$egin{aligned} Research in \ A stronomy and \ A strophysics \end{aligned}$ 

# Predicting the CME arrival time based on the recommendation algorithm

Yu-Rong Shi (石育榕)<sup>1,2,3</sup>, Yan-Hong Chen (陈艳红)<sup>1,3</sup>, Si-Qing Liu (刘四清)<sup>1,2,3</sup>, Zhu Liu (刘柱)<sup>4</sup>, Jing-Jing Wang (王晶晶)<sup>1,3</sup>, Yan-Mei Cui (崔延美)<sup>1,3</sup>, Bingxian Luo (罗冰显)<sup>1,2,3</sup>, Tian-Jiao Yuan (袁天 娇)<sup>1,3</sup>, Feng Zheng (郑锋)<sup>4</sup>, Zisiyu Wang (王子思禹)<sup>1,2,3</sup>, Xin-Ran He (何欣燃)<sup>1,2,3</sup> and Ming Li (李铭)<sup>1,2,3</sup>

- <sup>1</sup> National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China; chenyh@nssc.ac.cn
- <sup>2</sup> University of Chinese Academy of Sciences, Beijing 100049, China
- <sup>3</sup> Key Laboratory of Science and Technology on Environmental Space Situation Awareness, Chinese Academy of Sciences, Beijing 100190, China
- <sup>4</sup> Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China

Received 2021 January 21; accepted 2021 March 17

Abstract CME is one of the important events in the sun-earth system as it can induce geomagnetic disturbance and an associated space environment effect. It is of special significance to predict whether CME will reach the Earth and when it will arrive. In this paper, we firstly built a new multiple association list for 215 different events with 18 characteristics including CME features, eruption region coordinates and solar wind parameters. Based on the CME list, we designed a novel model based on the principle of the recommendation algorithm to predict the arrival time of CMEs. According to the two commonly used calculation methods in the recommendation system, cosine distance and Euclidean distance, a controlled trial was carried out respectively. Every feature has been found to have its own appropriate weight. The error analysis indicates the result using the Euclidean distance similarity is much better than that using cosine distance similarity. The mean absolute error and root mean square error of test data in the Euclidean distance are 11.78 and 13.77 h, close to the average level of other CME models issued in the CME scoreboard, which verifies the effectiveness of the recommendation algorithm. This work gives a new endeavor using the recommendation algorithm, and is expected to induce other applications in space weather prediction.

Key words: Sun: coronal mass ejections (CMEs) - method: recommendation algorithm

## **1 INTRODUCTION**

CMEs (coronal mass ejections) are massive plasma eruptions carrying a magnetic field occurring from the solar atmosphere into the heliosphere (Webb & Howard 2012). Observations of CMEs began in the 1970s, the earliest research satellite that was developed by the European Space Agency (ESA) and National Aeronautics and Space Administration (NASA) was the Solar and Heliospheric Observatory (SOHO) to study the structure of the Sun, chemical composition, dynamics of the solar interior, structure of the outer solar atmosphere (density, temperature, velocity fields, etc.) and the relationship between solar wind and solar atmosphere. The coronagraphs (Large Angle and Spectrometric Coronagraph Experiment, LASCO) (Brueckner et al. 1995) aboard SOHO have made tremendous contributions to CMEs observations.

The interactions between CMEs and interplanetary disturbance can cause violent outbursts in the space environment. In general, the CMEs toward Earth may cause near-Earth space environment effects within 1-3 days after its eruption. Therefore, whether CMEs reach the Earth and when they arrive are specially significant in space weather prediction. Currently, there are many different models to estimate the CMEs arrival time (Zhao & Dryer 2014; Verbeke et al. 2018). These models fall into three categories: empirical models are fitted by looking for the relationship between CME velocities and their arrival time (Vandas et al. 1996; Wang et al. 2002; Manoharan 2006; Schwenn et al. 2005; Xie et al. 2004; Núñez et al. 2016; Paouris & Mavromichalaki 2017), drag-based models fully consider the interaction between the CME and the background solar wind (Subramanian et al. 2012; Vršnak et al. 2013; Hess & Zhang 2015; Möstl et al. 2015),

