the target
seeing. To address this deficiency, we leverage machine
learning approaches to incorporate various feature observations
related to the target seeing. With similar notations in
Equation (3), seeing prediction under the machine learning
framework can be formulated as:

)7t :fm] (xl’xt—l’ y,,p"',xz—ﬁ, yt—(S) (7)
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Figure 6. The structure of 3-layer MLP.

where x, € R? is the feature vector at the target timestamp, and
d is the number of features. Here, to incorporate historical
information, the feature and seeing observations, denoted as
x,;and y, ; (1 <i< ) are also used as input variables for
machine learning models. To ease notations in the rest of this
paper, let X', s = (¢, Xi—1, Y_ .o Xi—55 Y_s)-

We specifically used two types of machine learning methods
—MLP (multilayer perceptron) and XGBoost (extreme gra-
dient boosting)—to construct seeing prediction models.

3.2.1. MLP

MLP is a typical class of feed-forward neural networks,
which is also the building block of many advanced deep neural
networks. An MLP model is comprised of three types of layers,
i.e., one input layer, one or several hidden layers, and one
output layer. Figure 6 depicts the structure of the 3-layer MLP
adopted in this study. The prediction of MLP is obtained by a
nonlinear mapping from an input feature vector to a
corresponding output seeing, which can be formally written as:

5 =W, + 5@
hy=gWWh - x5 + bD) (®)

where WX and W® are the weight matrix parameters
connecting neurons between layers, and ‘" and b are the
corresponding bias vector parameters. g( - ) is the differentiable
nonlinear activation function, e.g., sigmoid and ReLU.

3.2.2. XGBoost

XGBoost is a highly scalable boosting-tree-based machine
learning model (Chen & Guestrin 2016). Its advantages have
been widely recognized in a variety of machine learning tasks,
as it has been a popular approach or indispensable component
of winning solutions in many data science competitions.
XGBoost is essentially a tree ensemble model in which a set of
additive regression trees (CART tree in general) are used as
base learners. The sum of all the base learners’ outputs is taken
as the final prediction. Formally, the prediction of XGBoost
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can be written as:

K
¥ = Z gk(x/INt?) C)]

k=1

where g, is a regression tree model that is learned in an additive
manner and can perform prediction independently. K is the
number of regression trees assembled in the XGBoost model.

3.3. Deep Learning

In recent years, deep learning has started to revolutionize a
broad range of data-driven research and applications, e.g.,
natural language processing, computer vision and e-commerce.
Compared with traditional machine learning, deep learning is
advantageous in modeling complex patterns inherent in vast
amounts of unstructured data. As mentioned above, the seeing
data are essentially a type of time series data. However, the
machine learning formulation to seeing prediction, as shown in
Equation (7), relies on hard feature engineering, i.e., manually
specifying a fixed window size 8, to model the sequential
patterns. In other words, the model capability is restricted by
this parameter.

In contrast, deep learning allows for more natural modeling
of the sequential seeing data. Formally, let [x1, yy; --- sx7, y7] be
an observation sequence across 7 time step, where x, and y,
(1 < t<T) are the feature observations and seeing observation
at the r-th time step, respectively. Under the deep learning
framework, seeing prediction at a given time step ¢ can be
formally written as:

Y = Jar G X1, Yy g X, yy) (10)

Note that in Equation (10), there is no need to specify the
additional window size parameter ¢ as in Equation (7). Thus,
deep learning has more potential than traditional machine
learning to handle the arbitrarily long dependencies inherent in
the seeing observations.

We specifically used three types of deep learning methods—
LSTM (long short-term memory), GRU (gated recurrent unit)
and Transformer—to construct seeing prediction models.

3.3.1. LSTM

One of the most traditional deep learning approaches to
handling sequential data is recurrent neural networks, among
which LSTM has the advantage of alleviating the vanishing
gradient problem that can be encountered when training
traditional recurrent neural networks (Hochreiter & Schmidhuber
1997). As a special type of recurrent neural networks, LSTM
maintains a recurrent hidden state vector k, at each time step #,
and updates it in a chain-like manner:

h, = LSTM(h,_1, x,) (11)

where x, is the input feature vector at time step .
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To be more specific, the hidden state is updated by using one
“cell” and three “gates”, namely the input gate, the forget gate
and the output gate, which can be formulated as:

i, =o0cWx; + Vik,_1 + by)

Ji=ocWx, + Vohy_1 + by)

o, =ocWx, + V3h,_1 + b3)

Cr = f, O 1+ i © o(Wax, + Ushy 1 + by)

h, =0, © ¢(c)) (12)

where o(-) and ¢(-) denote the sigmoid and the hyperbolic
tangent activation functions, respectively. ® denotes element-
wise multiplication between vectors. The hidden state vector k,
is then fed into a MLP module (as shown in Equation (8)) to
yield the seeing prediction at the time step t.

