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Abstract

Stellar images will deteriorate dramatically when the sensitive elements of wide-field survey telescopes are
misaligned during an observation, and active alignment is the key technology to maintain the high resolution of
wide-field sky survey telescopes. Instead of traditional active alignment based on field-dependent wave front
errors, this work proposes a machine learning alignment metrology based on stellar images of the scientific camera,
which is more convenient and higher speed. We first theoretically confirm that the pattern of the point-spread
function over the field is closely related to the misalignment status, and then the relationships are learned by two-
step neural networks. After two-step active alignment, the position errors of misalignment parameters are less than
5 μm for decenter and less than 5″ for tip-tilt in more than 90% of the cases. The precise alignment results indicate
that this metrology provides a low-cost and high-speed solution to maintain the image quality of wide-field sky
survey telescopes during observation, thus implying important significance and broad application prospects.
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1. Introduction

In modern astronomy, such as time domain astronomy, and
studies of black holes and dark energy (Copeland et al. 2006;
Kasliwal et al. 2019; Yu 2020), high resolution is presumed for
a sky survey telescope to accelerate discoveries in astronomy
and astrophysics. As the field and aperture of sky survey
telescopes increase, a primary mirror with a fast focal ratio is
preferred to reduce the obscuration of the secondary mirror and
decrease the length of the barrel, such as the J-PAS having a
primary focal ratio of 1.5 (Benitez et al. 2014), the primary
focal ratio of LSST is 1.18 (Sebag et al. 2016) and Mephisto is
1.3 (Li et al. 2020; Yuan et al. 2020). However, along with the
fast focal ratio of the primary mirror, the secondary mirror will
be more sensitive to misalignment and structural deformation
caused by gravity and the temperature should be smaller.

The field-dependent aberration behaviors of a misaligned
telescope with two or three mirrors were demonstrated by many
works. Baranne andWetherell et al. derived the formula of coma
aberration for a non-coaxial dual-mirror system in 1972
(Crawford 1966; Wetherell & Rimmer 1972). For the more
common situation, Dingqiang Su analyzed the coma aberration
of a non-coaxial dual-mirror system when the secondary mirror
with decent and tip-tilt and the two axials of the secondary
mirror and primary mirror do not lie in the same plane, and
proved that the coma aberrations can be operated on like vectors
(Su 1989). According to Nodal Aberration Theory, which was
first reported byShack andThompson (Shack&Thompson 1980;

Thompson et al. 2008), orthogonal Zernike polynomials were
widely used for the numerical expression of field-dependent
aberrations. Algorithms such as reverse-optimization, damped
least-squares (Lee et al. 2007; Bloemhof et al. 2012; Li et al.
2015a, 2015b) and principal component analysis can deliver
suitable corrections for resolving misalignments with relatively
high accuracy.
Unfortunately, acquisitions of field aberrations are difficult

during telescope observations and complex wave front sensing
systems have to be equipped for measuring the field
aberrations. Four edge field curvature wave front sensors at
the focal plane are most commonly employed for wide-field
imagers with high image quality, such as the Javalambre
Survey Telescope (JST/T250) and Large Synoptic Survey
Telescope (LSST) (Manuel et al. 2010; Chueca et al. 2012;
Claver et al. 2012; Xin et al. 2015). However, it is easy for a
beam splitting system, which is required for the traditional
curvature wave front sensor, to measure the in-focus and out-
of-focus images, to produce vignetting due to the fast focal
ratio. The split curvature wave front sensors need to
compensate for the inherent aberrations of the two sources
with different fields of view (FOVs) and require expensive
CCD stitching technology, which significantly increases the
cost of the camera.
Instead of detecting the field wave front errors, the pattern of

the point-spread function (PSF) ellipticity distribution also
reveals the systemʼs misaligned status (Bo 2021, Zhang 2016)
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and measuring the PSF of the scientific images seems to be
more convenient (Luppino & Kaiser 1997). In this work,
machine learning alignment metrology is proposed for
calculating the misalignment parameters based on the stellar
images of wide-field telescopes, and we employ a relatively
complex Ritchey–Chrétien (R-C) configuration (Mephisto) to

model the alignment metrology. The optical system is
perturbed with various sets of misalignments, delivering a
misaligned field-dependent PSF, and the explicit mathematical
model between misalignments and the pattern of field-
dependent PSF is complex and hard to establish. Machine
learning is a method of data analysis that automates analytical

Figure 1. PSF representation in the image plane for the situation with or without misalignment. The PSF image on the left shows a standard airy disk formed by an
ideal optical system; the right image is a PSF of an optical system with coma aberration.

