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Abstract Using data-driven algorithms to accurately forecast solar flares requires reliable data sets. The
solar flare dataset is composed of many non-flaring samples with a small percentage of flaring samples.
This is called the class imbalance problem in data mining tasks. The prediction model is sensitive to
most classes of the original data set during training. Therefore, the class imbalance problem for building
up the flare prediction model from observational data should be systematically discussed. Aiming at the
problem of class imbalance, three strategies are proposed corresponding to the data set, loss function, and
training process: Type I resamples the training samples, including oversampling for the minority class,
undersampling, or mixed sampling for the majority class. Type II usually changes the decision-making
boundary, assigning the majority and minority categories of prediction loss to different weights. Type III
assigns different weights to the training samples, the majority categories are assigned smaller weights, and
the minority categories are assigned larger weights to improve the training process of the prediction model.
The main work of this paper compares these imbalance processing methods when building a flare prediction
model and tries to find the optimal strategy. Our results show that among these strategies, the performance
of oversampling and sample weighting is better than other strategies in most parameters, and the generality
of resampling and changing the decision boundary is better.
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1 INTRODUCTION

the eruption of flares.
Solar flares strongly influence the space weather, especial-

results is useless, and generally we much more focus on

ly the large flares. For solar flare prediction, the probability
of large flare is small but of great interest. Roy et al. (2020)
and Huang et al. (2018) believe that the predictor of solar
flares is considered an important parameter in the field of
solar research and is used to describe the laws of physics in
the transient or steady-state process of the Sun’s interior.
As shown in Table 1, many data mining methods can
learn predictive models from the generated data sets, and
these methods have been used to predict the outbreak of
flares. In the flare forecast task, the small probability of
“flare events” has caused a strong imbalance problem,
that is, the absolute advantage of negative samples (non-
flare events) in the data set. The unoptimized training
process will aggravate the classification bias of the positive
and negative samples in the flare prediction model. For
example, the prediction model can simply forecast that no
flare will happen with a high success rate. This kind of

The above-mentioned problem has caused widespread
concern, and many international conferences have specif-
ically discussed this problem. For example, AAAI’2000
seminar, [CML 2003 learning seminar and ACM SIGKDD
Exploration 2004 learning topic. Three types of methods
are used to deal with this problem normally. Type I
resamples training samples. Type II changes decision
discriminant boundary. Change the weight to smooth out
the prediction loss between categories (Tulunay et al.
2004). This can change the discriminant boundary between
flaring and non-flaring decision. Type III assigns different
weights to training samples (Liu et al. 2008). The majority
class is assigned a small weight or the minority class is
assigned a large weight. This makes the learned model
internally bias the minority class.

Zhou (2019) and Bobra & Couvidat (2015) generated
a balanced dataset to train the prediction models. Yi et al.
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Fig.1 Class imbalance in predictors.

(2020) used the X-ray flux profile of solar flares without
any preprocessing to directly extract feature data. This
method can be used to quickly generate forecast models.
Park et al. (2020) believed that the core technology of
flare prediction separates positive samples from negative
samples, which is often referred to as a labeling process
in the machine learning community. They tried a series
of methods and compared their details and results. In
some articles, 1457 unrelated sunspot groups in the NGDC
catalog were processed to complete the source data set.
Then, the correlation function between flares and sunspot
groups was established by using sunspot typing and special
designed software. Li et al. (2007) randomly selected a
subset of negative samples to match the positive sample set
to train the learning vector quantization (LVQ) network,
and proposed a fusion of support vector machine (SVM)
and K-nearest neighbor (KNN) technology to build a
prediction model. Yu et al. (2009), Yu et al. (2010) and
Huang et al. (2010) selected the flaring samples and the
same number of non-flaring samples to form the dataset.
Florios et al. (2018) pointed out the probability of a hit
and the probability of a false alarm depend on the response
bias, which determines the activation level used as a
threshold for a yes/no response. Leka & Barnes (2007) and
Barnes et al. (2007) were based on the assumption that the
prior probability increases with the increase of the sample
size, and believed that the boundary of the discriminant
calculation does not always pass through the class center.

