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Abstract The lower solar atmosphere is a gravitationally stratified layer of partially ionized plasma. We
calculate the electric resistivity in the solar photosphere and chromosphere, which is the key parameter
that controls the rate of magnetic reconnection in a Sweet-Parker current sheet. The calculation takes
into account the collisions between ions and hydrogen atoms as well as the electron-ion collisions and
the electron-hydrogen atom collisions. We find that under the typical conditions of the quiet Sun, electric
resistivity is determined mostly by the electron-hydrogen atom collisions in the photosphere, and mostly
by the ion-hydrogen collisions, i.e. ambipolar diffusion, in the chromosphere. In magnetic reconnection
events with strong magnetic fields, the ambipolar diffusion, however, may be insignificant because the
heating by the reconnection itself may lead to the full ionization of hydrogen atoms. We conclude that
ambipolar diffusion may be the most important source of electric resistivity responsible for the magnetic
flux cancelation and energy release in chromospheric current sheets that can keep a significant fraction of
neutral hydrogen atoms.
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chromosphere

1 INTRODUCTION

It is well known that magnetic reconnection occurs not
only in the solar corona, but also in the lower solar
atmosphere. In the solar corona, plasma is fully ionized and
temperature is very high, and hence the classical electric
resistivity is extremely low. Moreover, because of low
mass density, plasma is collisionless in nature. Thus it
was not possible to explain the fast rate of reconnection
inferred from solar flares in terms of a current sheet
model of Sweet-Parker type (Parker 1963), which required
the development of models for fast reconnection such as
Petschek reconnection (Petschek 1964).

By contrast, the plasma density in the low solar
atmosphere is high enough for the plasma to be collisional,
which has important consequences. Different particle
species can be characterized by a single temperature.
Electric resistivity is much higher than in the corona
because temperature is low. The resistivity is further
enhanced by the presence of neutral particles (Cowling
1957). As a matter of fact, in partially ionized plasma,
electric resistivity is caused not only by the collisions
between electrons and ions, but also by the collisions

between electrons and neutral particles. Moreover, the
phenomenon of ambipolar diffusion (or ion-neutral drift)
in magnetized plasma can further increase the resistivity.

The electric resistivity enhanced by the presence of
neutral particles is crucial for understanding magnetic
reconnection occurring in the solar photosphere and
chromosphere. The observed “cancelation” of adjacent
magnetic flux tubes of opposite polarity has been regarded
as an observable manifestation of Sweet-Parker magnetic
reconnection in the photosphere and chromosphere (e.g.,
Litvinenko 1999; Sturrock 1999). The reconnection model
incorporated the effects of compressibility of the current
sheet plasma, and the rate of flux cancelation was included
as an important parameter of magnetic reconnection (Chae
et al. 2003; Litvinenko & Chae 2009). The Sweet-
Parker current sheet models in these studies, however,
were not fast enough to quantitatively explain the
convergence speeds of the canceling magnetic features in
the photosphere. Therefore alternative possibilities were
also explored, including Petschek reconnection in the low
atmosphere (Chae et al. 2002), the effect of flux pileup
on the Sweet-Parker type reconnection (Litvinenko et al.
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2007) and anomalous resistivity (Chae et al. 2003; Chae
2007). In all these studies, the electric resistivity enhanced
by the presence of neutral particles was not taken into
account. Accordingly, there is a good possibility that the
effect of ambipolar diffusion on the resistivity, if included
with the previously studied effects in the Sweet-Parker
model, may explain the fast magnetic reconnection implied
by the observed flux cancelations.