and MHD models use the observed data as boundary conditions to predict the CME arrival time (Smith & Dryer 1990; Dryer et al. 2001; Moon et al. 2002; Tóth et al. 2005; Detman et al. 2006; Feng & Zhao 2006; Feng et al. 2007; Riley et al. 2012, 2013; Odstrcil et al. 2004; Poedts et al. 2020; Jin et al. 2017; Sokolov et al. 2013; van der Holst et al. 2014; Wang et al. 2018). With the development of computers, a lot of research is devoted to the prediction of CME arrival time using the machine learning method. Sudar et al. (2016) based on FCNN to fit the relationship between CME arrival time, initial velocity and central meridian. Liou et al. (2018) used SVM (support vector machines) to predict the arrival time based on CME features. Wang et al. (2019) employed the CNN (convolutional neural network) region model to obtain the CME arrival time by white-light observation.

Currently, the existing means of observation are the field observation to measure the plasma and magnetic field data by satellites, and using the coronagraph carried by satellites to image CMEs. However, since the imaging of CMEs is a projection effect on a two-dimensional plane, the shape and structure of images observed cannot reflect the real propagation shape of CMEs in threedimensional space. The observation results of CMEs are limited by the projection effect and observation angle, which greatly weakens our research on the physical mechanism of CME and the development of prediction work. Therefore, in routine work, forecaster's experience is still useful in predicting the geo-effectiveness of CMEs, as a complementary of the CME modeling. In order to provide the forecaster a reference in the real forecasting service, a recommendation system based on machine learning was designed to adequately excavate the historical CME events effects and find similar CME events to guide current prediction work. Then machine learning has achieved more excellent results than other methods in computer vision (Zheng et al. 2018), speech recognition (Schultz et al. 2021), control system (Liu et al. 2021), physical chemistry (Kang et al. 2021), biology (Huang et al. 2020) and other natural science fields (Ham et al. 2019; Wang et al. 2021) for data modeling. Related methods are increasingly used to build models from the increasing volume of space data to find the natural laws and meet the needs of our production and life as well as scientific research (Wang et al. 2017). CAT-PUMA (Liu et al. 2018) model used a support vector machine (SVM) algorithm, taking the Interplanetary Coronal Mass Ejection (ICME) physical parameters as the input characteristic parameters to predict CMEs arrival time, which use the SOHO satellite observations of 182 CME events before through meticulously analyzing characteristics of CMEs and the solar wind parameters. The recommendation system is

a system for reasonably filtering the existing massive information, predicting the user's rating or preference for items, and giving reasonable recommendations for them. Currently, the application of recommendation algorithm in earth science is still in its infancy, especially in the application of space weather. In this paper, a new model was adopted, which is based on historical data, recommending similar historical events for current CME events and forecasting CME recommended arrival time simultaneously. The CME data setting and normalization will be highlighted in Section 2. Section 3 introduces how to calculate the distances between historical events and current CME events. The recommendation result and discussion were carried out in Section 4. Section 5 was the summary and conclusion.

# 2 DATA

Since the propagation time of CMEs is related to various factors, the characteristic parameters of CMEs, which describe the CME's direction, angle width, speed etc. should be taken into account. In addition, the source region coordinates of CMEs on the Sun also related to the direction of CMEs propagation. According to previous experience, CMEs escape from the Sun and interact with interplanetary media. Therefore, the interplanetary physical quantities of background solar wind have a great influence on the propagation of CMEs. All the physical parameters mentioned above are described below. Finally, a multiple association list of CME, which includes 215 CME events and 18 physical parameters, is determined and used for the further analysis. The following gives a detailed introduction of the 18 characteristic parameters.

# 2.1 Seven Characteristic Parameters Determined from CME List and ICME List

From 1996 to 2020, the CME catalog<sup>1</sup> includes 30 321 events which is obtained by LASCO observations and maintained at the Coordinated Data Analysis Workshops (CDAW) data center (Yashiro et al. 2004). Seven features were used in this paper extracted from the list: CPA (central position angle), MPA (the position angle of the fastest moving segment of the CME leading edge), angle width (the sky-plane width of CMEs), and four speeds: the linear speed, quadratic speed at the time of initial and final (last possible) height measurement respectively, and second-order polynomial fitting speed evaluated when the CMEs are at a height of 20 Rs (solar radius).