Table 1 Major Methods for Treating the Class Imbalance
Problem in Solar Flare Prediction and the Corresponding
Evaluations

References Algorithms Strategies

Zhou (2019) BPNN Type I
Bobra & Couvidat (2015) SVM,CCNN,RBF  Type I
Yu et al. (2010) BN, DT, LVQ Type 1
Huang et al. (2010) DT Type I
Florios et al. (2018) SVM,MLP,RF Type 11
Leka & Barnes (2007) DA Type II
Barnes et al. (2007) PDA Type Il
Al-Ghraibah et al. (2015) FH Type III
Zheng et al. (2019) CNN Type III

It can be seen that the problem of class imbalance
has received widespread attention, although it has not
been studied systematically. We will focus on introducing
sample weighting strategies to deal with class imbalances
in short-term forecasts, and support them by comprehen-
sively comparing the performance of various strategies.

The paper is organized as follows: Section 2 in-
troduces data characteristics. Section 3 introduces and
discusses several types of imbalance handling methods.
Section 4 presents the evaluation results between methods.
Section 5 conducts test experiments and performance
comparison. Finally, Section 6 gives the conclusion of this
article.
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Fig.2 Schematic diagram of resampling.

2 DATA CHARACTERISTICS

Flare data are from http://www.ngdc.noaa.gov/
stp/SOLAR/ftpsolarflares.html#xray. Solar
flares are generally graded as C, M or X. The 185 active
regions from May 1996 to November 1999 were selected
based on the criteria used. Each observable sample in these
active regions was labeled as either positive or negative
samples depending on the threshold of I;., resulting
in a dataset containing 1472 positive and 8528 negative
samples. Considering that the difference in the number of
positive and negative samples is around five times, this
is known as the class imbalance problem and may bias
the non-combustion predictions if the model is learned
directly.

Taking the three predictors of total unsigned magnetic
flux (TUMFLUX), magnetic field horizontal gradient
(MFHG) and total unsigned vertical current (TUVC) as
an example, the sample distribution of flare predictors is
shown in Figure 1. The positive and negative samples
are asymmetric in the samples space. After resampling
processing such as oversampling processing, the sample
will show a balanced trend.

3 COMPARISON OF CLASS IMBALANCE
TREATMENT SOLUTIONS

3.1 Type I: Resampling

Resampling techniques reduce the problem of uneven
distribution among samples and are commonly used to
solve class imbalance problems. Once the training set is
resampled, all algorithms can be adapted to the sampled
dataset without further modification. The dataset is usually
divided into two parts during training: the training set and
the test set. The learning algorithm learns the prediction
model from the training set and evaluates it with the test
set.
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Table 2 Different Outcomes of Two-class Prediction

Predicted positive class Predicted negative class

True Positive (TP) False Negative (FN)
False Positive (FP) True Negative (TN)

Actual positive class
Actual negative class

The basic resampling techniques include under-
sampling (shown in Fig. 2) and over-sampling methods.
The samples from the majority class are eliminated and
the samples from the minority class are duplicated for the
under-sampling and over-sampling methods, respectively.
The over-under sampling is to eliminate majority class and
duplicate minority class simultaneously, which modifies
samples equal to the average of the minority and ma-
jority class numbers. Furthermore, some more intelligent
resampling methods have been proposed to obtain the
appropriate distribution.

3.2 Type II: Changing Decision Discriminant
Boundary

Unlike the resampling technique, this method does not
change the distribution of the training set. Generally,
weights of prediction errors of each class are equal, and
the discriminant boundary is determined by minimizing the
overall error rate. The discriminant boundary is the vertical
line passed through the midpoint between two populations.

To compensate for the effects of class imbalance,
prediction errors for majority and minority classes are
given different weights (Tulunay et al. 2004). Prediction
errors of the majority class are assigned with a small
weight and/or prediction errors of the minority classes are
assigned with a large weight. This makes the decision bias
to the minority class. Usually when determining the weight
value of the decision boundary, the “average value” is used
as the weight of the majority class and the minority class.
Specifically, the influence of the two categories on the
decision boundary is obtained by counting the numerical
average of the majority class and the minority class, and
then dividing it by the number of the majority class
and the minority class, respectively, to obtain the weight
ratio. Figure 3 shows the change of decision discriminant
boundary, and the discriminant boundary moves from
boundary 1 to boundary 2.

