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Abstract

Stellar ranging is the basis for stellar dynamics research and in-depth research on astrophysics. The parallax
method is the most widely used and important basic method for stellar ranging. However, it needs to perform high-
precision measurement of the parallax angle and the baseline length together. We aim to propose a new stellar
ranging scheme based on second-order correlation that does not require a parallax angle measurement. We hope
our solution can be as basic as the parallax method. We propose a new stellar ranging scheme by using the offset of
second-order correlation curve signals. The optical path difference between the stars and different base stations is
determined by the offset of the second-order correlation curve signals. Then the distance of the stars could be
determined by the geometric relation. With the distance to stars out to 10 kpc away, our astrometric precision can
be better compared to Gaia by simulation. We also design an experiment and successfully demonstrate the
feasibility of this scheme. This stellar ranging scheme enables further and more accurate stellar ranging without
requiring any prior information or angle measurement.

Key words: astrometry – techniques: miscellaneous – methods: observational – methods: miscellaneous –
instrumentation: miscellaneous

1. Introduction

The determination of stellar distance is the foundation for
studying the size, structure and morphology of galaxies. It is
also the basis for stellar dynamics research and in-depth
research on astrophysics. The development of astronomy is
inseparable from the development of ranging. The trigono-
metric parallax method is undoubtedly the most basic ranging
method (Reid et al. 2009, 2014; Zhang et al. 2017;
Mignard 2019). As the Earth revolves around the Sun, the
observer can see that the star draws a circle or ellipse or line
within a year on the celestial sphere depending on the position
of the star. The annual parallax of the star can be calculated
based on the position of the star separated by two measure-
ments. Methods such as luminosity parallax and mechanical
parallax were successively developed based on the trigono-
metric parallax method. Last century, the Hipparcos satellite
released a catalog which contains the positions, parallaxes and
proper motions of 117,955 stars with a precision of 0 001 and
stellar distances extending out to more than 300 ly. Today, with
an astrometric precision of up to 0 00001, Gaia will determine
distances to stars out to 30,000 ly away—one hundred times
farther than Hipparcos (Smith & Eichhorn 1996; Madore &
Freedman 1998; Maíz Apellániz et al. 2018; Gaia Collabora-
tion et al. 2021).

In 1956, Hanbury Brown and Richard Quintin Twiss
introduced the second-order correlation of the light field in
the measurement of stellar angular diameter (Hanbury
Brown 1956). Since then, people have studied the second-
order correlation of light field deeply, which opened the field of
quantum optics research. In recent years, some researchers
studied the ranging technology emitting pseudo-thermal light
and measuring the second order correlation coefficient of
reflected light (Giovannetti et al. 2001, 2002; Thorn et al. 2004;
Giovannetti et al. 2004; Goodman 2007; Zhu et al.
2012, 2013). Just as laser ranging technology needs to emit
lasers, this method needs an observer to emit pseudo-thermal
light. This method has advantages of high precision, no
measured dead zone, strong anti-noise ability, etc. However,
this method can only be used for close range and cannot be
used for stellar ranging, which is similar to laser ranging
technology.
In this paper, we first propose a stellar ranging method based

on measuring the second-order correlation of the light field. We
can compute the distance difference between multiple obser-
vers and the light source by measuring the characteristic peak
or dip of the g(2) curve, and get the baseline distance by laser
ranging, finally acquiring the light source distance, as long as
the light source does not emit a laser, such as a single photon,
thermal light or entangled light. Most stars emit thermal light,

Research in Astronomy and Astrophysics, 22:015021 (8pp), 2022 January https://doi.org/10.1088/1674-4527/ac3a66
© 2022. National Astronomical Observatories, CAS and IOP Publishing Ltd. Printed in China and the U.K.