The theoretical investigation of magnetic reconnection
in partially ionized plasmas started a few decades ago
mainly in the context interstellar clouds (Zweibel 1989;
Brandenburg & Zweibel 1994; Malyshkin & Zweibel
2011). As for magnetic reconnection occurring in the
solar chromosphere, much theoretical progress was made
during the last decade (see Ni et al. 2020, for review).
Using multi-fluid simulations, Leake et al. (2012, 2013)
demonstrated that the decoupling of neutral and ion fluids
can eventually lead to a fast magnetic reconnection rate
in the solar chromosphere. However, the later studies
of Ni et al. (2015) and Ni & Lukin (2018) indicated
that fast magnetic reconnection develops as a result of
plasmoid instability, and the ambipolar diffusion has little
effect on this process. This result may be applicable
to the jet-like events displaying high temperature excess
and high speeds observed in solar active regions such
as the chromospheric anemone jets observed with the
Solar Optical Telescope/Hinode (Singh et al. 2012a), the
hot explosions observed by the Interface Region Imaging
Spectrograph (IRIS) usually called IRIS bombs (Peter et
al. 2014), and frequent jets from sunspot light bridges
(Tian et al. 2018). This plasmoid-instability driven fast
reconnection in the chromosphere is very similar to the fast
magnetic reconnection in the corona that was theoretically
studied to explain X-ray jets (Yokoyama & Shibata 1994),
and solar flares (e.g., Bhattacharjee et al. 2009; Bárta et al.
2011), and was reported from observations (Lin et al. 2005;
Takasao et al. 2012; Singh et al. 2012b). The efficiency of
plasmoid-instability in magnetic reconnection in a general
context was hence theoretically studied in depth (e.g.,
Loureiro et al. 2007). Note that the above plasmoid-
instability driven model applies to magnetic reconnection
occurring in the chromosphere of strong magnetic field
regions such as solar active regions. In regions of weaker
magnetic fields on the quiet Sun, however, there is a
possibility that a model of Sweet-Parker type with an
enhanced electric resistivity may explain fast reconnection,
and so it is quite worth further investigation.

Ohm’s law including ambipolar diffusion was previ-
ously derived (Cowling 1957; Braginskii 1965; Kubat &
Karlicky 1986). Electric conductivity including ambipolar
diffusion was also calculated in the solar atmosphere by
Kubat & Karlicky (1986), Wang (1993) and Khomenko &

Collados (2012), and its effect was studied in the context
of Sweet-Parker magnetic reconnection (Ni et al. 2007),
as well as the plasma heating and electric current decay
(Khomenko & Collados 2012). Among these calculations
of electric conductivity, the work of Kubat & Karlicky
(1986) appears to be the most comprehensive. They
formulated the problem using Branginskii coefficients
(Braginskii 1965) and presented a table of electric
conductivities calculated as functions of height based on
a specific atmospheric model: Model C of Vernazza et
al. (1981). While the values in the table are very useful
while studying the effects of ambipolar diffusion under
the physical conditions specified in the model atmosphere,
those values have only limited applicability if the physical
conditions in a chromospheric feature significantly deviate
from the model atmosphere.

Motivated by these considerations, in the present work
we revisit the derivation of Ohm’s law including the
effects of neutral particles and the calculation of electric
resistivity under realistic physical conditions of the solar
chromosphere. Our work is intended to contribute to better
quantifying the effect of electric resistivity on the rate of
magnetic reconnection under different physical conditions
of the chromosphere. We present a brief independent step-
by-step derivation of Ohm’s law in order to clarify the
underlying physics and the approximations utilized for the
derivation. We also present a practical way of calculating
each contribution to the electric resistivity under arbitrary
physical conditions of the chromosphere, generalizing the
calculation previously performed for the standard model
atmosphere. Finally, we also discuss the accuracy of
our method and we investigate a numerical discrepancy
between our results and those by Kubat & Karlicky (1986).

2 METHOD

2.1 Generalized Ohm’s Law and Electric Resistivity

Ohm’s law including ambipolar diffusion was treated in
previous studies (Cowling 1957; Braginskii 1965; Kubat
& Karlicky 1986). We begin by deriving Ohm’s law
from the three-fluid equations. While not new, a brief
step-by-step derivation is necessary in order to clearly
state the assumptions and approximations required for the
derivation and thus justify a quantitative comparison of our
results with those obtained previously. Note that the usual
purpose of Ohm’s law is to obtain the expression of an
electric conductivity tensor to relate the electric field vector
E′ measured in the frame of plasma at rest and the electric
current vector j (e.g., Cowling 1957; Sturrock 1994). Here
we are primarily interested in the energy dissipation rate.
Hence we do not derive the conductivity tensor, but rather
directly derive the scalar electric resistivity ηe defined by
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the equation
E′ · j = ηej

2 . (1)

As a matter of fact, the inverse of this resistivity is called
the Cowling conductivity (Cowling 1957).