3.3.2. GRU

Similar to LSTM, GRU is another popular type of recurrent
neural networks. It can be viewed as a simplified variant of
LSTM by coupling the forget gate and the input gate into a
single update gate and mixing the cell state and the hidden state
as one state (Cho et al. 2014). In total, only two gates, namely
the update gate and the reset gate, are used in GRU. The model
formulation can be written as:

u; = oWx, + ih,_1 + by)
r=oc(Wx, + Vah,1 + b)

hi = ¢(Wsx, + V3(r, © hy_1) + b3)
hi=0—u)Oh_+u Oh (13)

Existing empirical studies show the comparable performance
of GRU to LSTM on many sequential data modeling tasks
while offering improved computational efficiency, which
motivates us to exploit GRU in the seeing prediction task.

3.3.3. Transformer

Transformer is a powerful sequence modeling approach that
has lately attracted extensive interest. Unlike recurrent neural
networks, Transformer capitalizes on multi-headed self-atten-
tion mechanism under the encoder-decoder architecture to learn
the global sequential dependency without explicit recurrence
mechanism (Vaswani et al. 2017). Transformer is now
recognized to take the place of recurrent neural networks in
sequence modeling applications due to its promising properties.

When applying Transformer on the seeing prediction task,
the observation sequence is organized as a matrix X=
[x5-- %] € R (with sequence length ¢, and feature number
d), and linearly projected into a query matrix, a key matrix and
a value matrix, respectively:

Q, K’ V:‘/V]X7 WZ'X9 W3X (14)
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Then, a matrix representation of the input observation
sequence is calculated by scaled dot-product operation:

head(Q, K, V) = softmax Q- KT) Vv (15)
b b \/E
where d is the feature dimensionality after linear projection.
Commonly, k parallel scaled dot-product operations, each
called a “head”, are performed. The independent outputs are
concatenated and linearly transformed to yield the “multi-head”
representation of the input observation sequence:

multi — head(Q, K, V) = [head,,---,head;] - W, (16)

Similar to recurrent neural networks, the seeing prediction
result is output by an MLP module fed with the “multi-head”
representation.

3.4. Hybrid Models

In many big data applications, combining multiple machine
learning and deep learning approaches has been demonstrated
empirically to provide much more accurate solutions. This
motivates us to explore the use of hybrid models for the seeing
prediction task, in addition to employing single techniques as
mentioned above. As will be seen in Section 4, XGBoost and
deep learning approaches perform competitively on the seeing
prediction task. Therefore, we develop hybrid models by
combining XGBoost with each of the deep learning models for
further performance gains.

We specifically adopt two combination strategies. The first
one is the result-level combination. That is, the prediction
results of XGBoost and deep learning models are averaged to
yield the final results:

}7[ _ f;(gb (1) +f£;[1 (xlt~(t71)) an
2

Here, the deep learning models f;, here can in particular be
either LSTM, GRU or Transformer described above.

To take further benefits of different models, the second
strategy accomplishes model combination at the feature level.
As shown in Equation (9), XGBoost is essentially an ensemble
of regression trees {g;, ---,gx}, each of which can be
considered as a compositional feature extracted from the
original feature space. These features, as an abstraction of the
observation sequence, are beneficial to learn downstream
models. To this end, we take the outputs of every regression
trees in the XGBoost model as additional features for deep
learning models:

)3{ = Jiﬂ (x/tw(t— 1)s gl(x’z~5),~ 8k (xlzmé)) (18)

Similarly as in Equation (17), fy in Equation (18) denotes
deep learning models that can be either LSTM, GRU or
Transformer.
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Table 4
Configurations of Seeing Prediction Models