1

https://orcid.org/0000-0002-8437-6659
https://orcid.org/0000-0002-8437-6659
https://orcid.org/0000-0002-8437-6659
mailto:Anningzhang@bit.edu.cn
https://doi.org/10.1088/1674-4527/ac3a66
https://crossmark.crossref.org/dialog/?doi=10.1088/1674-4527/ac3a66&domain=pdf&date_stamp=2022-01-21
https://crossmark.crossref.org/dialog/?doi=10.1088/1674-4527/ac3a66&domain=pdf&date_stamp=2022-01-21


and the full width at half maximum (FWHM) of the g(2) curve
is only dozens of femtoseconds, leading to high accuracy in
time measurement (Boitier et al. 2009). Recently, a ghost
image using the Sun as a light source was recorded by
measuring the g(2) of Sun, demonstrating the feasibility of
measuring the g(2) of a star (Karmakar et al. 2011; Liu et al.
2014). Simulation results show that our method has a longer
range and higher measurement accuracy than the trigonometric
parallax method. In our experiment, we produced thermal light,
a single photon and entangled light based on the spontaneous
parametric down-conversion (SPDC) process (Burnham &
Weinberg 1970; Kwiat et al. 1995; Ling et al. 2008; Chang
et al. 2014), and carried out the principle demonstration and
verification experiment of distance difference measurement,
which showed that our results with three kinds of light sources
had good consistency in measuring distance, and the measure-
ment accuracy was only constrained by the system’s time
measurement accuracy.

2. Theory

2.1. Second-order Correlation Function

The second-order correlation function defined in quantum
optics is (Glauber 1963a, 1963b, 1963c; Mandel & Wolf 1995)
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frequency components of the light field respectively. Normal-
izing it, we get the following equation
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By analyzing the second-order correlation function of a multi-
mode thermal light field, the following equation can be
obtained

t = + d t-g e1 , 32 2 2( ) ( )( ) † ( )†

in which t t= -D
c

† , Δ is the optical path difference from the
source to r1 and r2, and τ= t1− t2 is the time delay. In general,
if g(2)(τ†)> 1, the bunching effect of photons manifests. In
other words, photons in a thermal state tend to come in pairs.

For particle number state |n〉,

t = = -g
n

0 1
1

. 42 ( ) ( )( ) †

Obviously it is less than 1. Therefore, the particle number states
exhibit an obvious anti-bunching effect. In particular, when the

number of photons n= 1, the single photon state

t = =g 0 0. 52 ( ) ( )( ) †

The laser always obeys the following equation

t =g 1. 62 ( ) ( )( ) †

The g(2) curve of the light field can be measured by coincidence
counting (Valencia et al. 2002; Gatti et al. 2003).

2.2. Ranging Principle

When τ†= 0, g(2) of thermal light (or non-classical light)
will be maximum (or minimum), therefore, we can use the peak
or dip position of g(2)(τ) to calibrate Δ, the distance of the
optical path difference (shown in Figure 1). An example is as
follows.
We assume that at the base stations A and B, we detect the

light signal from the star separately and measure g(2). The
results of measurement will be plotted in Figure 2. Signal AA is
the g(2) result of numerical simulation of two observers which
are both located at base station A, with no optical path
difference or time difference. Signal AB is the g(2) of two
observers respectively located at base stations A and B.
As displayed in Figure 2, when an observer moves from base

station A to base station B, the peak position of g(2) is shifted
from the position of AA (τ= 0) to the position of AB. In
Figure 2, the peak shifts by 6 μs, that is to say, the arrival time
difference of the optical signal is 6 μs. Thus, we obtain the
optical path difference Δ= cτ between the star and stations
based on the shift of the g(2) curve’s characteristic peak.
From this, we conclude that the abscissa of the g(2) curve

peak (or dip) is 0 only if the arrival time difference between the
optical signals of two observers is 0. When there is a difference
in the flight time of the optical signal, it is reflected in the g(2)

peak (or dip) shifting left or right. Therefore, we can compute

Figure 1. Schematic diagram demonstrating acquisition of g(2) for light from
the star. Two observers can both receive light from the star, but there may be an
optical path difference (depicted as the dashed line) between them. This optical
path difference causes shifting of the g(2) curve peak along the time axis.
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the optical path difference between the star to each base station
from the offset distance of the abscissa of peak or dip, and then
get the relationship between the optical distance difference and
the distance based on the geometric relationship, so as to
achieve stellar ranging. Notably, this method of ranging is not
limited by the coherence length. That is because the optical
path difference can be compensated using time delay. There-
fore, we could set the base station at any place. It is also worth
noting that this method does not require accurate angle
measurements or parallax calculations, and only requires each
base station to collect photons from the stars.