We assume that the plasma consists of free electrons
of mass me and charge −e, singly-ionized ions of mass
mi and charge e, and neutral particles of mass mn and
zero charge. Electron fluid, ion fluid and neutral particle
fluid, respectively, have number density ne, ni and nn,
mass density ρn, ρi and ρn, fluid velocity ve, vi and vn,
and pressure pe, pi and pn. If all the ions are singly ionized,
the condition for electrical neutrality leads to

ne = ni . (2)

The generalized Ohm’s law is derived from the
momentum equation of electron fluid

∂ρeve
∂t

+∇ · (ρeveve) +∇pe − ρeg =

− nee(E +
ve
c
×B)− neνeimei(ve − vi)

− neνenmen(ve − vn) ,

(3)

that of ion fluid
∂ρivi
∂t

+∇ · (ρivivi) +∇pi − ρig =

nie(E +
vi
c
×B)− niνiemie(vi − ve)

− niνinmin(vi − vn) ,

(4)

and that of neutral particle fluid

∂ρnvn
∂t

+∇ · (ρnvnvn) +∇pn − ρng =

− nnνnemne(vn − ve)

− nnνnimni(vn − vi) .

(5)

The collisional frequency νei, for instance, refers to the
inverse of the time it takes for an electron to effectively lose
its initial momentum by a series of collisions with ions.
The massmei, for instance, is the reduced mass of the two-
body collision between electron and ion, which is given by
memi/(me +mi). Note that mei is equal to mie and can
be approximated to me because me � mi. For the same
reason, we have men = mne ≈ me.

It is commonly assumed that the collisions are elastic
where the total momentum does not change during the
collisions. This assumption leads to the relationships:

neνeimei = niνiemie , (6)

neνenmen = nnνnemne , (7)

niνinmin = nnνnimni , (8)

that justify the usefulness of Branginskii’s coefficient
of friction defined as, for instance, αei = neνeimei

(Braginskii 1965).

By introducing the density, velocity, pressure and
electric current density of the plasma fluid:

ρ ≡ ρe + ρi + ρn ' ρi + ρn , (9)

v ≡ ρeve + ρivi + ρnvn
ρe + ρi + ρn

' ρivi + ρnvn
ρi + ρn

, (10)

p ≡ pe + pi + pn , (11)

and by adding the above three momentum equations, we
obtain the momentum equation of the plasma fluid

∂ρv

∂t
+∇ · ρvv +∇p− ρg =

j

c
×B (12)

under the assumption

ρeveve + ρivivi + ρnvnvn ' ρvv , (13)

that holds under the conditions |vi − v| � |v| and |vn −
v| � |v|.

For the derivation of Ohm’s law, we ignore the electron
inertia and set the left-hand side of the electron momentum
Equation (3) to zero

∂ρeve
∂t

+∇ · (ρeveve) +∇pe − ρeg = 0 , (14)

which leads to the equation

∂ρivi
∂t

+∇ · (ρivivi) +∇pi − ρig

' (1− f)
[
∂ρv

∂t
+∇ · ρvv +∇p− ρg

]
= (1− f)j

c
×B ,

(15)

where f is the mass fraction of neutral particles

f ≡ ρn
ρ
, (16)

which is assumed to be constant over local space and local
time.

By adding Equations (3) and (4) and by making use of
Equation (15), we obtain

(1− f)j
c
×B =

j

c
×B − neνenmen(ve − vn)

− niνinmin(vi − vn) .
(17)

Here we adopt the assumption that the magnitude
of neνenmen(ve − vn) is much smaller than that of
niνinmin(vi − vn). This assumption holds because
men � min whereas νen is of the same order of
magnitude as νin (as will be shown in the next section),
and |ve − vn| is expected to be comparable to |vi − vn|
(because |ve − vi| may be much smaller than |vi − vn|
because of tighter coupling between electrons and ions).
With this simplifying assumption, it is useful to define two
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drift velocities vei ≡ ve − vi and vin ≡ vi − vn. Note
that vei is directly related to the current density

vei = −
j

nee
, (18)

and Equation (17) leads to the expression

vin '
f

niνinmin

j

c
×B . (19)