Figure 2. PSF ellipticity e1 and e2 over the diagonal FOV of the nominal design. The range of the diagonal FOV is from (−0°. 7, −0°. 7) to (0°. 7, 0°. 7). The distribution
patterns of e1 and e2 are symmetrical.
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model building (Chen et al. 2019; Tang et al. 2020), and the
nonlinear nature of neural networks along with their inherent
flexibility and adaptability makes them good candidates for
stellar image-based alignment that are not easily solved with
conventional algorithms. Compared with the traditional active
alignment metrology based on field-dependent aberrations,
there are some advantages. First, the active alignment system
can be simplified because the wave front sensor system has
been removed. Second, because of the one-to-one correspon-
dence between the stellar images of the CCD and the output
misalignment parameters, the calculation time spent on the
wave front reconstruction and misalignment parameter calcul-
ation that form field dependent wave front error can be avoided,
which improves the response speed of the active alignment.

2. Method

2.1. The Pattern Variations of the PSF Resulting from
Misalignment

Generally, a stellar image is a convolution of an ideal point
source and the PSF. The wave front expression for the

misaligned optical system is given by Equation (1) as:
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where Wklm is the aberration coefficient, H represents the
normalized image field position, ρ is the normalized pupil
position and σj denotes the aberration field center shifting vector
of j elements, additionally, k= 2p+m, l= 2n+m. If i
represents the total misaligned degrees of freedom of a
misaligned system, for any field of the optical system, the wave
front aberration at the pupil is obtained from Equation (2) as:

W W , , , , 2i1 2( ) ( )d d d r= ¼
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function P , , , ,i1 2( )d d d r¼ is therefore given by Equation (3)
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Figure 3. PSF ellipticity e1 and e2 with decentering (X, Y) of the secondary mirror. The range of the diagonal FOV is from (−0°. 7, −0°. 7) to (0°. 7, 0°. 7). (A), (B) The
distribution patterns of e1 and e2 when the secondary mirror of the optical system has x-decent misalignment. (C), (D) The e1 and e2 patterns of the secondary mirror
with y-decent. It is confirmed that the symmetric features no longer exist due to the decent misalignment of the secondary mirror.
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The amplitude spread function Hh( ) is a Fourier transform
of the generalized pupil function shown in Equation (4)

Hh PFFT , , , , 4i1 2( ) ( ( )) ( )d d d r= ¼

H

Hh

PSF , , , ,

, , , , . 5
i

i

1 2

1 2
2

( )
∣ ( )∣ ( )
d d d
d d d

¼
= ¼

The PSF distribution in the image plane, which is shown in
Figure 1, is related to the misalignments , , , i1 2( )d d d¼ . To

numerically investigate the PSF distribution, a measurable
parameter termed ellipticity is adopted. This term was
previously used in weak lensing research for describing the

Figure 4. PSF ellipticity e1 and e2 with tilt (X, Y) of the secondary mirror. The range of the diagonal FOV is from (−0°. 7, −0°. 7) to (0°. 7, 0°. 7). (A) and (B) display the
distribution patterns of e1 and e2 when the secondary mirror of the optical system has x-tilt misalignment; (C) and (D) are the e1 and e2 patterns of the secondary
mirror with y-tilt. The symmetric features have also disappeared.

