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Abstract

We present a simulation experiment of a pipeline based on machine learning algorithms for neutral hydrogen (H I)
intensity mapping (IM) surveys with different telescopes. The simulation is conducted on H I signals, foreground
emission, thermal noise from instruments, strong radio frequency interference (sRFI), and mild RFI (mRFI). We
apply the Mini-Batch K-Means algorithm to identify sRFI, and Adam algorithm to remove foregrounds and mRFI.
Results show that there exists a threshold of the sRFI amplitudes above which the performance of our pipeline
enhances greatly. In removing foregrounds and mRFI, the performance of our pipeline is shown to have little
dependence on the apertures of telescopes. In addition, the results show that there are thresholds of the signal
amplitudes from which the performance of our pipeline begins to change rapidly. We consider all these thresholds
as the edges of the signal amplitude ranges in which our pipeline can function well. Our work, for the first time,
explores the feasibility of applying machine learning algorithms in the pipeline of IM surveys, especially for large
surveys with the next-generation telescopes.
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1. Introduction

The Large Scale Structure (LSS) traced by galaxies is a
useful indicator for the information of matter distribution at
high redshift, potentially allowing us to pose observational
constraints on cosmological models. Although galaxies dim
rapidly with increasing distance in the optical band, the 21 cm
emission from neutral hydrogen (H I) is luminous enough to be
detectable with radio telescopes. Traditionally, the H I signal is
observed for each galaxy in the local universe for the study of
galaxy formation and evolution. However, this observation
mode is unsuitable for the intermediate redshift since the
integration time required at a fixed sensitivity increases with
the square of the luminous distance. To overcome this problem,
the intensity mapping (IM) survey mode has been proposed
(Pen et al. 2009; Masui et al. 2013; CHIME Collaboration et al.
2022). In this mode, the total flux of galaxies instead of one
galaxy in a certain direction is collected as a whole signal in
one telescope beam, which saves the integration time in the
survey.

With the advent of large radio telescopes, many attempts on
IM have also been made with real instruments. Pen et al. (2009)
reported a convincing cross-correlation signal between H I

Parkes All Sky Survey (HIPASS, Barnes et al. 2001) data and
optical data from the 6dF Galaxy Survey (6dFGS, Jones et al.
2004, 2009). Chang et al. (2010) for the first time reported the

detection of a cosmological signal at redshift z∼ 0.8 with IM
data from the Green Bank Telescope (GBT). Masui et al. (2013)
and Switzer et al. (2013) followed Chang et al. (2010) and
further calculated the correlation function at the corresponding
redshift. Anderson et al. (2018) then studied the effect of
environment on H I content by cross-correlating Parkes data with
the 2dFGRS strip across the South Galactic Pole. With a phased
array feed, Li et al. (2021) (hereafter Li21) detected a cross-
correlation signal between optical and H I density field at redshift
z∼ 0.75. Furthermore, CHIME Collaboration et al. (2022)
reported the detection of 21 cm emission from LSS between
redshift 0.78 and 1.43 with the Canadian Hydrogen Intensity
Mapping Experiment (CHIME).
However, there are still many challenges in the data processing

in IM experiments. The first one is the contamination from galactic
and extragalactic foregrounds which are predicted to be ∼4 orders
of magnitude larger than the IM temperature fluctuations. In
addition, thermal noise from observational instruments exits during
the observation and is also a few orders of magnitude greater than
the H I signal. Finally, radio frequency interference (RFI) prevalent
at low frequencies can easily contaminate the data by many orders
of magnitude. How to extract the weak H I signal of LSS from
these interferences is the key question to an IM survey.
In recent years, many studies have been made on the removal