3.3 Type III: Sample Weighting

This method assigns different weights to training samples
Liu et al. (2008). Most samples are given smaller weights
and/or a few samples are given larger weights, which are
then added to the learning algorithm. Sample weighting
techniques have been widely used in class imbalance
learning to improve the performance of some standard
machine learning methods, such as decision tree and SVM
(Brefeld et al. 2003).
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Table 3 Performance of Different Strategies for Dealing with Class Imbalance Problem

index raw resample decision weight sample weight
over under over and under
Minority 0.11+0.04 0.70+0.05 0.60£0.06 0.70+0.04 0.63+0.04 0.72£0.04
Majority 0.99+0.01 0.73+0.02 0.7740.04 0.72+0.03 0.76+0.02 0.71+0.02
AUC 0.5540.02 0.71£0.03 0.68£0.02 0.7140.02 0.6940.02 0.71£0.02
HSS 0.17+0.06 0.28+0.03 0.2610.04 0.27£0.03 0.27+0.03 0.27+0.03
Time 80.96+£9.03 898.30£324.75 6.61£0.65 178.74+£45.36 79.64+6.89 174.42+48.67
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Fig.3 Schematic diagram of changing decision discrimi-
nant boundary.

Both the method of type II and type III involve
weights. Compared with type II, in terms of changing
the decision boundary in the iterative process, type III
usually requires modification of conventional machine
learning methods to process sample weights. The fastest
and most effective method is to calculate the average of
the majority and minority samples, assign the weights of
the two categories in the model training, and try to solve
the class imbalance.

The weight of the sample represents the importance
of the sample in the data mining process. Under the
default weight (that is, without artificially changing
the weight), the learned model is internally biased
towards minority groups. “Sample weighting technology”
is characterized by: it does not significantly change the
execution time of the machine learning method, because
it does not change the number of training samples; it
has the ability to consider the prior knowledge of each
sample separately; it can assign samples different weights
to consider the difference in importance of different
samples (such as redundant samples, boundary samples
and noise samples). Liu et al. (2008) tries to combine
the intelligent identification algorithm into the sample
weighting technology.

4 PERFORMANCE EVALUATION

Learning from unbalanced data is still one of the
difficulties of classifiers (Nnamoko & Korkontzelos 2020).

Compared with the untreated samples directly used, if
the effective class imbalance treatment is carried out,
the prediction accuracy will inevitably be improved. This
article used SVM as a prediction algorithm to compare
different types of imbalances. SVM is a very simple and
practical classifier, which has been applied maturely in
all walks of life. The basic principle is to try to pass a
hyperplane to correctly divide the positive and negative
samples.

Because samples from minority classes have less
impact on the overall accuracy, errors occur when the
overall classification accuracy metric is used to evaluate
model performance. In class imbalance problems, some
additional performance metrics have been proposed.
Such as estimating the performance of minority and
majority classes (TP and TN), ROC (Receiver operating
characteristic) curve and AUC (Area under the ROC
curve), HSS (Heidke Skill Score), etc., these parameters
are often used to quantify the performance of forecasting
models. The TP rate and TN rate are considered here to
evaluate the performance of the sample. The reason is
that, theoretically if the classifier can perform the correct
classification, then the TP rate and TN rate will be. There
is a noticeable improvement. Therefore, TP rate and TN
rate are the most direct and effective means. The above
performance evaluation indexes are calculated based on the
statistical results in Table 2.

The overall classification accuracy is computed as:

TP +TN
-—
where N = TP + TN + FP + FN. For the class imbal-
ance problem, the PC (Proportion Correct) is not suitable
to measure the performance of the prediction model. A
refined evaluation is to distinguish the performance of
each class. TP rate and TN rate are used to estimate the
performance of positive and negative classes, respectively.

PC ey

TP
TP = — 2
rate TP + TN )
TN
TNrate = TN ~ TP TP 3)

In order to get more satisfactory single performance
evaluation indexes, AUC and HSS is proposed based on
the signal detection theory.
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Table 4 Comparisons of Class Imbalance Learning Methods

Index Resampling Decision weighting Sample weighting
Over Under Over and Under
Universality Excellent Excellent Excellent Average Not good
Performance Excellent Average Excellent Average Excellent
Time Consuming Large Small Average Average Average
0a 5.1 Performance Results of Different Strategies
- i
0351 Majority class : . . . .
' ~ — — Minority class | We compare the results of using different strategies in
03 1 solar flare prediction for dealing with class imbalance
| . . .
£ ossf ! problems, and their performance is shown in Table 3. After
g .l ! adjusting the strategies for handling the class imbalance
3 vt \ [ Som problem, the prediction performance is balanced between
8 0151 oundary 21 Boundary 1 . K .
© | positive and negative samples. Analyzing the performance
01T L of different strategies, we found that (1) the performance
005 . 4 of over-sampling is better than that of under-sampling,
0 ‘ P I however, the over-sampling method is time-consuming.
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Fig.4 Performance indexes versus PWF(+).