Model Hyperparameter Candidates Developing Framework
1 ARIMA p: {0, 1,2, 3,4},d:{0, 1}, ¢: {0, 1, 2, 3, 4} Pmdarima 1.8.4"
2 Prophet Growth: {linear, logistic}, Seasonality: True Prophet in Python 0.7.1°
3 XGBoost Max tree depth: {3, 6}, Tree number: {50, 100, 200} dmlc XGBoost 1.3.1¢
4 MLP Learning rate: {0, 01, 0.001, 0.0001},
5 LSTM Hidden dim: {32, 64, 128, 256}, Epoch: {100}, PyTorch 1.1.0¢
6 GRU Batch size: {8, 16}, Optimizer: Adam
7 Transformer
Notes.

 https:/ /pypi.org/project/pmdarima//.
b https:/ /facebook.github.io/prophet/.
© https://github.com/dmlc/xgboost.

d https:/ /pytorch.org/.

4. Experimental Study
4.1. Settings

Data set. In this study, we collected the monitoring data of
LAMOST ranging from 9/1/2020 to 10/31/2020. The data is
processed as described in Section 2. In particular, the sample
rate for synchronization is set to 30 s. The final data set used in
the experiment contains a total of 23,472 synchronized
observations, involving 160 separated observation sequences.
In order to train and evaluate seeing prediction models, the data
set is randomly split into a training set and a testing set
containing 128 and 32 observation sequences, respectively.

Model configurations. We developed a variety of seeing
prediction models based on open-source frameworks. Grid
search over pre-specified hyperparameter candidates is applied
to find optimal ones for all models. The configuration details of
each model are given in Table 4.

Evaluation metric. To assess the accuracy of seeing
prediction models, we used the well-known error metric for
regression, i.e., Root Mean Square Error (RMSE). Formally,
given an seeing observation sequence Y = {y;, ---,y,} and its
corresponding prediction results ¥ = { V5+3,), the RMSE is
calculated as:

RMSE = (19)

1 R
=0 — )2
ni_y

In general, lower RMSE indicates a more accurate seeing
prediction model.

4.2. Results

We performed extensive experiments on the developed
seeing prediction models with the following three aims:

1. Evaluating how well each big data technique can be
applied for the seeing prediction task;

2. Evaluating the helpfulness of feature engineering of the
monitoring data on boosting the seeing prediction
accuracy;

3. Evaluating the training efficiency of seeing prediction
models.

In what follows, we present the details of the three
experiments conducted for each of the above three aims.

4.2.1. Experiment 1: Evaluation of Big Data Techniques

In our experimental study, we first developed seeing
prediction models on the basic feature variables which are
described in Section 2.1 Table 5 shows the performance of
these seeing prediction models in terms of RMSE. The best
performance of each type of model is indicated with black
boldface. Note that as shown in Equation (7), machine learning
models rely on a historical windows hyperparameter §, thus we
conduct experimental analysis with varying ¢ to make a fair
comparison among different types of models. Here, 6=0
means that no historical monitoring information is considered
for developing seeing prediction models, whereas ¢ = seq_len
means that the whole monitoring sequence is used.

From Table 5, we can obtain the following observations:

1. Machine learning and deep learning models outperform
autoregressive models by a substantial margin, which
indicates the indispensability of incorporating multiple
monitoring variables, e.g., the weather information and
the temperature sensing information, in predicting total
seeings. In fact, univariate autoregressive like ARIMA
and Prophet may yield trivial solutions for the seeing
prediction task.


https://pypi.org/project/pmdarima/
https://facebook.github.io/prophet/
https://github.com/dmlc/xgboost
https://pytorch.org/
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Table 5
Performance Comparison among Seeing Prediction Models Developed on Basic Features
Model 6=0 6=1 6=3 6=17 6 = seq_len
Autoregressive ARIMA 0.1792
models Prophet s e e s 0.2420
Machine learning MLP 0.2294 0.1710 0.1133 0.1243
models XGBoost 0.1586 0.1223 0.1119 0.1057
Deep learning LSTM 0.1266 0.1139 0.1176 0.1079
models GRU 0.1192 0.1150 0.1118 0.1099
Transformer 0.1242 0.1188 0.1169 0.0998
Hybrid models Hybrid_res(XGB+LSTM) 0.1183 0.1085 0.1075 0.1021
(result-level) Hybrid_res(XGB+GRU) 0.1212 0.1101 0.1134 0.1035
Hybrid_res(XGB+Transf) 0.1251 0.1172 0.1190 0.1028
Hybrid models Hybrid_fea(XGB+LSTM) 0.1133 0.0962 0.0960 0.0907
(feature-level) Hybrid_fea(XGB+GRU) 0.1130 0.0945 0.0947 0.0904
Hybrid_fea(XGB+Transf) 0.1168 0.0979 0.0950 0.0893

