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Abstract

Applying functional differentiation to the density field with Newtonian gravity, we obtain the static, nonlinear
equation of the three-point correlation function ζ of galaxies to the third order density perturbations. We make the
equation closed and perform renormalization of the mass and the Jeans wavenumber. Using the boundary condition
inferred from observations, we obtain the third order solution ζ(r, u, θ) at fixed u= 2, which is positive, exhibits a U-
shape along the angle θ, and decreases monotonously along the radial r up to the range r� 30 h−1 Mpc in our
computation. The corresponding reduced Q(r, u, θ) deviates from 1 of the Gaussian case, has a deeper U-shape along
θ, and varies non-monotonously along r. The third order solution agrees with the SDSS data of galaxies, quite close
to the previous second order solution, especially at large scales. This indicates that the equations of correlation
functions with increasing orders of density perturbation provide a stable description of the nonlinear galaxy system.
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1. Introduction

In study of the distribution of galaxies, the n-point correlation
functions (nPCF) are important tools which contain the dynamical
and statistical information of the system of galaxies (Groth &
Peebles 1975, 1977; Fry & Peebles 1978; Peebles 1980, 1993;
Fry 1983, 1984, 1994; Bernardeau et al. 2002). The analytical,
closed equations of the 2PCF ξ (also denoted as G(2)) up to the
second order of density perturbation have been derived for the
static case (Zhang 2007; Zhang & Miao 2009; Zhang &
Chen 2015; Zhang et al. 2019), as well as for the evolution case
(Zhang & Li 2021). The associated solutions have simultaneously
provided simple explanations of several seemingly-unrelated
features of the observed correlation of galaxies, such as the
power law of the correlation  r r0

1.7x ( ) in a range
r= (0.1∼ 10) h−1Mpc, the correlation amplitude being propor-
tional to the galaxy mass ξ∝m, the correlation function of clusters
having a similar form to that of galaxies ξcc; (10∼ 20)ξgg with a
higher amplitude, the scaling behavior of the cluster correlation
amplitude, the 100 Mpc-periodic bumps of the observed ξgg(r) on
very large scales, the small wiggles in the power spectrum caused
by acoustic oscillating waves, etc. The statistic of galaxy
distribution is non-Gaussian due to long-range gravity, and G(2)

is insufficient to reveal the non-Gaussianity. It is necessary to study
the 3PCF r r rG , ,3 ¢ ( )( ) which statistically describes the excess
probability over random of finding three galaxies located at the
three vertices (r, r¢, r″) of a given triangle (Fry & Peebles 1978;
Peebles 1980; Fry 1984). There are a few preliminary analytical
studies of G(3). Fry (1984) did not give the equation of G(3) and
tried to calculate G(3) to the lowest non-vanishing order in density

perturbation, assuming initial conditions that are Gaussian and
have a power-law spectrum. Similarly, using the BBGKY
hierarchy, Inagaki (1991) calculated the Fourier transformation of
G(3) perturbatively under Gaussian initial conditions. For the
system of galaxies, however, its non-Gaussian distribution function
is unknown, so that generally one is not able to compute G(3) even
if the density perturbation as one realization is given. Besides, the
initial power spectrum of the system of galaxies is not of a simple
power-law form even at the early epoch when galaxies are newly
formed at some high redshifts. Bharadwaj (1994, 1996) adopted
the BBGKY hierarchy method and formally wrote down an
equation of G(3) for a Newtonian gravity fluid without pressure and
vorticity. But the formal equation contains no pressure and source
terms and will not be able to exhibit oscillation and clustering
properties. Moreover, the formal equation is not closed yet and
involves other unknown functions beside G(3). This situation is
similar to that in Davis & Peebles (1977), which gave an equation
for G(2) involving other unknown functions. These unclosed
equations are hard to use for the actual system of galaxies, since
appropriate initial conditions are difficult to specify for several
unknown functions. In Wu & Zhang (2022) the static equation of
G(3) was studied to the second order of density perturbation, and
the solution describes the overall profile of the observed 3PCF
(Marín 2011). In this paper, we will work on the third order density
perturbation, and also give renormalization of the mass m and the
Jeans wavenumber, and compare the solution with observations.
Within a small redshift range, the expansion effect is small,

and the correlations of galaxies can be well described
by the static equation. As demonstrated for the case of 2PCF
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(Zhang & Li 2021), the expansion term in the evolution equation
is about two orders smaller than the pressure and gravity terms,
and the 2PCF increases slowly, ξ∝ (1+ z)−0.2 for z= 0.5∼ 0.0.