For the same time period, all observed geo-effective CMEs was established by the following near-Earth

<sup>1</sup> https://cdaw.gsfc.nasa.gov/CME\_list/ UNIVERSAL/text\_ver/

ICME database: the Richardson and Cane list<sup>2</sup> (Cane & Richardson 2003; Richardson & Cane 2010; Ameri & Valtonen 2017). The time of CMEs disturbance to the ground is defined as the arrival time of a shock at Earth. Then, propagation time is obtained by subtracting the outbreak time with CMEs. There are 215 geo-effective CME events associated with CMEs in history. So far, we have obtained a geo-effective CME list including seven characteristics of CMEs and the propagation time of CMEs. We obtained a more comprehensive list of CMEs associated with flares by integrating the information from these lists. At the same time, it also laid a foundation for the next step of searching for the active region of CMEs.

## 2.2 Parameters Describing the Source Region

From 1996 to present, the X-ray flow mean value is used to automatically extract the characteristic parameters of solar flare events by using the program in 1 min at two bands of the GOES series satellite. The characteristic parameters of solar flare events list<sup>3</sup> is obtained from United States environmental data center. In this solar flare list, the parameters of the active region and associated CMEs are determined manually. The active region numbers of CMEs can be found through this list, so they can correspond to the geo-effective CMEs. In addition to this list, we also referred to the flare working directory of Watanabe et al.  $(2012)^4$ . We obtained a more comprehensive list of CMEs associated with flares by integrating the information from these lists. At the same time, it also laid a foundation for the next step of searching for the active region of CMEs.

The information in the active region list includes the numbers of active regions and the corresponding latitudes and longitudes on the solar disk. Combined with the work mentioned in Section 2.1, the active region information of geo-effective CMEs can be obtained. But these are far from enough, as there are some active regions where locations cannot be determined. For those CMEs with no identified source region information, we refer to a few works (Li & Luhmann 2006; Sinha et al. 2019; Maričić et al. 2020) to determine coordinates. But there are still many undetermined events with no associated flares or active region, and we manually measure the middle position coordinates of the filaments by referencing JHelioviewer (Müller et al. 2017), which is being developed as open source software by the ESA determine the source region information. Finally, the positions of each source region about CMEs were expressed in terms of the corresponding heliographic coordinate system: longitude and latitude. By integrating the data of various parties and adding manual confirmation, we finally get the data as shown in Appendix Table A.1. The first column is sequence number, the second column is near-Earth ICMEs, contain time information on date, month, year, hours and minute, and the third column is associated with the CME events that also implies a time series. The first three columns are all basic information, and the fourth column is the corresponding active region number. Coordinate information on the surface of the fifth column marks the most important information in the direction of CMEs communication. The sixth and seventh columns are corresponding to the flares or filaments respectively, or both are uncertain information which means some active regions have multiple bursts of solar activity in succession.

# 2.3 F10.7

Another parameter is the F10.7 index corresponding to the day of the CMEs. After the completion of this work, a list including geo-effective CMEs associated with the F10.7 index of the same day, seven characteristic parameters of CME and the longitude and latitude of the active region can be obtained.

## 2.4 Eight Solar Wind Parameters

Since the time of CMEs reaching the Earth is directly related to the background solar wind, the input parameters also increase the three magnetic field components of the solar wind ( $B_x$ ,  $B_y$ ,  $B_z$ ), the solar wind velocity, proton density, temperature, flow pressure and plasma beta. The parameters of the solar wind parameters are downloaded in intervals of five minutes from the OMNIWeb<sup>5</sup>. And then we calculated the daily average for each parameter. In addition to the previous parameters, plus the eight solar wind parameters, the final CME list contains a total of 18 parameters.