2. Among all the single machine learning and deep learning
models, XGBoost is very competitive when limited
lengths of observation sequences (i.e., 6=1, 3, 7) are
taken into account, even outperforming deep learning
models in most cases; however, deep learning models
outperform machine learning models if the whole
observation sequence is used to construct seeing predic-
tion models (i.e., § =seq_len), suggesting the benefit of
tackling seeing prediction by capture patterns of the
whole sequences. If going into more details, we can find
that Transformer exhibits superior performance among all
the single models, which verifies the competitiveness of
Transformer in sequence modeling.

3. The feature-level hybrid models consistently outperform
the result-level ones and achieve the best performance
among all the compared models. This result suggests that
one best practice for seeing prediction would be to
combine different types of models by using internal
results of machine learning models as features for
building deep learning models. In contrast, the result-
level hybrid models perform quite poorly, even degrading
the performance of the constituted models at times,
giving evidence that simply assembling results of single
models does not necessarily lead to improved perfor-
mance of seeing prediction.

4.2.2. Experiment 2: Evaluation of Feature Variables

In our next experiment, we further incorporated temperature
difference features when learning seeing prediction models.
Figure 7 depicts the performance variations of the models with
and without temperature difference features. Recall that the
feature number is potentially huge, we developed seeing
prediction models with three configurations of temperature

difference features: the first one is the 100 randomly selected
features, and the second and the third ones are the top-100 and
500 features with the highest Pearson correlation with the target
seeing, respectively.

Temperature difference features are intuitively helpful in
boosting seeing prediction accuracy; however, it is surprising
to see from Figure 7 that the performance of seeing prediction
models vary in a different manner. In particular, the
performance of machine learning models is consistently
improved after incorporating temperature difference features.
The MLP model achieves the lowest RMSE at the top-100
feature configuration, whereas the XGBoost model at the top-
500 feature configuration. In fact, the best result is achieved by
XGBoost with window size hyperparameter 6 = 7 and top-500
feature configuration (RMSE=0.1023). Conversely, the per-
formance variations of deep learning models are mostly
negative. We only see performance improvements of the
LSTM model with the top-100 feature configuration when
6=7, and the GRU model with the rand-100 feature
configuration when 6 =seq_len. For the Transformer model,
its performance degrades significantly with every feature
configuration. One reason could be that after incorporating
temperature difference features, the input dimension of deep
learning models increases greatly, especially in the case of the
top-500 feature configuration, requiring more computational
effort and extensive hyperparameter tuning for training highly
accurate seeing prediction models. To make a fair comparison
in our experiment, we use fixed hyperparameter ranges shown
in Table 4 for training models with every feature setting, which
would lead to suboptimal seeing prediction models. We defer a
more systematic evaluation on the hyperparameters of deep
learning models (e.g., the number of layers of encoder, and
head of self-attention) to future work.
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Figure 7. Performance comparison of seeing prediction models w/o temperature difference features.

It should be noted that despite the improvements by
incorporating temperature difference features, the prediction

accuracy of machine learning models is still lower than that of 10000 || 7S ARMA e Prophet
the best-performed deep learning models (i.e., 0.1023 by _ —A— LSTM™ —+—GRU
XGBoost versus 0.0998 by Transformer). This gives further £ 1000 +Tr%
evidence of the superiority of Transformer in the seeing g ]
prediction task. ‘f’, 100
€

4.2.3. Experiment 3: Evaluation of Learning Efficiency ? 10

Our efficiency experiments were centered around the e
comparison of the training time of different seeing prediction 1 * * *
models. In particular, each type of seeing prediction model was Basic features +Topl00TD Features  +Top500TD Features
trained with three feature configurations: (i) the basic features, Figure 8. Training time of seeing prediction models.
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Figure 9. An example of seeing sequence with its predictions.