2.3. Ranging Method

After the location of the base stations and the second-order
correlation information between the base stations are known,
the distance and ranging error of the star can be analyzed by
considering the geometric relationship. We design a simplified
model to show how it works and to discuss the ranging
capability of this scheme.

According to the principle that is mentioned in Section 2.2,
we propose to establish three base stations A, B and C on the
same baseline (as displayed in Figure 3). The length of line
segments AB and BC is the distance between each other’s base
stations respectively, and determined by their locations. But for
the convenience of simplified models and simulation, we
equalize them and set the value as a in this paper. The distance
from the star to base station A (B or C) is SA (SB or SC). Then
the distance difference is LB= SB− SA and LC= SC− SA.
According to the law of cosines, the distance from the star to

the base station A, SA=L, can be calculated by
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In general, baseline distance a is much less than star distance L.
The baseline distance = *a c ta
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2
is measured by laser

ranging. LB= c ∗ τb and LC= c ∗ τc can be calculated by
measuring the shift of g(2) curve’s characteristic peak. After
getting this information, Equation (7) can be written as
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The above equation indicates that by using the three-station
ranging method, only taτbτc need to be measured to achieve
stellar ranging, with no need for measuring viewing angle
difference between the base stations.

2.4. Error Analysis

Assuming that the measurement error of taτbτc totally
depends on the precision of time measurement !t, the
following error measurement formula can be obtained

⎡
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According to formula (9), error estimation can be made via the
actual measurement values of taτbτc and the precision of time
measurement!t.
In order to analyze the relationship between the relative error

of ranging and various influencing factors, we drew Figures 4
and 5 according to formula (9).
Figure 4 depicts the numerical simulation results of stellar

distance L and relative error with different baseline lengths a.

Figure 2. An example to illustrate the shifting of g(2) curve peak. The red curve
describes the g(2) curve for two observers who are both at base station A. The
g(2) peak is at 0 on the time axis because there is no optical path difference
between them. The blue one describes the g(2) curve when observers are located
at A and B. The g(2) peak is at −6 μs on the time axis, that is to say, the path
difference between A and B with respect to the star is c ∗ (−6 μs).

Figure 3. Three station ranging method. A, B and C are three base stations on
the same baseline where the length of line segment AB and BC are both equal to
a. SA(SB or SC) is the distance from the star to the base station A(B or C).
LB = SB − SA and LC = SC − SA are the differences in distance. If we know a,
LB and LC, then SA can be determined by calculation.
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We should mention that logarithmic coordinate is used to
analyze relative error and the measurement accuracy is set as
!t= 10−18 s. The upper panel is a three-dimensional diagram
and panel (b) shows the distribution between relative error
and stellar distance when the baseline length is 2000 km,

10,000 km and 40,000 km, from top to bottom respectively.
The stellar distance extends out to 10 kpc. We can see the
relative error increases along with stellar distance L, and
decreases with the increase of baseline length a. When the star
is 10 kpc away and the baseline distance is 2000 km, the

Figure 4. (a) The distribution of the relative error, stellar distance (L) and baseline length (a). The measurement accuracy is set as !t = 10−18 s). Logarithmic
coordinates are used for relative errors. (b) The trend of relative error with stellar distance when the baseline length is 2000 km, 10,000 km and 40,000 km, from top to
bottom respectively. The relative error decreases with the length of the base station and increases with the distance from the star. When the star is 10 kpc away and the
baseline distance (a) is 2000 km, the relative error is within 3%.
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ranging error is about 232 pc and the relative error is within 3%.
The error can become lower by extending the baseline length. As
mentioned before, Gaia can determine distances to stars out to
30,000 ly, i.e 10 kpc, with a precision of up to 0 00001. and we
can know the relative error is approximately 8%.

Figure 5 features the trend of the relative error with stellar
distance (L) and !t. Baseline length (a) is set as 20,000 km. We
can see relative error will increase by one order of magnitude
with each order of magnitude increase in the stellar distance
(L). This result is consistent with what is shown in Figure 4(b).