## 2.5 Data Preprocessing

After removing partial parameter missing events, final 215 geo-effective ICME events were handed out associated to CMEs, and with 18 characteristics added. Use the respective features on both lists (the CME list and the near-Earth ICME list) to integrate into a new list: multiple association list.

For each near-Earth ICME event, a disturbance time is the time of the associated geomagnetic storm sudden commencement (that is to say: CMEs disturb to the ground). Moreover, we can get the CME start time from

<sup>2</sup> http://www.srl.caltech.edu/ACE/ASC/DATA/ level3/icmetable2.htm

<sup>3</sup> https://hesperia.gsfc.nasa.gov/hessidata/ dbase/hessi\_flare\_list.txt

<sup>4</sup> https://xrt.cfa.harvard.edu/flare\_catalog/

<sup>5</sup> https://omniweb.gsfc.nasa.gov

the CME list, and then get the CME propagation time at Earth.

Normalization is a way of simplifying the calculation, in which the dimensional expression is transformed into a dimensionless expression: a scalar. This method is often used in a variety of computations. Because the magnitude of the 18 characteristic parameters is very wide, we normalize these characteristic parameters and map the data to the range of  $-1 \sim 1$ , which is more convenient and fast for follow-up data processing. In order to better adapt to different physical characteristics, there are three folds:

The first normalization formula we used is Max-Abs Normalization, because it does not move and aggregate data and therefore does not break any sparsity.

$$X = \frac{\left(X - X_{\min(\text{axis}=0)}\right)}{\left(X_{\max(\text{axis}=0)} - X_{\min(\text{axis}=0)}\right)}.$$
 (1)

The 'axis=0' means the normalization operation is performed for each column, that is, the normalization of different characteristic parameters does not affect each other. For the angular width, CME linear speed, CME second order initial speed, CME second order final speed, CME second speed in 20 Rs, F10.7, solar wind speed, proton density, temperature, flow pressure and plasma beta, the above characteristics in total of 11 parameters are normalized in this way.

According to practical experience, CMEs outbreak in the east-west direction of the Sun have completely different effects on the Earth, so the values of CPA and MPA fall within different positive and negative intervals through the sine function, which can reflect the direction of CMEs outbreak. So, the second way of normalization is for CPA and MPA to calculate their sine function. The measuring CPA and MPA rotate counterclockwise from the north of the diurnal surface, so the angle of the eastern hemisphere of the diurnal surface ranges from  $0^{\circ}$  to  $180^{\circ}$ , and its sine value falls between 0 and 1, whereas the sine value of the western hemisphere of the diurnal surface is between -1 and 0.

In addition to the above 13 features, there are still five parameters:  $B_x$ ,  $B_y$ ,  $B_z$ , longitude and latitude. Different from the physical meaning of the characteristics mentioned above, these physical quantities themselves contain positive and negative signs to represent their directional characteristics. Therefore, in order to retain the positive and negative properties of the physical quantities themselves, we adopt a normalized way of dividing them by the maximum value of each physical quantity directly.

In view of all the above normalization steps, we have established a complete unified dimensionless data set, but the manners adopted are not random. We have fully considered the different characteristics of each physical quantity and tailored different normalization methods for it, so as to facilitate the next model construction.

# **3 METHOD**

## 3.1 Similarity Determination

The recommendation system (RS) is a technology that provides accurate recommendation to users. The CMEs arrival time forecast based on the recommendation system is measured by calculating the similarity between the concerned event and the rest of the CME events. Through similarity calculation, the most similar historical events corresponding arrival time except itself are found as the final recommended results. According to the 18 characteristics corresponding to each CME event, a 18dimensional space can be constructed. For each near-Earth ICME event, there is a vector (the cosine distance) or a certain point (the Euclidean distance) in the space that represents every event. By calculating the distance of each point, the similarity between each part of CMEs can be obtained. The smaller the distances between the two events are, the more similar the events. Here we calculate two kinds of commonly used distances: cosine distance and Euclidean distance.