From Equations (3) and (14), we obtain

E =− ve
c
×B − (νei + νen)me

e
vei

− νenme

e
vin ,

(20)

and by inserting the expression of ve written in terms of v,
vei and vin

ve = v + fvin + vei (21)

into the above equation, we obtain the equation

E′ ≡ E +
v

c
×B

= − (νei + νen)me

e
vei −

νenme

e
vin

− fvin
c
×B − vei

c
×B

(22)

expressed in terms of the drift velocity vei and vin.
By utilizing Equations (18) and (19), we obtain the
generalized Ohm’s law

E′ =
(νei + νen)me

nee2
j +

f2B2

niνinminc2
j⊥

+

(
1− f neνenme

niνinmin

)
1

neec
j ×B

(23)

expressed in j. Here j⊥ ≡ j − (j · B)B/B2 is the
component of the current density vector perpendicular
to the magnetic field. In principle, from this form of
Ohm’s law one can derive the expression of the electric
conductivity tensor. But in the present work, we are
interested in the derivation of a scalar electric resistivity
that quantifies the energy release rate in plasma. By taking
the scalar product of both sides of this equation and j, we
obtain the expression for the work done by electric force
on the plasma

E′ · j =

[
νeime

nee2
+
νenme

nee2
+
f2B2 sin2 θ

niνinminc2

]
j2 , (24)

where θ is the angle between j and B, and we obtain the
expression of electric resistivity

ηe = ηei + ηen + ηin (25)

with

ηei =
νeime

nee2
,

ηen =
νenme

nee2
, (26)

ηin =
f2B2 sin2 θ

niνinminc2
. (27)

The physical meaning of ηei and ηen is obvious. The
term ηei is related to the dissipation of electromagnetic
energy by the collisions of electrons with ions. The second
term ηen is related to the collisions of electrons and neutral
particles. The last term ηin is a consequence of the ion
slip, i.e. the difference between vi and vn that arises
from the Lorentz force that the ions are subject to, but the
neutral particles are not, and from the infrequent collisions
between ions and neutral particles (Cowling 1957, see also
Kunkel 1984 and references therein). Note that the Hall
component, the last term on the right in Equation (23), does
not contribute either to the dissipation of electromagnetic
energy or to electric resistivity because it is perpendicular
to j. Note also that the Hall term appears to be affected by
the ion slip, but this effect seems to be negligible because
of the inequality νenme � νinmin mentioned above.

2.2 Calculation in the Low Solar Atmosphere

The three-fluid description above assumes that the plasma
consists of three particle species: free electrons, neutral
particles and ions. Real plasma in the low solar atmo-
sphere, however, consists of a number of different species
of particles. We consider four species only – free electrons,
protons, neutral hydrogen atoms and hypothetical metal
ions whereas Kubat & Karlicky (1986) considered nine
species including helium ions, and five kinds of metal ions.
Basically we assume that all the ions are singly ionized, so
ne is equal to ni as in Equation (2). There are two major
sources of electrons and ions: hydrogen atoms and metals,
so we can write the number density of ions

ne = np + nM , (28)

np = xHnH , (29)

nM = AMnH . (30)

The notation is as follows: np, the number density of
protons, nM , the number density of metal ions, nH , the
number density of all hydrogens (hydrogen atoms and
protons), xH , the ionization fraction of hydrogen and,AM ,
the number ratio of metallic ions to hydrogens. We regard
hydrogen atoms as the only species of neutral particles that
is important in the collisions with either electrons or ions,
so we can write

nn = n(H0) = (1− xH)nH , (31)
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Fig. 1 Height variations of temperature and number
densities of all hydrogens, protons and electrons in the
FAL-C model.

f = 1− xH , (32)

and
νen = νeH . (33)

Meanwhile, two kinds of collisions contribute to ηin: the
collisions between protons and neutral hydrogens specified
by the subscript pH and the collisions between metal ions
and neutral hydrogens specified by the subscript MH .
Therefore we write

niνinmin = npνpHmpH + nMνMHmMH . (34)

The calculation of ηei, ηen and ηin requires the values
of ne, nn, ni, f , B sin θ as well as T . Note that ne, nn,
ni and f are fully specified if xH , AM as well as nH are
given. Figure 1 presents the height variations of nH , ne
and np in the FAL-C model (Fontenla et al. 1993). The
FAL-C model is the revision of the VAL-C model, Model
C of Vernazza et al. (1981). The FAL-C model took into
account the effect of particle diffusion on the formation
of hydrogen lines and helium lines and hence does not
display any ad hoc temperature plateau in the transition
region unlike the VAL-C model. We will adopt the FAL-
C model for the investigation of electric resistivity in the
quiet Sun chromosphere, but will rely on the VAL-C model
for comparison with the previous calculation of Kubat &
Karlicky (1986).