of foregrounds and extraction of H I signal in IM experiments
(Wolz et al. 2017; Cunnington et al. 2021; Wang et al. 2021; Wolz
et al. 2022). The basic idea for extracting H I signal is to utilize the
different properties between H I signal and interference. Thermal
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noise is typically uncorrelated with integration time, thereby can be
suppressed by integrating over time and stacking the data within a
wide range of frequencies. The foreground emissions are mainly
made of diffuse synchrotron and free–free emission, which are
featureless along the frequency axis and theoretically can be
removed by fitting with smoothly varying functions. To deal with
IM data and similar data from the era of reionization experiments,
researchers have also developed more sophisticated techniques in
foreground removal (Wang et al. 2006; Liu & Tegmark 2011;
Chapman et al. 2012; Switzer et al. 2013; Hothi et al. 2021; Wang
et al. 2021). Generally, contamination by RFI is mitigated by
flagging and removal in spectral space considering the high
amplitudes of RFI.

The previous works on extracting the H I signal are mainly
based on traditional methods relying on manually adjusting
parameters in pipelines according to results, which has limited
adaptability. An automatic pipeline based on machine learning
may help improve the flexibility and independence of models.
For example, some machine learning algorithms have been
applied to solve astronomical problems, including searching for
fast radio bursts (Wagstaff et al. 2016; Yang et al. 2021; Chen
et al. 2022) and pulsars (Eatough et al. 2010; Morello et al.
2014; Zhu et al. 2014; Wang et al. 2019; Zeng et al. 2020), and
classifications of images (Aniyan & Thorat 2017; Lukic et al.
2018; Bastien & Somanah 2019). However, as far as we know,
there has been no research on applying machine learning
algorithms in the pipeline of an IM survey. The dynamical
range in which the pipeline based on machine learning can
work well with different amplitudes of interference has not
been investigated, either. In this paper, we introduce an
automatic pipeline based on machine learning algorithms for
future large IM surveys. We test the performance of our
pipeline on simulations of different amplitudes of interference
signals, and figure out the dynamical ranges in which the
pipeline functions well.

The paper is structured as follows: Section 2 details our
simulations of IM data. In Section 3 we present our pipeline
based on machine learning algorithms and show the results. In
Section 4 we made a summary and discussion. Throughout the
paper, the cosmological parameters are given by Komatsu et al.
(2009), with Ωmh

2= 0.1358, Ωb= 0.0456, ΩΛ= 0.726, and
h= 0.705.

2. Simulations

To understand how our pipeline works with interference, we
establish simulations that contain the signals of H I density
field, radio frequency interference, foreground signals and
thermal noise from observational instruments. Three radio
telescopes with different apertures are considered in our
analysis: Five-hundred-meter Aperture Spherical radio Tele-
scope (FAST), Parkes, and the mid-frequency instrument of
Square Kilometre Array (SKA-Mid).

2.1. Neutral Hydrogen Signal

The neutral hydrogen (H I) signal is obtained from the
simulation of 3D density fields in Li21 which details the
process of generating the simulation. Here, we briefly explain
the process: First, the theoretical power spectrum is computed
utilizing the CAMB package2 (Lewis et al. 2000); then the data
cube in Fourier space is generated by setting the amplitudes of
moduli to corresponding power spectrum values and phases to
random values; finally, the data cube in the real space is
computed through the inverse Fourier transformation of the
data cube generated in the second step. Figure 1 displays two
planes as examples of the simulation of H I density field in the
direction of line-of-sight and perpendicular to line-of-sight,
respectively.
The radio beam of a telescope in our simulations is modeled

with a 2D Gaussian function which width is computed with

( )q l» D1.22 , 1

where θ is the full width at half maximum of the Gaussian
function, λ is the electromagnetic wavelength at the observa-
tional frequency, and D is the aperture of the telescope. Since
the radio beam of a telescope has a smoothing effect on the
observational data, we convolve the H I density field with the
Gaussian beam as the original observed H I fluctuation.
In the simulations of IM, we assume that the frequency is at

810 MHz which is the central frequency of the observation

Figure 1. Two planes as examples of the simulation of H I density field in the
direction of line-of-sight and perpendicular to line-of-sight, respectively.