Table 1
Specifications for Mephisto Including Optics, Aperture, Focal Ratio, the FOV,

Pixel Scale and Image Quality

ITEM Specifications

Optics R-C with field corrector
Aperture 1.6 m (diameter)
Focal ratio 4.5
FOV 2° (diameter)
Pixel scale 0.286″/10 μm
Image quality 80%EE � 0.6″

Figure 5. Layout of the misalignment perturbations of Mephisto. The 5 rigid
body DOFs of M2 contain x-decent, y-decent, x-tilt, y-tilt and piston; the 3 rigid
body DOFs of the camera are x-tilt, y-tilt and piston.
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shape of galaxies (Luppino & Kaiser 1997)
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In Equation (6), α= 1 or 2, H1=Hx−Hxcenter, H2=Hy−
Hycenter, Q1=Q11−Q22, T=Q11+Q22. Hence, with PSF
acquisition at an FOV H H,x y0 0( ), the numerical ellipticity is
expressed as:
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In addition to ellipticity, full width at half maximum R and
azimuth θ are also parameters that can numerically describe the
PSF

⎧

⎨

⎪
⎪

⎩

⎪
⎪

e
Q Q iQ

Q Q

R Q Q

Q

Q Q

2

tan
2

.

8

ii jj ij

ii jj

ii jj

ij

ii jj

1

( )

q

=
- +

+

= +

=
-

-

Figure 2 demonstrates that the distribution patterns of PSF
ellipticity e1 and e2 over the diagonal FOV are symmetrical.
To illustrate the field-dependent PSF variations resulting from
misalignment, we deliberately perturbed the secondary mirror
of Mephisto and recorded e1 and e2 at diagonal FOVs.

Figures 3(A) and (B) demonstrate that e1 and e2 vary from
an FOV of (–0°.7, –0°.7) to an FOV of (0°.7, 0°.7) with
secondary mirror decenter values of −0.04, −0.02, 0.02 and
0.04 mm at the sagittal surface; Figures 3(C) and (D) affirm
that e1 and e2 vary from an FOV of (–0°.7, –0°.7) to an
FOV of (0°.7, 0°.7) with secondary mirror decenter values of
–0.04, –0.02, 0.02 and 0.04 mm at the meridian surface.
Figures 4(A)–(D) display PSF ellipticity e1 and e2 when the
secondary mirror of the optical system has x-tilt and y-tilt
misalignments.
The perturbation parameter curves reveal that: (1) misalign-

ment destroys the symmetry of the ellipticity distribution; (2)
over the FOV, the ellipticity variations are continuous; (3) the
secondary decenter in the sagittal surface may couple in tilt in
the meridian surface; (4) the ellipticity distributions vary
nonlinearly with the misalignments. Based on the observations
above, calculating the misalignments by mapping the PSF
distribution of a scientific image is feasible.

2.2. Machine Learning for Active Alignment

2.2.1. Generation of the Training Dataset

Machine learning is essentially a data-driven method that
requires a large amount of field-dependent PSF and corresp-
onding misalignment parameters to feed the neural networks.
Because different telescopes have different optical configura-
tions, a deep learning model trained with one particular
telescope cannot be adjusted and transferred to another
telescope. To obtain the neural network model for one specific
telescope, a customized training data set of Mephisto is

Figure 6. The network architecture of the coarse neural network and fine neural network. The architecture of the two networks is identical. The number of nodes for
the input layer is 30; each hidden layer contains 300 nodes; the output layer contains 8 nodes.
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necessary. Mephisto was developed for Yunnan University. It
combines a large aperture with a wide FOV for rapid survey
while ensuring an optical imaging quality suitable for precise
photometry. The innovative optical design guarantees an
ambitious project enabling the observations of three colors
simultaneously, with wavelengths ranging from 320 nm to
1000 nm. The specifications of Mephisto are presented in
Table 1, while the optical design of Mephisto and the
misalignment perturbations of Mephisto are demonstrated in
Figure 5.

In Mephisto, there are 8 degrees of freedom (DOFs) for
perturbations, which include 5 rigid body DOFs of M2 and 3 rigid
body DOFs of the camera. The hexapod microrobots are applied
on the M2 and the camera to compensate for rigid body
misalignments. The acquisition of training data is automatically
executed by Dynamic Data Exchange (DDE) between MATLAB

and ZEMAX. First, 8 DOFs for perturbations with different
sensitivities are generated randomly through MATLAB. Second,
these misaligned parameters are set into ZEMAX by DDE
programming. Third, the focal plane is partitioned into m•m equal
tiles, PSF in the center of each tile is generated by ray tracing in
ZEMAX and imported into MATLAB, and this PSF is described
in terms of measurable parameters. Assuming that the misalign-
ment state of Mephisto is sI, 3•m