We can see that our ranging method has the advantage of
higher measurement accuracy. Moreover, because it is only
restricted by time accuracy, it can theoretically measure farther
distances. Currently, the best time measurement accuracy is !
t= 1 as. Assuming we select three base stations on the Earth at
a distance of 2000 km and measure the distance to Betelgeuse,
which is 640 ly away from us, the ranging error is only 0.29 ly
and relative error is within 0.045%. If we can extend the baseline
length (like using a geosynchronous orbit (40,000 km)), and
improve the time measurement accuracy to!t= 1 fs, the relative
error can be lower and within 0.11%.

Above all, the measurement can be improved by a couple of
orders of magnitude by changing to a better clock, expanding
the baseline length or just using more base stations. It is worth
mentioning that clocks with an accuracy of 10−19 s have been
prepared (Campbell et al. 2017). The huge development
potential is inestimable. In practical situations, existing base
stations can be selected, as long as the relative position
relationship between them is known. In addition, the influence
of other error sources on ranging accuracy can be reduced as
much as possible by selecting the appropriate time to measure
the range.

2.5. Other Ranging Methods

In 2.3, we put forward a ranging method based on the
assumption that the station distribution is strictly equidistant,
and analyzed its ranging accuracy in 2.4. In practical work, we
can choose existing base stations for the ranging measurement,
as long as these base stations can carry out second-order
correlation measurement.
Assuming that there are N base stations selected for the

ranging measurement, the connection between these base
stations can form a series of baselines L, and the number of
baselines is * -N N 1

2

( ) . Generally, the locations of these base
stations are known, so we do not have to measure the length of
these baselines. For a particular baseline Lij with base station i
and base station j as endpoints, a time delay τij can be measured
by using second-order correlation measurement. For the

* -N N 1

2

( ) baselines, the number of independent time delays

obtained by measuring g(2) is n. * -n N N 1

2

( ) and n will not

always be equal to the baseline number * -N N 1

2

( ) because some
time delays can be determined from the time delay acquired from
other baselines. Considering these independent time delays, we
can know the optical path difference between the star and each
base station. Thus, we can use the base station locations to
calculate the distance to the stars. We note that this method can
be utilized to measure not only the distance of stars, but also the
position of stars. Each independent time delay will reduce one
degree of freedom of the star’s position. When the star’s position
is fully determined, the remaining independent time delay can
also be added to the calculation to reduce the uncertainty in the
position. Similar methods of position calculation relying on time
delays are widely employed in very long baseline interferometry
(VLBI, Sekido & Fukushima 2006; Liao et al. 2014) and other
astronomical observations.

3. Principal Experiment

We have completed an experiment to demonstrate the
feasibility of measuring differences in distance. The exper-
imental setup is illustrated in Figure 6. The 405 nm pump light
coming from the laser passes through HWP and PBS
successively. The coherence length of our laser is more than
3 meters. Then we adjust power so as to convert the photon into
a horizontally polarized state |H〉. After focusing light onto a
PPKTP crystal, we successfully obtained the 810 nm entangled
photon pair with orthogonal polarization state by using SPDC
process where polarization states are horizontal polarization
|H〉 and vertical polarization |V〉. By utilizing a longpass filter
to filter out the pump light of 405 nm, finally we have a pair of
810 nm photons produced at the same time. Therefore, our
device could be used as a source of entangled photon pairs.
The photon pair is divided in two ways (A and B), according

to polarization after passing through PBS, and is received
respectively by observers at A and B. As we mentioned before,

Figure 5. The trend in the ratio of the relative error to the precision of time
measurement !t with different !t. When the baseline length (a) and the stellar
distance (L) are determined, the relative error of ranging is proportional to the
precision of time measurement.
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entangled photons must appear simultaneously. So if observer
A receives a photon at some time, B will receive the other
photon accordingly. In this way, we successfully prepared a
heralded single photon source.

If we do not detect single photon observer A and only use B
to receive the light signal, now observer B receives thermal
light instead of the heralded single photon source. Thus, our
device could prepare the thermal light, single photon and
entangled photon pair. Since the g(2) functions of three sources
are not equal to 1, we can determine the distance difference
according to the previous theory. We propose our ranging
scheme based on that.