It can be seen from the figure that np is much
smaller than ne around the temperature minimum region,
indicating the major source of electrons is not hydrogen
atoms, but metals. The value ofAM is bigger than xH only
around the temperature minimum region. For simplicity we
setAM to a constant value of 1.2×10−4, that is very close
to the minimum of ni/nH . The value of xH can be directly

taken from the atmospheric model or can be calculated
utilizing the equation of ionization equilibrium

xH = f(ne, T,Rik) (35)

as described by Chae (2021) when the photoionization rate
Rik is given.

We employ two alternative methods for calculating
the electric resistivity, depending on how xH and other
quantities are specified.

– Method 1: The value of xH as well as nH and
T is taken from the reference atmospheric model
like the VAL-C model (Vernazza et al. 1981) or the
FAL-C model (Fontenla et al. 1993). This method is
straightforward to implement, but cannot be applied
to the plasma having thermodynamic parameters
different from the model.

– Method 2: The values of two independent parameters
(e.g., p and T ) and Rik are given. The values of xH
and the other quantities are derived with the help of
auxiliary equations

p = nH(1 + xH +AHe)kBT , (36)

ρ = nH(1 + 4AHe)mH , (37)

as well as the equations above. We set the abundance
of helium AHe to 0.1. This method can be applied to
plasma having arbitrary thermodynamic parameters.

2.3 Collisional Frequencies

Suppose the cross-section σαβ(w) of an α particle and a
β particle is known given the relative speed w. Then the
inverse of the time for an α particle to collide with β

particles effectively once is given by

ναβ = nβ
1

3

∫
σαβ(w)

w3

σ2
w

f0(w)dw , (38)

where it is assumed that the relative velocity w follows a
Maxwellian distribution where the magnitude of the mean
〈w〉 is much smaller than the standard deviation σw ≡
(kT/mαβ)

1/2.
The cross-section of a Coulomb collision between an

electron and a singly-ionized ion is known (e.g., Sturrock
1994) to be

σei = 4π

(
e2

mew2

)2

λei , (39)

with the Coulomb logarithm λei given by

λei = 23− ln
(
n1/2e T

−3/2
eV

)
(40)
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within the temperature range of TeV < 10 where TeV
refers to temperature in unit of eV. It thus follows

νei =
4

3

(
2π

me

)1/2
e4

(kBT )3/2
niλei

= 2.9× 10−6 s−1T−3/2ev niλei ,

(41)

where ni is in the unit of cm−3.
The cross-section of collision with neutral particles

can be modeled as a hard sphere collision where the
cross-section is independent of the relative speed, and the
collisional frequency is expressed as

ναβ = nβσαβ
4

3

(
8kT

πmαβ

)1/2

. (42)

Note that in the lower solar atmosphere, the neutral
particles are practically hydrogen atoms. The ions are
practically protons except near the temperature minimum
region, where the ions are metal ions. We use the
collisional cross-section between an electron and a
hydrogen atom

σeH = 35πa20 = 3.1× 10−15 cm2 (43)

that was taken by Kubat & Karlicky (1986) where a0 =

5.3× 10−9 cm is the Bohr radius.
We also utilize the cross-section of collision between

a proton and a hydrogen atom

σpH = 217g(T )πa20 = 19× 10−15g(T ) cm2 (44)

taken from table 5 of Hunter & Kuriyan (1977). The factor
g(T ) is equal to 1 when Tev ≡ T/11604 = 0.5, and
decreases from 1.15 to 0.57 in the energy range of Tev
from 0.1 to 10 eV. We also note that meH ' me and
mpH = mH/2.