2 https://camb.info/readme.html
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in Li21. In addition, we set the same resolution and bandwidth
of Li21 in our simulations to be in line with Li21. Table 1
summarizes the key parameters of our simulations, and Table 2
summarizes the key parameters of telescopes considered in this
paper.

2.2. Interference

In actual observations, interference signals exist in raw data.
The patterns of interference differ with time and sites where the
observations are conducted, which makes it hard to develop a
universal model for the interference. Generally, the main
interference can be categorized into three types: thermal noise
from instruments, RFI, and foreground emission. Therefore, in
our simulations we model these three types of interference and
add them to the simulated data.

The thermal noise is mainly related to the temperature of
observational instruments during the period when the observa-
tion is conducted. The timescale of the variations of thermal
noise typically is much larger than the time span of each scan
of an IM survey. Thus, the thermal noise in our simulations is
modeled as random Gaussian noise G∼N(0, 1), where G is the
noise matrix with the same dimensions of H I data along both
frequency and time axes, and N(0, 1) is the standard Gaussian
distribution. Before being added to the simulated data, G is
scaled by a scale factor (σt/σi) which is analyzed as a varying
parameter in the following sections.

The foreground signals in our simulations are made up of
thermal and non-thermal radiations. The thermal radiation is
the bremsstrahlung (free–free emission) produced by a sudden
slowing down or deflection of electrons. In the frequency range
of our simulations, bremsstrahlung has a continuous spectrum
with the intensity ( )n n~ a-I 1, where α1 is the spectral index
of the bremsstrahlung. The non-thermal radiation is the
synchrotron radiation which is generally produced in the
interaction between the magnetic field and electrons. In the
frequency range of our simulations, the synchrotron radiation
also has a continuous spectrum, with the intensity ( )n n~ a-I 2,
where α2 is the spectral index of the synchrotron radiation.
Because the frequency difference in our simulated data is very
small compared to the central frequency, the summation of
bremsstrahlung and synchrotron radiation in each pointing

direction can be approximately expressed as a one-order
polynomial (see Appendix). Therefore, in each cycle of the
simulated data, we model the foreground signal (F) with

( ) ( )n nD = D +F A B 2

where both A and B are random numbers, A∼U(−0.5, 0.5),
B∼U(−0.5, 0.5), and Δν is the spectral distance to 800 MHz
in the unit of the spectral resolution multiplied by the total
number of spectral channels. Before being added to the
simulated data, the foreground signal is scaled by a scale factor
(σHI/σi) which is analyzed as a varying factor in the following
analyses.
From the IM data used in Li21, we find that the amplitudes

of RFI differ broadly in different spectral channels. In some
channels, the amplitudes of RFI can be 10 times higher than the
other data. While in some other channels, some mild RFI
appears with amplitudes comparable to the foregrounds in the
data. We denote these two types of RFI as strong RFI (sRFI)
and mild RFI (mRFI), respectively. Typically, the sRFI only
appears in a short range of data. So in our simulations, sRFI is
modeled to appear randomly during the 750th to 900th
channels and has random amplitude that is investigated below.
Totally, two thirds of channels in that range of channels contain
sRFI in the simulation. In spectral channels without sRFI, we
add the data with mRFI which is also modeled with one-order
polynomial functions with random slopes and intercepts. In
each channel that is contaminated by sRFI, the amplitude of
sRFI is computed as

( )s=M r r , 31 2

where M is the mean value of the sRFI in that channel, r1 is
a scale factor that we investigate below, r2 is a scale factor
varying randomly from 0.7 to 1.3 for the uncertainties of sRFI,
and σ is the standard deviation of the data without sRFI.
Finally, the simulated data are the summation of H I signal,

thermal noise, foregrounds, and RFI. Figure 2 shows an
example of the signals in our simulation. The simulation is used
to investigate the performance of our pipeline based on
machine learning algorithms.