ROC, a curve of hit rate (TP rate) against false alarm
rate (FP rate) for different decision thresholds, is a tool
to distinguish two alternative possibilities in the signal
detection theory. Given a certain threshold, a single point
on this curve can be obtained. The area under the ROC
curve (AUC) is used to calculate the ROC-based measure
of skill (Liu et al. 2008). The AUC for a certain decision
threshold is computed as:

1 + TPrate — FPrate

. . “)

Equation (5) is used to quantify the performance of the

prediction model (Yu et al. 2010).

PC-F

HSS = — 5

T 5)

(TP+FN)(TP+FP) | (TN+FP)(TN+FN)

NZ NZ :

AUC =

where E
When the forecasts and observations are independent, the
prediction model is in absence of skill. As shown by the
definition of HSS, this parameter shows the predictive
power of the model. In general, HSS is —1 in number if
the prediction is wrong, and 1 if all predictions are correct.
its intermediate state of O represents the randomness of the
prediction.

5 RESULTS

Cadence of the solar magnetogram data samples was 96-
minute sets. Span of time is 3 years from 1996 for 185
active regions. The ratio of positive to negative samples
is 1472:8528. We used a 10-fold cross-validation to verify
the performance of the prediction model: the mean of the
results of 10 folds of the prediction model was selected to
characterize the model accuracy, and its standard deviation
was used to estimate the uncertainty.

The strategy composed by over-sampling and under-
sampling is a compromise between them. (2) The sample
weighting strategy has the best performance. However, a
machine learning algorithm should be redesigned to treat
the weights of samples. (3) The performance of changing
decision discriminant boundary is comparable with that of
the resampling strategy.

5.2 Performances of Sample Weighting Strategy with
Different Weights

In this experiment, we assign an inverse class sample
weight to each sample before performing data learning.
Then, in order to obtain the optimal value of the inverse
sample weight, we performed an analysis of the impact
of this value on the learning performance. Its probability
weighting function is defined as follows:

ny - Wy

PWF(+) = (6)

)
TL1"LU1+’/7,2'U)2

where n; and ny denote the number of positive and
negative samples, respectively. The corresponding weights
are wi and ws.

PWF(+) is positively correlated with a few sample
weights. In the special case i.e., PWF(+) = 0.5, the
class imbalance problem has been eliminated for the
characterized dataset. In the comparison experiments,
by changing the weights w; and ws, the variation of
performance metrics with PWF(+) is obtained as shown
in Figure 4. As shown in this figure, the use of changing
weights has a positive impression for solving sample
problems with class imbalance; on the other hand, by
comparing a large number of datasets it is clear that the
accuracy of the model varies with PWF(+). Exceptionally,
the AUC is usually optimal or suboptimal for PWF(+)
= 0.5. The above results reinforce that the method (i.e.,
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inverse class probability weighting) is a useful approach to
solve the class imbalance problem in the data sample.

6 CONCLUSIONS

The prediction of solar flares usually has the problem of
imbalance, which will reduce the relevant performance
of the model. For most data mining algorithms used
to build the model of flare prediction, the problem of
class imbalance should be solved before constructing a
prediction model based on observation data.

The main work of this paper summarizes the
characteristics of a series of methods that are typically used
to solve the problem of class imbalance. We found that
there is not a perfect algorithm that performs best in all
aspects. We believe that in practical applications, we need
to choose an appropriate strategy according to different
computing time requirements, accuracy requirements, and
other goals. Refer to Table 4 for specific recommended
content. For example, in solar flare forecasting problem,
if only the algorithm with the fastest calculation speed
is needed and other requirements are abandoned, we
recommend Type I under-sampling method.

To better illustrate the sensitivity of class imbalance
processing methods to different prediction algorithms,
more detailed work is needed, such as comparing the
performance of class imbalance algorithms combined with
SVM and LS-SVM. Due to space limitations, this article
does not give a key explanation. Obviously, this is one of
the tasks we have to do next.
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