We divide the signal light into B1 and B2 by BS, then use
the single photon detector to detect the signal, counting B2 and
B1 signals as the START and STOP signal of time-correlated
single-photon counting (TCSPC) respectively (Phillips et al.
1985). The statistical distribution of the optical field signal we
obtained is displayed in Figure 7.

If we extend the optical path difference between B1 and B2
by setting up a roughly 159 cm section of fiber on B2, we can
gain the following results after repeating the above operation
with TCSPC. As we can see in Figure 8, the peak of the g(2)

curve shifts from 157.77 to 280.21 bin. The refractive index of
the fiber we used is ng= 1.4735.
So, it is easy to calculate the length of the fiber

= - ´ ´
´ »-

l 280.21 157.77 bin 64 ps 2.034

10 m s 159.39 cm. 108 1

( )
( )

In this experiment, the time resolution of TCSPC is 64 ps, so
the upper limit of theoretical resolution is

´ ´ »-64 ps 2.034 10 m s 1.30 cm. 118 1 ( )

Compared with the actual length of the fiber, we demonstrate
that the optical path difference can be measured from the g(2)

curve shift.
In addition, if the source is a single photon source or

entangled source, we can also achieve the measurement of fiber

Figure 6. Experimental schematic diagram. A heralded single photon source was used. TCSPC was utilized to measure the second order correlation g(2). By adding an
additional fiber to B2, the optical path difference between B1 and B2 can be changed. B1 and B2 represent two base stations. From the offset distance of the abscissa
of g(2) curve peak, we can get the optical path difference between B1 and B2 caused by the additional fiber. According to the ranging principle, we can range the star as
long as we know the optical path difference between the base stations.
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length difference, and the result is consistent with the above
conclusion. In other words, the scheme we proposed could
realize the measurement of the distance difference between the
light source and observers as long as the source does not emit a
laser, for which g(2) equals 1. After measuring the distance
difference between the source and observers (LB, LC), we can
calculate the distance to the star (L) by relying on formula (7).

This experiment demonstrates the feasibility of the theor-
etical scheme for measuring the optical path difference and
confirms that the brightness of the star does not need to be too

high because the optical path difference of a single photon can
still be detected in the experiment.

4. Conclusions

In this paper, we propose the stellar ranging scheme based on
second order correlation measurement for the first time,
applying the second order correlation theory of a light field
to stellar ranging, and carrying out the primary demonstration
and the verification experiment based on an SPDC light source.
Compared with the traditional method of trigonometric parallax
ranging, we confirm that our scheme has many advantages.
This method is based on second order correlation theory, and

its accuracy only depends on the accuracy of time measure-
ment, so it does not require a parallax angle measurement. Then
the objects of this scheme can be thermal sources or other
sources that emit non-classical light. From the summary above,
we can say that the scheme has overcome the limitation of
emission power on the measurement distance, so its range is
much larger than active ranging. Apart from this, it also has
good resistance to external noise, random signal interference
and requires lower cost and shorter time. Furthermore, since the
error of stellar ranging is directly proportional to the time
accuracy and inversely proportional to the square of the
distance between the observers, we may improve the measure-
ment range and accuracy by changing to a better clock and
extending the baseline length in the future. As long as the light
emitted by a star can be received by observers, we can
implement such a process.

Acknowledgments

This work is supported by National Key Research and
Development Program Earth Observation and Navigation Key
Specialities (No. 2018YFB0504300).

ORCID iDs

Can Xu, https://orcid.org/0000-0002-8437-6659

References

Boitier, F., Godard, A., Rosencher, E., & Fabre, C. 2009, NatPh, 5, 267
Burnham, D. C., & Weinberg, D. L. 1970, PhRvL, 25, 84
Campbell, S. L., Hutson, R. B., Marti, G. E., et al. 2017, Sci, 358, 90
Chang, D. E., Vuletić, V., & Lukin, M. D. 2014, NaPho, 8, 685
Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2021, A&A, 649, A1
Gatti, A., Brambilla, E., & Lugiato, L. A. 2003, PhRvL, 90, 133603
Giovannetti, V., Lloyd, S., & Maccone, L. 2001, Natur, 412, 417
Giovannetti, V., Lloyd, S., & Maccone, L. 2002, PhRvA, 65, 022309
Giovannetti, V., Lloyd, S., & Maccone, L. 2004, Sci, 306, 1330
Glauber, R. J. 1963a, PhRv, 131, 2766
Glauber, R. J. 1963b, PhRvL, 10, 84
Glauber, R. J. 1963c, PhRv, 130, 2529
Goodman, J. W. 2007, in Speckle Phenomena in Optics: Theory and