2 measurable parameters of the
PSF can be expressed as:

e e e e, , , , , 9s f s f s f s fi i i m i m1 2 2( ) ( ) 

, , , , , 10s f s f s f s fi i i m i m1 2 2( ) ( )q q q q 

r r r r, , , , , . 11s f s f s f s fi i i m i m1 2 2( ) ( ) 

Figure 7. Loss function curve of the neural network. The loss function converged after 400 epochs of training.
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Because the stellar images are distributed randomly on
the CCD, the random positions of the stellar images will
significantly increase the learning complexity and scale of
deep learning. In a coaxial optical system, the pattern of
the field-dependent PSF is generally distributed axially

symmetrically, which means that the pattern is distributed
symmetrically around the center point, and the symmetrical
pattern will be broken when the co-axial optical system is
misaligned. This phenomenon is very similar to field-
dependent aberrations. Analogous to the vector aberration

Figure 8. PSF, parameters of PSF and Zernike coefficients before correction. The right column is the PSF images of 25 FOVs; the middle column shows the calculated
three parameters of the 25 PSFs, and the three parameters are ellipticity, radius and theta; the left column is the fitted Zernike coefficients of the three parameters in the
middle column. It is noticeable that all parameters have no units due to the normalization.

Figure 9. PSF, parameters of PSF and Zernike coefficients after correction. It is shown that the performance of the system has improved greatly after the stellar image-
based alignment.
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theory, the 3•m2 measurable parameters are also fitted by a
low-order Zernike polynomial to 3× parameters in this work.

2.2.2. Network Architecture

To improve the training efficiency, two-step calibration by
coarse and fine neural networks is used in this work. The
telescope is calibrated first by the coarse neural network, and
then the hexapod microrobots compensate for the rigid body
motions according to the parameters outputted by the fine
neural network. The coarse network has an identical archi-
tecture as the fine network, but with different training ranges.
The network architecture is depicted in Figure 6. Each hidden
layer contains 300 nodes, the input layer has 30 input nodes for
low-order Zernike polynomial coefficients, and the output layer
contains 8 output nodes for the misalignment parameters.

Since the three measurable parameters of the PSF are in
different ranges and the sensitivities of each misalignment
parameter are different, normalization is necessary to ensure
that all input vectors and the output misalignment parameters
are within the same scale. It is noticeable that the original scale
of the input training data is saved, thus the normalization will
not affect the relationship between the pattern of the PSF over
the field and the misalignment status. The normalization is
expressed as:

X
X X

X
12scaled

mean

std
( )=

-

where Xscaled is the normalized data set, X is the original data
set, Xmean is the mean value of the original data set and Xstd is
the standard deviation of the original data set.

Figure 10. rms of the spot diagram before correction. The five subfigures describe the distribution of the PSFʼs rms of 1000 testing samples at five FOVs. These five
FOVs contain four corner FOVs of (1°, 0°), (0°, 1°), (−1°, 0°), (0°, −1°), and one center FOV of (0°, 0°). The rms of the spot diagram is distributed randomly in the
range of 50–200 μm.
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Neural networks are trained using stochastic gradient descent
of the loss function. Two kinds of loss functions, MAE loss
function and Log-cosh loss function, are utilized in this work.
The stochastic gradient descent of the loss function can be
expressed as:
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where Neti
In is the label of the misalignment parameters, and

Neti
Out is the output data of the training data set. Because

accuracy rate is easier than loss function to interpret and
monitor during the training phase, we define the accuracy rate
as the evaluation of the final model accuracy:

m

n
Acc 100% 15( )= ´

where m is the number of the predicted value, which satisfies
the requirements of the coarse neural network and fine neural
network. n is the sample size of the test data set.