(ii) incorporating top-100 temperature difference (TD) features,
and (iii) incorporating top-500 temperature difference features.
Figure 8 depicts the training time of every seeing prediction
model. Note that the training time is log-scaled to better portray
the variation tendency among different configurations.

From Figure 8, we can observe that as the number of features
increases the time required for training machine learning and
deep learning models increases notably. Despite this, training
machine learning models is still much more efficient than deep
learning models. In fact, training the best-performed machine
learning model (i.e., XGBoost by incorporating top-500
temperature difference features) can be completed in 10 s,
whereas training the best performed deep learning model (i.e.,
Transformer with basic features) needs about 500 s. Recall the
very competitive prediction accuracy of the XGBoost model,
we suggest that the XGBoost method with elaborately selected
features is a practical solution to the seeing prediction task.

4.3. Case Study

In order to give a more intuitive understanding of the
behaviors of the developed seeing prediction models, we
selected a seeing sequence from the LAMOST’s monitoring
data as an illustrative example. As shown in Figure 9, the

illustrative example is a continuous observation sequence
lasting 20 minutes. The total seeing monitored by guiding
cameras is denoted as “GroundTruth”, and the predictions of
statistical models, machine learning models and deep learning
models are depicted in Figures 9(a), (b) and (c), respectively.

It can be seen that the predictions of statistical models (i.e.,
ARIMA and Prophet) deviate from the ground truth of seeing
substantially. Among machine learning models, XGBoost
performs much better than MLP. There is particularly an
apparent time lag between the predictions of the MLP models
and the ground truth, partly accounting for its inferior
prediction performance. The predictions of deep learning
models are shown to better fit the ground truth, among which
the Transformer model exhibits superiority to the other two
deep learning models.

In order to demonstrate the effectiveness of each type of
seeing prediction models in a more precious way, we further
quantitatively evaluate the performance of the models in this
case study. Figure 10 depicts the RMSE of every models as
well as the standard derivations of prediction bias. It can be
seen that among all the models, Transformer achieves the best
performance, i.e., both the lowest RMSE and prediction bias,
followed by LSTM and XGBoost; in contrast, Prophet and
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Figure 10. Quantitative performance (RMSE + STD) of seeing prediction
models in this case study.

ARIMA are the two models with the worst performance in
terms of both RMSE and prediction bias. These performance
differences of seeing prediction models, which largely
correspond to that in experiment 1, can be intuitively reflected
in Figure 9.

5. Conclusion and Future Work

In this paper, we systematically investigate big data
techniques in predicting the seeing of astronomical observa-
tions. A variety of seeing prediction models are developed by
leveraging representative statistical modeling, machine learning
and deep learning methods. Model combination strategies are
further proposed to derive more accurate seeing prediction
models. By evaluating the developed models on LAMOST’s
monitoring data with different feature configurations, we can
arrive at the following findings:

1. Incorporating internal outputs of XGBoost into deep
learning models is the best practice for the seeing
prediction task if the prediction accuracy is the main
goal to be pursued.

2. Among all the simplex methods, Transformer achieves
the highest prediction accuracy by only using the basic
observation sequences, not relying on any additional
feature engineering.

3. XGBoost exhibits competitive prediction accuracy if
incorporated with the proposed temperature difference
features, meanwhile being very efficient in terms of the
training time. Thus the XGBoost model can be viewed as
the most balanced one when both prediction accuracy and
training efficiency are taken into account.

Data-driven approaches to seeing prediction, as a newly
emerging research topic in the optical astronomy community,
are far from being well addressed. There is particularly much
room for improvement of deep-learning-based seeing predic-
tion models. As shown in this work, deep learning does not
show dominant advantages over traditional methods, which

Ni et al.

have been done in many domains like natural language
processing and computer vision. One reason is that training
deep learning models is computationally intensive, whereas the
computational resources in our empirical study are relatively
limited. We thus plan to conduct more extensive empirical
studies on deep learning models for seeing prediction,
including experimenting with deeper architectures, exploring
larger hyperparameter spaces, etc. Furthermore, we only
employed vanilla deep learning models in this work, which
will inevitably lead to suboptimal results. Thus another line of
future work is to design more elaborate deep learning
architectures that can address defining challenges posed by
the seeing prediction task.
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