2. Equation of 3PCF to Third Order of Density
Perturbation

The equation of the density field with Newtonian gravity
(Zhang 2007; Zhang & Miao 2009; Zhang & Chen 2015;
Zhang et al. 2019; Wu & Zhang 2022)
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where ψ(r)≡ ρ(r)/ρ0 is the rescaled mass density field with
ρ0 being the mean mass density, k G c4J s0

2 1 2p rº ( ) is the
Jeans wavenumber, cs is the sound speed, and J is the
external source employed to carry out functional derivatives
conveniently. The n-point correlation function is defined

by  
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where r rdy y y= - á ñ( ) ( ) is the fluctuation around the
expectation value yá ñ, and c Gm4s

2a p= . (See Binney et al.
1992; Goldenfeld 1992; Zinn-Justin 1996; Zhang 2007; Zhang
& Miao 2009; Zhang & Chen 2015; Zhang et al. 2019; Zhang
& Li 2021.) To derive the equation of r r rG , ,3 ¢ ( )( ) , we take
the ensemble average of Equation (1) in the presence of J, and
take the functional derivative of this equation twice with
respect to the source J, and set J= 0. The second term in
Equation (1) is expanded as
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containing 3dy( ) , higher than our previous work (Wu &
Zhang 2022). Calculations yield the following equation
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where G(2)(0)≡G(2)(r, r), G(3)(r, r, r)≡G(3)(0), 0y º
1J 0yá ñ ==∣ , and ∇≡∇r. We have neglected G(5) as a cutoff

of the hierarchy. Comparing with the 2nd-order equation (Wu
& Zhang 2022), Equation (3) also contains G(2)G(4) terms, and
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G(4) in the delta source. As expected, Equation (3) reduces to
that of the Gaussian approximation (Zhang et al. 2019), when
all the higher order terms, such as G(2)G(2)G(2), G(2)G(3), G(4),
are dropped, Since Equation (3) contains G(4), it is not closed
for G(3). To cutoff the hierarchy, we adopt Fry–Peebles ansatz
(Fry & Peebles 1978)
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where Ra and Rb are dimensionless constants, and
(3Ra+ Rb)/4; 2.5± 0.5 as constrained by observations
(Fry 1983, 1984; Meiksin et al. 1992; Szapudi et al. 1992;
Peebles 1993). The ansatz (4) leads to
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Equation (3) also contains the squeezed r r rG , ,3 ¢ =( )( )

r r rGlim , ,r r
3 ¢  ( )( ) with three points being reduced to two.

In observations and simulations r r rG , ,3 ¢( )( ) cannot be
resolved, (Gaztañaga et al. 2005; McBride et al. 2011a,
2011b; Yuan et al. 2017). To avoid the divergence, we adopt
the Groth–Peebles ansatz (Groth & Peebles 1975, 1977)
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the squeezed 3PCF becomes
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consisting of regular r rG ,2 ¢( )( ) . Substituting (5) (6) (8) into
Equation (3), we obtain the closed equation of the 3PCF
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α has absorbed a factor (1+ b). The six constants, a(3), a(2), b,
c, e, f, are combinations of six unknowns: G(2)(0), G(3)(0),
∇G(2)(0), ∇G(3)(0), ∇2G(2)(0) and ∇2G(3)(0), which can be
formally divergent, and are not directly measurable. These
constants are inevitable in the perturbation approach to any
field theory with interactions, and are often treated by some
renormalization. In our case, we will set g(3)= 1 as the
renormalization of the Jeans wavenumber kJ, and take (1+ b)m
as the renormalized mass. Equation (9) is a generalized Poisson
equation (Hackbusch 2017) with the two delta sources located
at r¢ and r″ respectively, and the inhomogeneous term  3( ). Its
structure is similar to the second order equation (Wu &
Zhang 2022), but  3( ) has more terms. It also contains a

convection term a r r rG , ,3 3 ¢ · ( )( ) ( ) and a gravitating term
r r rg k G , ,J