## 3.1.1 Cosine distance

Cosine similarity measures the difference between two individuals by the cosine of the angle between two vectors in the space. It is more concerned with the difference in direction between two vectors than with distance or length. The formula for n dimensional space is as follows:

$$\cos \theta = \frac{A \cdot B}{\|A\| \cdot \|B\|} = \frac{\sum_{i=1}^{n} (A_i \cdot B_i)}{\sqrt{\sum_{i=1}^{n} A_i^2} \cdot \sqrt{\sum_{i=1}^{n} B_i^2}}.$$
(2)

In the formula,  $A(x_1, x_2 \cdots x_n)$  and  $B(x_1, x_2 \cdots x_n)$ represent different CME events corresponding the 18-D space vector. The subscript *i* represents the *i*th dimension.

## 3.1.2 Euclidean distance

The Euclidean distance (also known as Euclidean metric) is a commonly used definition of distance that refers to the true distance between two points in n dimensional space, or the natural length of a vector (that is, the distance from the point to the origin). Again, here is the formula:

$$d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$
(3)

The interpretation of subscripts like above, x and y represent the spatial coordinates of different near-Earth ICME events.

## 3.2 Deviation

To evaluate the accuracy of the prediction model, the deviation between the predicted CME arrival time and the actual observation time is defined as follows:

$$\Delta t_i = t_i^f - t_i^o \,. \tag{4}$$

In this case,  $t_i^o$  stands for the *i*th CMEs observed arrival time and  $t_i^f$  is the *i*th CMEs forecasted arrival time. With this definition, a positive  $\Delta t$  corresponds to when a CME is predicted to arrive latter than it is observed, while a negative  $\Delta t$  corresponds to an early arrival prediction compared to the observations. For different events, the errors of prediction are positive or negative. Generally, we will comprehensively consider the mean error of all events or more reference errors, so there are several error statistics methods (Jolliffe & Stephenson 2012; Verbeke et al. 2018; Riley et al. 2018) to measure the accuracy.

## 3.2.1 Mean Error (ME)

The metric is the Mean Error, which also defined the accuracy or bias:

$$ME = \frac{1}{N} \sum_{i=1}^{N} \Delta t_i .$$
 (5)

In the formula, N represents the number of events in the experiment, and i represents the specific events. Mean Error is a method of quantifying deviation, which evaluates whether the predicted time is earlier or later than the observed time from the average perspective.

#### 3.2.2 Mean Absolute Error (MAE)

The Mean Absolute Error is more comprehensive to consider the model without the positive and negative error, which is given by :

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |\Delta t_i| .$$
 (6)

In most forecasting models, MAE is the most commonly used metric to measure the forecast ability of a model. Although ME is a metric for model bias, it is not sufficient to measure a model's forecast skill. Because the positive and negative can complement each other, MAE is a more objective to measure the distance between the predicted value and the actual value. However, MAE contains its own limitations and may cause certain evaluation bias. Therefore, in order to make the evaluation more objective and comprehensive, we will also consider the two error measures to be discussed below.

## 3.2.3 Standard Deviation (SD)

The standard deviation also known as precision, represents the square root of the variance, and the formula is as follows:

$$SD = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (\Delta t_i - ME)^2}.$$
 (7)

Here N refers to the number of all events and ME is the Mean Error mentioned above. The advantage of standard deviation over MAE is that it measures the average distance between the predicted value and the observed value to calculate the distribution of the observed value around the mean error.

#### 3.2.4 Root-Mean-Square Error (RMSE)

Additionally, there is a root-mean-square error which is defined as:

$$\text{RMSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\Delta t_i)^2}.$$
 (8)

In general, it is difficult to minimize the RMSE. Because in the formula, the error is quadratic, which gives greater weight for the larger errors to result in increasing the RMSE of the whole model.