Near the temperature minimum region, hydrogen is
hardly ionized at all, and hence protons are a minor
species. The sources of the ions and electrons are the
elements with very low first ionization potential and with
relatively high abundance, which include Al, Na, Ca and
Fe. We model the different kinds of ions originating
from these elements by a hypothetical metal ion. The
cross-section of a collision between this metal ion and a
hydrogen atom is modeled by the formula

σMH = (r + 1)2σpH , (45)

where r is the classical radius ratio of the ion to the
hydrogen atom, which we set to 3. Note thatmMH ' mH .
Thus we have

νeH = 2.8× 10−7 s−1T 1/2
ev n(H0) , (46)

νpH = 5.6× 10−8 s−1g(T )T 1/2
ev n(H0) , (47)

νMH = 6.3× 10−7 s−1g(T )T 1/2
ev n(H0) , (48)

where n(H0) is the number density of hydrogen atoms.
Note that νeH and νpH are indeed of the same order of
magnitude, as we assumed earlier.
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Fig. 2 Height variations of electric resistivity. For
comparison with Kubat & Karlicky (1986), we adopted the
VAL-C model and B sin θ = 100 G.

3 RESULTS

We calculated ηe following the above-described methods
and compared the results with those of Kubat & Karlicky
(1986). We adopted the VAL-C model like Kubat &
Karlicky (1986). Figure 2 indicates that at heights below
2100 km where hydrogen is not fully ionized, there is no
significant difference between the two methods we em-
ployed, supporting the validity of method 2 calculating the
electric resistivity from two independent thermodynamic
parameters and the photoionization rate of hydrogen.
Our calculations, however, produce systematically larger
values of ηe than the calculation of Kubat & Karlicky
(1986). This discrepancy seems to arise from the difference
in the adopted value of σpH . We directly took the values
given in the table of Hunter & Kuriyan (1977), but Kubat
& Karlicky (1986) computed σpH by integrating the
graphs of differential cross-sections presented by Hunter
& Kuriyan (1980). In principle, this integration should
yield the same value as the table of Hunter & Kuriyan
(1977), because those results were based on the same work
done by the same authors. Since Kubat & Karlicky (1986)
did not specify the total cross-section they obtained from
the integration, we cannot directly compare our choice
with that of Kubat & Karlicky (1986). If we adjust this
parameter by multiplying it by 1.7, we can obtain the
values of resistivity that are in good agreement with those
of Kubat & Karlicky (1986). Nevertheless, we do not
employ such adjustment in the present work since this
adjustment is not physically justified.

It can be seen from Figure 3 that νei, νeH and
νpH in the low solar atmosphere (FAL-C model) are
very high (> 103 s−1). This means that the plasma is
fully collisional, achieving dynamical relaxation among
particles of different species on time scales shorter than
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Fig. 4 Height variations of electric resistivity based on the
FAL-C model with B sin θ = 100 G.

10−3 s. As a result, we can conclude that all of the electron
fluid, ion fluid and neutral particle fluid have the same
temperature in the low solar atmosphere. Specifically, we
find that νei decreases from 1 × 1010 s−1 at height 0 km
to 1 × 106 s−1 at height 2200 km, νeH , from 3 × 1010

s−1 to 5 × 103 s−1, and νpH , from 5 × 109 s−1 to
8 × 102 s−1. These height variations mostly reflect those
of ni and n(H0) to which the collisional frequencies are
proportional.

Figure 4 displays the height variations of electric
resistivity ηe in the low solar atmosphere in the specific
case of B sin θ = 100 G. It ranges from 2 × 10−12 s at
height 0 km to 6×10−8 s at height 2200 km. The dominant
contribution comes from ηen at heights< 750 km and from
ηin at heights > 750 km. This means that the collisions
with neutral particles are the most important source of
electric resistivity in the low solar atmosphere. Note that

the term ηen is proportional to nn/ne since νen ∝ nn.
This term increases when the particles are less ionized.
Meanwhile, ηin is proportional to (1 − xH)/((xH +

AM )n2H). As long as xH is smaller than 1, ηin increases
with height because nH rapidly decreases with height. But
at heights > 22 000 km, xH rapidly approaches 1 and so
ηin rapidly decreases with height.