3 2 3 ¢ ( )( ) ( ) . The Jeans wavenumber kJ determines the
3-point correlation length of the system of galaxies. α−1∝m
determines the correlation amplitude at small scales, so that
massive galaxies will have a higher amplitude of G(3). These
two properties are analogous to those of 2PCF (Zhang 2007;
Zhang & Li 2021).
When all nine nonlinear parameters (three from the ansatz) are

neglected, Equation (9) reduces to the Gaussian approximation
as the next order to the mean field theory (Zhang 2007; Zhang

et al. 2019), r rG , k r

r
2

1 2
cos 2 J 12

12
µ( )( ) ( ) with r12= |r1− r2|, and

r r rG , ,3 ¢ ( )( ) given by the Groth–Peebles ansatz (7) with Q= 1.
We plot the Gaussian G(3) in Figure 1.
Here the Gaussian approximation of the self-gravity density

field is conceptually not the same as the Gaussian random
process in statistics. A “reduced” 3PCF is often introduced as
follows (Jing & Börner 2004; Wang et al. 2004; Gaztañaga
et al. 2005; Nichol et al. 2006; McBride et al. 2011a, 2011b;
Guo et al. 2014, 2016)
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which is an extension of the Groth–Peebles ansatz (7).
r r rQ , , 1¢  ¹( ) is a criterion of non-Gaussianity.

3. Solution and Comparison with Observations

In a homogeneous and isotropic Universe, r rG ,2 ¢ =( )( )

r rG 2 - ¢(∣ ∣)( ) . The 3PCF is parameterized by r r rG , ,3 ¢  º( )( )

r u, ,z q( ), where r≡ r12, u r

r
13

12
= , r rcos 1

12 13q = - (ˆ · ˆ ) (Marín

2011). For convenience, we take r″= 0 and put the vector
r r r¢ -  = ¢ along the polar axis (see Figure 1 in Wu & Zhang
(2022)), and write G(2)(r, r″)= ξ(r), r rG l,2 x¢ =( ) ( )( ) ,

r rG r ur,2 x x¢  = ¢ =( ) ( ) ( )( ) , where r rl rbº - ¢ =∣ ∣ , b º
u u1 2 cos2 q+ - . Then Equation (9) is written in spherical

coordinates
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Figure 1. The Gaussian ζ(r, u, θ) in the spherical coordinates with u = 2.
Along the r-direction, ζ(r) becomes negative around r = (14 ∼ 27)h−1 Mpc
forming a shallower U-shape. Along the θ-direction, ζ(θ) decreases
monotonously at small r, and oscillates at large r.
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where ar
3( ) is the r− component of a(3), and
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In observation and simulations, the ratio u= 2 is often taken, so
that ζ(r, u, θ) will have only two variables. The 2PCF ξ(r) is
involved in Equation (12). Although ξ(r) has been solved to
various nonlinear orders (Zhang & Miao 2009; Zhang &
Chen 2015; Zhang et al. 2019), we will use the observed ξ(r)
(Marín 2011) for a coherent comparison with observation.
An appropriate boundary condition is needed to solve

Equation (12). Marín (2011) has observed the redshift-space Q
(s, u, θ) of “DR7-Dim” (61,899 galaxies in the range
0.16� z� 0.36) from SDSS in the domain s ä [7.0,
30.0] h−1Mpc, θ ä [0.1, 3.04] at five respective values s= 7,
10, 15, 20, 30 h−1 Mpc at a fixed u= 2, where s is the redshift
distance. (See Figure 6 and Figure 7 of Marín (2011).) s may
differ from the real distance r due to the peculiar velocities. We
will neglect this error and take r= s in our computation. From
this data, we get the fitted Q(r, u, θ), as well as ζ(r, u, θ) via the
relation (11), on the boundary of the domain, which is taken as
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the boundary condition of Equation (12). The effect of the delta
source is absorbed by the boundary condition (Hackbusch 2017;
Zhang & Li 2021).

We solve Equation (12) numerically by the finite element
method, and obtain the solution ζ(r, u, θ) and the reduced Q(r,
u, θ) defined by (11). To match the observational data
(Marín 2011), using the method of χ2 test, the parameters
are chosen as follows: a h4.4r

3 -( ) Mpc−1, a h0.35r
2( )

Mpc−1, b; 0.73, c; 0.03 h2Mpc−2, e;−6.9, Q; 1.7,
Ra; 4.1, Rb;−0.47, kJ; 0.038 hMpc−1. In particular, the
values of Q, Ra and Rb of the ansatz are consistent with that

inferred from other surveys (Peebles 1993). Besides, the chosen
kJ is also consistent the value used in our previously work on
the 2PCF (Zhang 2007; Zhang & Miao 2009; Zhang &
Chen 2015; Zhang et al. 2019). The parameter α has not been
accurately fixed because the delta source has been absorbed
into the boundary condition in our numeric solution (Hackbusch
2017; Zhang & Li 2021).
Figure 2 (a) shows the solution ζ(r, u, θ) at fixed u= 2 as a