3. Data Processing

3.1. sRFI Identification

Considering the high amplitudes of sRFI, data contaminated
by sRFI need to be identified and separated in the first step of

Table 1
Key Parameters in Simulations

Parameter Value

Central frequency 810 MHz
Band width 20 MHz
Spectral resolution 18.5 kHz
Number of channels 1080
Number of cycles 504
Cycle time 4.5 s

Table 2
Key Parameters of Telescopes Used in Our Work

Parameters FAST Parkes SKA-Mid

Effective aperture (m) 300 64 15
beamwidth (arcmin) 4.8 22.3 95.1
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data processing. We apply the Mini-Batch K-Means algorithm
(MBKM) for sRFI identification given the large amount of data
in our simulations and the uncertainties of the RFI amplitudes.
To better understand our pipeline, we briefly describe how the
MBKM is implemented. The MBKM is an unsupervised
clustering algorithm suited well for classification in large data
sets. In our case, the raw data from simulations are classified
into two classes: data contaminated by sRFI and the other data.
First, the pipeline initializes two random centers as the mean
values of the two classes to be classified. Then in each epoch,
the pipeline randomly extracts a part of data from the
simulation and classifies data into contaminated and the other
data based on the difference between the centers and the data
values. Then new centers are updated by averaging on the
classified data. This process is repeated until the classification
result converges.

To evaluate the performance of our pipeline in the process of
sRFI identification, we compute the accuracy (A) and precision
(P) with

( )=A N N , 4c t

and

( )=P N N , 5cR tR

where Nc is the number of data that are correctly classified, Nt

is the total number of data, NcR is the number of contaminated
data that are correctly classified, and NtR is the total number of
contaminated data classified by MBKM. We plot A and P as
functions of the mean amplitudes of sRFI (r1) in Figure 3 with
different telescopes. As shown in Figure 3, both A and P for
each telescope increase rapidly when r1 increases from 3 to 5,
indicating the threshold of r1∼ 4 above which our pipeline is

able to identify the sRFI. When r1 is larger than 5, all the sRFI
can be identified correctly in our pipeline. In real observations,
the threshold of 5 can be reached easily given that the
amplitude of sRFI is typically 10 times higher than the other
data. Therefore, in the following analysis, we assume that all
sRFI has been correctly identified and those data contaminated
by sRFI have been discarded.

3.2. Removal of Foregrounds and mRFI

After identifying and discarding data contaminated by sRFI,
the foregrounds and mRFI are removed together in this step
since their amplitudes are at comparable levels. The algorithm
that we applied to the simulation in this step is the Adaptive
Momentum Estimation (Adam), which is a prevalent gradient
descent algorithm in the machine learning field. We briefly
explain how it works here. In the Adam algorithm, the targeted
loss is computed as

∣∣ ∣∣ ( ) ( )å= - = -L M S M S , 6
i

i i2
2

where L is the loss between S and M, S is the simulated data in
our mock observation, and M is the fitting matrix of
foregrounds and mRFI. Our goal is to make L as small as
possible. Therefore, in each cycle and each frequency channel
of M, we fit polynomial functions to foregrounds and mRFI
in S.
As a result, L is related to the parameters W used in

calculating M. By computing the gradient of L over W (ΔW),
we can adjust W and get a smaller L and thereby a better M. To
make the iterative process converge more quickly, the Adam
algorithm uses the moving average method to adjust the step

Figure 2. An example of the signal data in our simulation. Top-left panel: the simulated thermal noise; top-right panel: the simulated foregrounds and radio frequency
interference (RFI); bottom-left panel: the observed pure H I signal from the simulation; bottom-right panel: the overall signals from the summation of thermal noise,
foregrounds, RFI, and the observed pure H I signal.
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for which the process of gradient descent takes to move
forward, which can be expressed as follows:

( ) ( )( ) ( ) ( )b b= + - D-V V W1 , 7t t t i1 1 1

( ) ( )( ) ( ) ( )b b= + - D-S S W1 , 8t t t i2 1 2
2

and


( ) ( )( ) ( )

( )

h
= -

+
-W W

S
V t , 9t i t i

t
1

where typically β1= 0.9 and β2= 0.999 are hyper-parameters,
η is the moving length for each step, and ò= 10−7 is a tiny

value to keep Adam stable. If we keep performing the process
described above, L can finally reach a small enough value,
which indicates that the foregrounds and mRFI have been well
fitted. So the H I signal can be extracted by subtracting the
fitting signals from S. Figure 4 shows an example of the
process of extracting the H I density field from the thermal
noise, foregrounds and RFI.