Figure 4 also demonstrates that the contribution of ηei
to ηe is minor. The resistivity contribution ηei coincides
with the Spitzer resistivity in a fully-ionized plasma
(Spitzer 1956). Because νei ∝ ni and ni = ne, the low
temperature of the low solar atmosphere is preferential
for a high value of ηei. Nevertheless, its value is found
to be smaller than either ηen or ηin throughout the low
solar atmosphere. Particularly at heights > 1000 km, ηin
overwhelms ηei+ηen with the ratio ηin/(ηei+ηen) ranging
from 80 at height 1000 km to 3 × 105 at height 2200 km.
Note for clarity that the value of this ratio is proportional
to the square of B sin θ. If we choose a smaller value
B sin θ = 10 G instead of 100 G, the ratio will have a
range of smaller values from 1 to 3 × 103. However, it is
very likely that B sin θ > 10 G in solar chromospheric
features, and so we conclude that ηin dominates the
electric resistivity in such features.

4 DISCUSSION

The electric resistivity ηe is the key parameter that
controls the rate of magnetic reconnection in a Sweet-
Parker current sheet. Motivated by the requirements
of quantitative modeling of observable reconnection
features in the solar chromosphere, we have revisited the
calculation of ηe and compared the results with those
of Kubat & Karlicky (1986). We presented two methods
for calculating the electric resistivity ηe in the low solar
atmosphere when the physical conditions are specified.
The results are in good agreement with the tabulated
values of 1/σC presented by Kubat & Karlicky (1986)
except for the discrepancy arising from uncertainty in the
cross-section of proton-hydrogen collision they used. We
emphasize that our second method can be employed even
when the solar plasma is not described by the VAL-C
model, thus extending the earlier results.

Our results clearly indicated that ηin may significantly
exceed ηei in the solar chromosphere. In the middle
chromosphere at height 1500 km, the value of ηin is
roughly 100 times that of ηei + ηen in the case of
B sin θ = 10 G. The large electric resistivity associated
with the ion-hydrogen atom collisions in chromospheric
plasma with a neutral component fully resolves the
problem that a fast rate of magnetic reconnection cannot
be achieved in a Sweet-Parker current sheet when only
the resistivity arising from the electron-ion collisions and
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electron-hydrogen atom collisions is considered. Because
of this problem, Chae et al. (2003) and Chae (2007)
introduced an ad hoc anomalous resistivity, corresponding
to a resistivity enhancement by a factor of order of 100.
The resistivity arising from the ion-hydrogen collisions can
be the physical cause of the enhanced resistivity in the
solar chromosphere if there exist a large enough number
of neutral hydrogen atoms.

Physically, ηin, or ambipolar diffusion, comes into
play only when electric currents are flowing in the
direction perpendicular to the magnetic field. This is
because ηin is directly related to the ion-neutral drift
velocity vin, and this velocity is basically driven by the
Lorentz force acting on ions. The value of ηin becomes
zero in the force-free magnetic configuration where the
Lorentz force is zero. An electric current sheet is such
a structure where electric currents flow perpendicular to
magnetic fields. In this kind of structure, ηin becomes
important. An interesting thing is that the formation of
sharp structures like current sheets can be driven by
ambipolar diffusion itself because of the anisotropic nature
of ambipolar diffusion (Brandenburg & Zweibel 1994).

There exist two situations of astrophysical interest
where the electric current flows perpendicular to magnetic
field: Alfvén waves and current sheets. As an illustration,
we estimate the values of j, vei and vin in these two
cases. Specifically we will consider Alfvén waves and
current sheets that might exist in the chromosphere at a
height of 1600 km. We obtain from the FAL-C model:
ρ = 2.3 × 10−12, ne = 6.3 × 1010, xH = 0.06 and
νei = 7. × 106 s−1, νpH = 3.4 × 104 s−1. If we choose
B = 50 G, the Alfvén speed is found to be cA = 93

km s−1.
We first consider the Alfvén waves that have a velocity

amplitude of v0 = 10 km s−1 and period P = 150 s or
angular frequency ω = 0.04 rad s−1. The amplitude of
the alternating electric current associated with the Alfvén
waves is then given by

j0 =
cBωv0
4πc2A

= 60 statA cm−2

= 2× 10−4 A m−2.
(49)

Based on this value, the electron-proton drift speed vei is
estimated at 1.9 cm s−1, and the ion-neutral drift speed vin
at 51 cm s−1. These speeds are much lower than the plasma
velocity v0.