function of (r, θ). It is seen that ζ(r, u, θ)> 0 in the range of
computation, and exhibits a shallow U-shape along the
θ− direction. This feature is consistent with observations (Guo
et al. 2014, 2016). Along the r− direction ζ(r, u, θ) decreases
monotonously up to 30 h−1 Mpc in the range. The highest
values of ζ(r, u, θ) occur at small r, just as ξ(r) does. This is
also expected since the correlations are stronger at small
distance due to gravity.
Figure 2 (b) shows the nonlinear reduced Q(r, u, θ)≠ 1,

deviating from the Gaussianity Q= 1. Q(r, u, θ) exhibits a
deeper U-shape along θ, and varies non-monotonically along r.
The variation along r is comparatively weaker than the
variation along θ. These features are consistent with what have
been observed (Marín 2011; McBride et al. 2011a, 2011b).
To compare with the observational data (Marín 2011),

Figure 3 plots the solution Q(r, u, θ) as a function of θ at
r= 10, 15, 20 h−1Mpc, respectively. It is seen that Q(r, u, θ)
has a U-shape along θ= [0, 3], agreeing with the data. Overall,
the equations of 3PCF gives a reasonable account of the data of
galaxies with redshifts 0.16� z� 0.36. For a comparison, in
Figure 3 we also plot the second order solution (dashed lines).
Note that we have renormalized the parameters of the third
order solution in this paper, the number of parameters also
differs from that of the second order. It is clear that the third

Figure 2. (a) The nonlinear ζ(r, u, θ) (with fixed u = 2) is positive, has a U-shape along θ, and decreases monotonously along r up to the range r � 30 h−1 Mpc of our
computation. This behavior differs from Figure 1 of the Gaussian solution. (b) The reduced Q(r, u, θ) ≠ 1 exhibits a deeper U-shape along θ, varies non-monotonously
along r, and its high values occur at large r where ξ(r) is small.

Figure 3. The solid line: Q(r, u, θ) from Equation (12). The dashed line: the
second order solution from Figure 6 of Wu & Zhang (2022). Three plots are for
r = 10h−1Mpc, 15h−1Mpc, 20h−1Mpc, respectively. The dots: the SDSS data
from Figure 6 and Figure 7 of Marín (2011), which are measured in the redshift
space. Our solutions are of the real space. There are difference between the real
and redshift spaces, which are neglected in this preliminary treatment here.

6

Research in Astronomy and Astrophysics, 22:125001 (7pp), 2022 December Wu & Zhang



order solution fits the data (χ2= 470.9) better than the second
order one (χ2= 777.8), especially at small scales, and the two
solutions are close at large scales.

4. Conclusions and Discussions

Based on the density field Equation (1), we have derived
Equation (3) of the 3-point correlation function G(3) of galaxies,
up to the third order density fluctuation. This work is a
continuation of the previous Gaussian approximation (Zhang
et al. 2019), and the second order work (Wu & Zhang 2022).

By neglecting the 5PCF, adopting the Fry–Peebles ansatz to
deal with the 4PCF, and the Groth–Peebles ansatz to deal with
the squeezed 3PCF, respectively, we have made Equation (3)
into the closed Equation (9). Aside the three parameters from
the ansatz, there are six nonlinear parameters that occur
inevitably in the perturbation treatment of a gravitating system.
We carry out renormalization of the Jeans wavenumber and the
mass. Although the terms (δψ)3 are included, nonlinear terms
such as G 3 2( )( ) do not appear in Equation (9) of G(3), and higher
order terms than (δψ)3 are needed for G 3 2( )( ) to appear.

We apply the equation to the system of galaxies, using the
boundary condition inferred from SDSS DR7 (Marín 2011) for
a consistent comparison. The solution ζ(r, u, θ) exhibits a
shallow U-shape along θ, and decreases monotonously along r.
The reduced Q(r, u, θ) deviates from 1 of the Gaussian case,
and exhibits a U-shape along θ. Along r, however, Q(r, u, θ)
varies non-monotonically, scattering around 1.

It is interesting that the third order solution in this paper is
quite close to the second order solution (Wu & Zhang 2022),
especially at large scales. This indicates that the density field
theory with increasing orders of perturbation provides a rather
stable description of the nonlinear galaxy system. Besides,
from the study on 3PCF and the previous work on 2PCF, it is
seen that the static equations of correlation functions present a
reasonable analytical account of the galaxy distribution at small
redshifts. The future work will be application to new
observational data, and extension to the case of expanding
Universe.
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