3.2.1. Dependence on the Orders of Polynomials in Fitting

Theoretically, the foreground signals mainly consist of free–
free emission, which power spectrum has a power-law shape

Figure 3. The accuracy and precision values in our pipeline as functions of mean amplitudes of sRFI for different telescopes. Blue and orange shades indicate the
range from the 25th to the 75th percentiles over 50 simulations for P and A, respectively.

Figure 4. An example of the result of extracting the observed H I density field from the noise, foreground signals, and RFI. Top-left panel: the observed pure H I signal
from the simulation; top-right panel: the overall signal data generated from the summation of thermal noise, foregrounds, RFI, and the observed pure H I signal;
bottom-left panel: the fitting foregrounds and mRFI after applying the MBKM and Adam algorithms; bottom-right panel: the H I signal extracted from the overall
signal. White channels are masked due to sRFI contamination.
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along the frequency axis. Thus, the foreground signals can be
fitted well with a one-order polynomial. To investigate whether
higher orders of polynomial functions can help improve the
final result, we test different orders of polynomial functions
used in the fitting process of our pipeline. During the test, σt/σi
is set to 1 and σHI/σi in our simulations is set to 0.1, which is at
the center of the parameter range that we consider in the
analysis below. We compare the results of correlation distortion
with different orders of polynomial functions used in fitting.
The results are shown in Figure 5. We can see little relationship
between the correlation distortion and the orders of polynomial
functions. Considering that higher orders of polynomial
functions result in more fitting parameters and thereby require
more computational time, we use one-order polynomials as the
fitting function in the following analysis.

3.2.2. Dependence on the Amplitudes of Interference

In order to assess the performance of our pipeline and figure
out the dynamical range in which our pipeline works in data
containing different amplitudes of interference, we compute the
correlation distortion (T) with

( )=T C A , 10c c

where Cc is the cross-correlation value between the extracted
H I density fields and original H I density fields, and Ac is the
auto-correlation value of the original H I density fields. The
investigation is conducted with changes of σt/σi and σHI/σi,
where σt is the standard deviation of thermal noise, σi is the
standard deviation of the summation of foregrounds and mRFI,
and σHI is the standard deviation of H I density fields. Figure 6
shows the results. From Figure 6 we can see a strong
connection between the correlation distortion and the apertures

of telescopes. Specifically, a telescope with a larger aperture
has a higher value of T, demonstrating the better ability of
telescopes with greater apertures to resolve the observed fields.
Interestingly, in each panel there is a threshold of σt/σi above
which the errors of T begin to increase rapidly with increasing
σt/σi for all telescopes. We treat this threshold of σt/σi as the
upper limit below which our pipeline can function well. In
addition, the threshold of σt/σi shows little relationship with
the apertures of telescopes, but is dependent on σHI/σi,
decreasing from 10 to 0.2 with σHI/σi decreasing from 1
to 0.01.
In Figure 7, we fix the value of σt/σi and vary σHI/σi to

investigate the dependence of the amplitude of H I signal. The
results in Figure 7 show that in each panel there is also a
threshold of σHI/σi below which the errors of correlation
distortion begin to increase remarkably. We consider this
threshold of σHI/σi as the lower limit above which our pipeline
can work well. Furthermore, this threshold of σHI/σi is
dependent on σt/σi, rising from 0.1 to 1 with σt/σi increasing
from 0.1 to 10. The threshold of σHI/σi also shows little
dependence on the aperture of the telescope, which confirms
the result in Figure 6.