Applications Speckle Phenomena in Optics: Theory and Applications, ed.
J. W. Goodman (Greenwood Village, CO: Roberts and Company)

Hanbury Brown, R. 1956, Natur, 178, 1046

Figure 7. g(2) between B1 and B2 (without additional fiber).

Figure 8. g(2) between B1 and B2 (with additional fiber). Compared with
Figure 7, the second-order correlation function is shifted to the right by 122.44
bins, which corresponds to the optical path difference introduced by the
additional fiber.

7

Research in Astronomy and Astrophysics, 22:015021 (8pp), 2022 January Li et al.

https://orcid.org/0000-0002-8437-6659
https://orcid.org/0000-0002-8437-6659
https://orcid.org/0000-0002-8437-6659
https://orcid.org/0000-0002-8437-6659
https://doi.org/10.1038/nphys1218
https://ui.adsabs.harvard.edu/abs/2009NatPh...5..267B/abstract
https://doi.org/10.1103/PhysRevLett.25.84
https://ui.adsabs.harvard.edu/abs/1970PhRvL..25...84B/abstract
https://doi.org/10.1126/science.aam5538
https://ui.adsabs.harvard.edu/abs/2017Sci...358...90C/abstract
https://doi.org/10.1038/nphoton.2014.192
https://ui.adsabs.harvard.edu/abs/2014NaPho...8..685C/abstract
https://doi.org/10.1051/0004-6361/202039657
https://ui.adsabs.harvard.edu/abs/2021A&A...649A...1G/abstract
https://doi.org/10.1103/PhysRevLett.90.133603
https://ui.adsabs.harvard.edu/abs/2003PhRvL..90m3603G/abstract
https://doi.org/10.1038/35086525
https://ui.adsabs.harvard.edu/abs/2001Natur.412..417G/abstract
https://doi.org/10.1103/PhysRevA.65.022309
https://ui.adsabs.harvard.edu/abs/2002PhRvA..65b2309G/abstract
https://doi.org/10.1126/science.1104149
https://ui.adsabs.harvard.edu/abs/2004Sci...306.1330G/abstract
https://doi.org/10.1103/PhysRev.131.2766
https://ui.adsabs.harvard.edu/abs/1963PhRv..131.2766G/abstract
https://doi.org/10.1103/PhysRevLett.10.84
https://ui.adsabs.harvard.edu/abs/1963PhRvL..10...84G/abstract
https://doi.org/10.1103/PhysRev.130.2529
https://ui.adsabs.harvard.edu/abs/1963PhRv..130.2529G/abstract
https://doi.org/10.1038/1781046a0
https://ui.adsabs.harvard.edu/abs/1956Natur.178.1046H/abstract


Karmakar, S., Zhai, Y.-H., Chen, H., & Shih, Y. 2011, CLEO:2011—Laser
Applications to Photonic Applications (Optical Society of America), QFD3

Kwiat, P. G., Mattle, K., Weinfurter, H., et al. 1995, PhRvL, 75, 4337
Liao, S.-L., Tang, Z.-H., & Qi, Z.-X. 2014, RAA, 14, 1029
Ling, A., Lamas-Linares, A., & Kurtsiefer, C. 2008, PhRvA, 77, 043834
Liu, X.-F., Chen, X.-H., Yao, X.-R., et al. 2014, OptL, 39, 2314
Madore, B. F., & Freedman, W. L. 1998, ApJ, 492, 110
Maíz Apellániz, J., Pantaleoni González, M., Barbá, R. H., et al. 2018, A&A,