3. Result

3.1. Configuration of the Simulation

In our simulations, the adopted neural network was trained
on a laptop with an Intel i7 9750h processor, 16 GB RAM and

Figure 11. rms of the spot diagram after correction. The five subfigures describe the distribution of the PSFʼs rms of 1000 testing samples at five FOVs. These five
FOVs contain four corner FOVs of (1°, 0°), (0°, 1°), (−1°, 0°), (0°, −1°), and one center FOV of (0°, 0°). After two-step active alignment, the rms is mainly
below 18 μm.
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an Nvidia GTX 1660ti laptop graphics card with 6 GB of
VRAM. TensorFlow, a widely used Python deep learning
library, was utilized in neural network training. We randomly
split the 10,000 stellar images and the corresponding
misalignment parameters acquired from the DDE programming
to 70%, 20% and 10% as training, validation and testing data,
respectively. Note that the measurable parameters are fitted by
the low-order Zernike polynomials to simplify the training
model. The model can be trained successfully with a laptop and
the prediction of the misalignment parameters of the two-step
neural networks is almost real-time. The parameters (learning
rate, loss function, active function) are updated in the networks
for 400 epochs by using Optuna, which is an automatic
hyperparameter optimization software framework, and it
features an imperative, define-by-run style user API (Akiba
et al. 2019). By using dropout to prevent the neural networks
from overfitting, loss function can converge after training 400
epochs as displayed in Figure 7.

3.2. Simulation Results

In the simulation of the training data set, the range of the
position is (–1 mm, 1 mm) and the range of the tilt-tip angle is
(–5′, 5′). The stellar images are generated by ray tracing with
random misalignment parameters in the range, which are
shown in the right column of Figure 8. The three measurable
parameters of the PSF are displayed in the middle column of
Figure 8, and then fitted to 10 low-order Zernike polynomials
as depicted in the left of Figure 8. The fitted low-order Zernike
polynomials as the input and the corresponding label are the
misalignment parameters. During training, the loss function

converged quickly, as shown in Figure 7. After two-step active
alignment by using a coarse neural network and fine neural
network, the telescope can be calibrated precisely. The stellar
images of the calibrated telescope are featured in Figure 9. The
spot diagram is very small except for the four PSFs at the corners,
which are out of the working field. This phenomenon is more
obvious in Figure 10; for the 1000 test data set, the root mean
square (rms) of the spot diagram of 1000 testing data sets at five
FOVs is distributed randomly in the range of 50–200 μm. After
two-step active alignment, the rms of the test samples in Figure 11
is mainly below 18 μm. The error of the misalignment parameter
distribution is displayed in Figure 12. The first five pictures are the
misalignment parameters of the second mirror, and the last three
pictures are the misalignment parameters for the focal plane. The
errors are distributed like a Gaussian function, and the position
errors of misalignment parameters are less than 5 μm for decenter
and less than 5″ for tip-tilt in more than 90% of the cases. The
results confirm that the metrology proposed in this work is very
accurate to actively align the telescope.

4. Conclusion

A novel two-step active alignment metrology based on
coarse and fine neural networks is proposed in this work. The
model calculates the misalignments based on stellar images of
wide-field telescopes, and the two-step neural network can
output the misalignment parameters of the optical system
directly once it is well trained. Compared to the conventional
field-dependent aberration approaches, this method is simpler
in the system and higher in the calculating speed. Simulations
are implemented to determine that the two-step neural network

Figure 12. The error of the misalignment parameter distribution. The eight subfigures describe the error distributions of eight misalignment DOFs after two-step active
alignment. The error distribution of each DOF is nearly a normal distribution after alignment, with over 90% position errors below 5 μm and over 90% angle positions
below 5″. Furthermore, we added the units on the caption of each sub-image.
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can be trained to calculate the misalignment parameters
efficiently and accurately. Currently, the two-step neural
network does not consider gravitational deformation of the
primary mirror. Such powerful learning ability can also be used
to continue predicting the deformation of the primary mirror for
better applicability. Future work is considered to generate the
training data set through the experimental system, which can be
used to actively align the misalignments of Mephisto. This
work represents a feasible and easily-implemented method to
improve the efficiency and accuracy of active alignment
metrology. Besides laboratory alignment, the metrology
proposed in this study aims to maintain image quality during
observation, with relatively low misalignment values mostly
resulting from gravitational deformation. This method also has
broad application prospects in an off-axis system and the
optical system which contains a freeform surface.
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