4. Summary and Conclusion

In this paper, we have conducted a simulation experiment of
the pipeline for IM surveys with different telescopes, which is
the first time that the machine learning algorithms are applied
in the IM pipeline. The simulations that we developed are
conducted on H I signal, foregrounds, thermal noise from
instruments, and RFI. During the process of identifying sRFI,
we applied the MKBM algorithm to identify the data
contaminated by sRFI. The performance of our pipeline in
this process has also been investigated by computing the
accuracy and precision values. The result shows that there
exists a threshold of r1 at which the accuracy and precision
values change dramatically. When r1 is above 5, our pipeline is
able to correctly identify all the data contaminated by sRFI.
In the removal of foregrounds and mRFI, we have applied

the Adam algorithm to the data with different amplitudes of
interference. We have compared the results from fitting with
different orders of polynomial functions, but found little
dependence on the orders of polynomials. To investigate the
performance of our pipeline and figure out the dynamical range
in which our pipeline can work, we calculated the correlation
distortion and changed the value of σt/σi and σHI/σi
independently. The results show that the performance of our
pipeline has little dependence on the apertures of telescopes. In
addition, we found thresholds of σt/σi and σHI/σi at which the
performance of our pipeline begins to change rapidly, which
we consider as the indicators of the ranges in which our
pipeline can function well. As expected, the thresholds change

Figure 5. The median values of correlation distortion with different orders of
the polynomials used in the fitting process over 50 simulations with different
telescopes. Shades with corresponding colors indicate the range between 25th
and the 75th percentiles over the 30 simulations.
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with σt/σi and σt/σi, showing dependence on the amplitudes of
signals in an IM survey.

On the other hand, we would like to remind the reader that
our work is based on the simulated observation within a
relatively short frequency range (800–820 MHz) so that we can
simplify the foreground model. If the data frequency range is
wide enough in another observation, the error caused by the
approximation made in the Appendix may not be negligible
anymore. Then whether higher orders of polynomials can result
in better results in the process of foreground removal needs to
be investigated again.

Overall, our work has demonstrated the feasibility of
processing the raw data from an IM survey based on machine
learning algorithms. The results in the paper are encouraging
and may have shed light on the potential of applying more
powerful machine learning algorithms in future H I IM surveys
with the next-generation telescopes.
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Appendix
Foregrounds with Different Spectral Indices

In the simulation, the foreground signals consist of
synchrotron and bremsstrahlung (free–free emission). The
radiation intensity of synchrotron or bremsstrahlung in the
frequency range that we consider in this paper can be expressed
as

( ) ( )n n= +a-I A B A1

where both A and B are coefficients, ν is the frequency, and α is
the spectral index. In our case, the frequency difference
Δν= 800MHz. Equation (A1) thereby can be expressed with
Taylor polynomial as

( ) ( ) ( )( ) ( )
( ) ( ) ( )

( ) ( )

( )
n n n n n n n

n n n n n n
n n n

= + ¢ - + -

= + - + -
= + + -

a- +

I I I o

I A o

C C o A2

0 0 0 0

0 0
1

0 0

1 2 0

where ν0= 800MHz, both C1 and C2 are constants indepen-
dent of ν, and o(ν− ν0) is the high order small quantity.

In an intensity mapping survey, many radiation sources may
be included in one pointing direction. Therefore, the total flux
that a telescope receives in a pointing direction can be
expressed as

( )

( )
( )

å å ån n n

n n n
n

= + + -

= + + -
» +

f C D o

C D o
C D A3

i

N

i
i

N

i
i

N

0

0

where N is the total number of sources emitting synchrotron or
bremsstrahlung in the pointing direction, both C and D are

constants independent of ν. As shown in Equation (A3), the
summation of synchrotron and bremsstrahlung radiation in
each pointing direction of a telescope can be approximately
modeled as a one-order polynomial.
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