616, A149
Mandel, L., & Wolf, E. 1995, Optical Coherence and Quantum Optics

(Cambridge: Cambridge Univ. Press)
Mignard, F. 2019, CRPhy, 20, 140

Phillips, D., Drake, R. C., O’Connor, D. V., & Christensen, R. L. 1985, IS&T,
14, 267

Reid, M. J., Menten, K. M., Brunthaler, A., et al. 2014, ApJ, 783, 130
Reid, M. J., Menten, K. M., Zheng, X. W., et al. 2009, ApJ, 700, 137
Sekido, M., & Fukushima, T. 2006, J. Geod., 80, 137
Smith, H. J., & Eichhorn, H. 1996, MNRAS, 281, 211
Thorn, J. J., Neel, M. S., Donato, V. W., et al. 2004, AmJPh, 72, 1210
Valencia, A., Chekhova, M. V., Trifonov, A., & Shih, Y. 2002, PhRvL, 88,

183601
Zhang, B., Zheng, X., Reid, M. J., et al. 2017, ApJ, 849, 99
Zhu, J., Chen, X., Huang, P., & Zeng, G. 2012, ApOpt, 51, 4885
Zhu, J., Huang, P., Xiao, X., & Zeng, G. 2013, ApOpt, 43, 373

8

Research in Astronomy and Astrophysics, 22:015021 (8pp), 2022 January Li et al.

https://doi.org/10.1103/PhysRevLett.75.4337
https://ui.adsabs.harvard.edu/abs/1995PhRvL..75.4337K/abstract
https://doi.org/10.1088/1674-4527/14/8/013
https://ui.adsabs.harvard.edu/abs/2014RAA....14.1029L/abstract
https://doi.org/10.1103/PhysRevA.77.043834
https://ui.adsabs.harvard.edu/abs/2008PhRvA..77d3834L/abstract
https://doi.org/10.1364/OL.39.002314
https://ui.adsabs.harvard.edu/abs/2014OptL...39.2314L/abstract
https://doi.org/10.1086/305041
https://ui.adsabs.harvard.edu/abs/1998ApJ...492..110M/abstract
https://doi.org/10.1051/0004-6361/201832787
https://ui.adsabs.harvard.edu/abs/2018A&A...616A.149M/abstract
https://ui.adsabs.harvard.edu/abs/2018A&A...616A.149M/abstract
https://doi.org/10.1016/j.crhy.2019.02.001
https://ui.adsabs.harvard.edu/abs/2019CRPhy..20..140M/abstract
https://doi.org/10.1080/10739148508543581
https://ui.adsabs.harvard.edu/abs/1985IS&T...14..267P/abstract
https://ui.adsabs.harvard.edu/abs/1985IS&T...14..267P/abstract
https://doi.org/10.1088/0004-637X/783/2/130
https://ui.adsabs.harvard.edu/abs/2014ApJ...783..130R/abstract
https://doi.org/10.1088/0004-637X/700/1/137
https://ui.adsabs.harvard.edu/abs/2009ApJ...700..137R/abstract
https://doi.org/10.1007/s00190-006-0035-y
https://ui.adsabs.harvard.edu/abs/2006JGeod..80..137S/abstract
https://doi.org/10.1093/mnras/281.1.211
https://ui.adsabs.harvard.edu/abs/1996MNRAS.281..211S/abstract
https://doi.org/10.1119/1.1737397
https://ui.adsabs.harvard.edu/abs/2004AmJPh..72.1210T/abstract
https://doi.org/10.1103/PhysRevLett.88.183601
https://ui.adsabs.harvard.edu/abs/2002PhRvL..88r3601V/abstract
https://ui.adsabs.harvard.edu/abs/2002PhRvL..88r3601V/abstract
https://doi.org/10.3847/1538-4357/aa8ee9
https://ui.adsabs.harvard.edu/abs/2017ApJ...849...99Z/abstract
https://doi.org/10.1364/AO.51.004885
https://ui.adsabs.harvard.edu/abs/2012ApOpt..51.4885Z/abstract

	1. Introduction
	2. Theory
	2.1. Second-order Correlation Function
	2.2. Ranging Principle
	2.3. Ranging Method
	2.4. Error Analysis
	2.5. Other Ranging Methods

	3. Principal Experiment
	4. Conclusions
	References