Now we consider a current sheet characterized by δB=
50 G and l = 10 km. The electric current density in this
current sheet is given

j =
cδB

4πδl
= 1.2× 105 statA cm−2

= 0.4 A m−2 ,
(50)

which is much larger than the estimate for the Alfvén
waves in the above. The electron-ion drift speed vei in
this current sheet is estimated at 0.04 km s−1, and the
corresponding ion-neutral speed vin at 1.0 km s−1. Note
that this value of vin is of the same order as the speed of
plasma inflowing into the current sheet (e.g., Chae et al.
2003).

Our results indicate that the ion-neutral drift velocity
is an important source of electric resistivity that controls
the rate of magnetic reconnection and energy release in
current sheets in the solar chromosphere. This conclusion
holds for the current sheets containing a significant number
of hydrogen atoms. Note, however, that the process of
magnetic reconnection itself heats plasma in the current
sheet and causes more hydrogen atoms to get ionized,
resulting in the decrease of hydrogen atoms and ηin.
Whether ηin is important in these events or not depends on
how much neutral hydrogens are left in the current sheets.

For example, Ellerman bombs, the well-known mag-
netic reconnection events in the chromosphere of active
regions, are known to accompany the temperature increase
of several hundred to several thousand K (e.g., Fang et
al. 2006; Hong et al. 2017), and to have temperature of
7000 to 9000 K (e.g., Danilovic 2017). Very recently,
Chae (2021) investigated the ionization of hydrogen in
the solar chromosphere by adopting the photoionization
rate inferred from the FALC model, and concluded that
plasma features contain more than 10% neutral hydrogen
at temperatures lower than 17 000 K, but less than 1%
neutral hydrogen at temperatures higher than 23 000 K.
This result suggests that the Ellerman bombs can contain a
significant fraction of neutral hydrogen atoms. The fraction
of neutral hydrogen possibly decreases a bit in a dynamic
atmosphere by the dynamic ionization that is more affected
by the high temperature phase (Carlsson & Stein 2002).
Nevertheless, it is very likely that the Ellerman bombs still
contain enough neutral hydrogens, which is the reason why
they are observed well through the Hα line. Accordingly,
it seems quite worthwhile to investigate the effect of ηin
on magnetic reconnection in charge of Ellerman bombs.
However, the recently discovered ultraviolet (UV) bursts
(Peter et al. 2014; Young et al. 2018), often called IRIS
bombs, may be different. These events usually take place
around and above the temperature minimum region and
the temperature in the UV burst region may be higher
than 20 000 K because they are observed through the
UV emission lines of ions existing at transition region
temperatures. Therefore, it is very likely that hydrogen is
almost fully ionized in UV bursts, leading to ηen = ηin =

0. In this situation, the fast rate of magnetic reconnection
cannot be achieved in a Sweet-Parker current sheet and
may have to be explained by an alternative mechanism,
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such as the plasmoid-instability driven reconnection model
of Petschek type (e.g., Ni et al. 2015).

We conclude that ηin can explain the fast rate of
magnetic reconnection when the temperature increase in
the current sheet is not large enough to significantly
increase hydrogen ionization. This is the case for the
early phase of magnetic reconnection with strong magnetic
fields in solar active regions (e.g., Ni et al. 2015) or for
the magnetic reconnection of weak fields on the quiet Sun.
In the future, we intend to incorporate the results of our
calculation of the electric resistivity into our model of
compressible reconnection in a Sweet-Parker current sheet
(Chae 2007; Litvinenko & Chae 2009). Our intention is
to take into account ambipolar diffusion, ionization and
recombination of hydrogen, as well as a realistic energy
equation and time-dependent effects, in order to obtain
results that can quantitatively describe the magnetic flux
cancelation observed in the solar photosphere.

Acknowledgements We greatly appreciate the refer-
ee’s constructive comments. This research was sup-
ported by the National Research Foundation of Korea
(NRF-2020R1A2C2004616). YL acknowledges the sup-
port by the Deutsche Forschungsgemeinschaft project
(434200803).

References
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