#### 3.3 Recommendation Method

For the 215 CME events, 10% of the events were approximately selected as test samples, which is about 20 events, while the remaining 195 events were divided into training sets (156 events) and validation sets (39 events). The recommendation process was divided into three steps. First, in the training process, the distance between two events was determined directly. The weight values of each feature were separately calculated from 0 to 50, and the step size was 1. When the weight of one feature was adjusted, the weight of the rest features was set to 1, which was to ensure the unity and comparison of the experiment. The above operation was carried out based on cosine distance and Euclidean distance, respectively. Eventually,  $51 \times 18 = 918$  trials were needed to iterate the 18 feature weights from 0 to 50. By comparing the forecast results in mean error (ME), mean absolute error (MAE), standard deviation (SD) and root-mean-square error (RMSE), the better weights corresponding to the four error parameters could be obtained. Second, the weights corresponding to minimum mean absolute error, standard deviation and root-mean-square error were selected as the weights of input for the verification set, respectively. The final best weight was selected for the model through determining the

minimum of mean absolute error in the verification set. Finally, the test set was used to verify the advantages and disadvantages of the model using the optimal weights.

# 4 RESULT AND DISCUSSION

# 4.1 Experimental Result

Through these experiments, the prediction model for CME arrival time including the optimal dependence on the model prediction. In the experiments, the influences of each feature on the model prediction results were measured by analyzing four error measures of mean error, mean absolute error, standard deviation, and root-mean-square error. Figure 1 shows the weights trend of each feature under the cosine distance, in which Figure 1(a) represents each feature under the mean error. As the problem of positive and negative is involved, the mean error cannot clearly express the characteristics of each physical quantity. Figure 1(b), (c) and (d) refer to MAE, SD and RMSE respectively. In these images, the expressions of these features are very similar, especially the standard deviation and RMSE with smaller differences. In three errors, the three velocities of CMEs are particularly obvious manifestation, which are linear velocity, initial velocity and final velocity of CMEs successively. This confirms a common knowledge of physics: an object travel time depends on its speed. Indeed, although the parameters used are not the most accurate, they do reflect that the propagation time of CMEs is related to these velocities.

Same calculation steps for Euclidean distance are processed to find out whether it is more suitable for calculating the recommended similar events. After all, in many other recommended models, Euclidean distance is a very common distance calculation method, which performs well. Such is the case, experiments show that Euclidean distance does perform better than cosine distance in predicting CMEs arrival time in training. The experimental results of Euclidean distance are shown in Figure 2. The mean error under Euclidean distance is shown in Figure 2(a), indicating that the trend of each feature is declining with the increase of weight. However, it is not the only way to evaluate, and we can use other errors to comprehensively evaluate the model results. In Figure 2(b), (c) and (d), it can be found that the trends of some physical features are same as that of cosine distance, the initial velocity and linear velocity of CMEs both illustrating that the errors decrease with the increase of weight.

Tables 1 and 2 respectively reveal the minimum error corresponding to each feature at the cosine distance and Euclidean distance, and the numbers in brackets correspond to the optimal weights. We can find that each feature has four optimal weight which corresponds to the four different error. Since the mean absolute error and standard deviation are more important, priority is given to the combination of weights corresponding to these two errors. Substituting the combination of these weights into the validation set yields the results in Table 3.

Through the analysis of these two tables, it is found that some optimal weights have common characteristics in the cosine distance and the Euclidean distance. The weights of these four CME velocities, linear velocity, initial velocity, final velocity and  $V_{20Rs}$  (the velocity of CMEs at 20 solar radii), are a large proportion, indicating the same importance for the four velocities. In the whole experiment, it indicates that speed is a key factor affecting the time of CMEs reaching the Earth. At the same time, the latitude and longitude of the source region are also the key factors determining the arrival time. Their weights are also within this range, suggesting that position of resource region is one of the factors that influence the ground effect of CMEs. Flow pressure and Plasma beta also have the certain proportion of their weight. It also shows the importance that they have impact on the spread of CME. There are many physical parameters whose optimal weights correspond to values of 0. For example, the  $B_z$  components of the magnetic field have weights of 0, indicating it has indeed nothing to do with the time of the CMEs. However, the weights of  $B_x$ ,  $B_y$  and F10.7 is not 0 but they are not big, which means they have a weak impact on the arrival time of CMEs. Furthermore, CPA and MPA represent the direction of the CMEs, but they are not one of the key factors, indicating smaller weights. Moreover, the weight of MPA in the two distances is also 0.

However, in cosines and Euclidean distances, not all the weights behave the same way. For instance, since most CMEs that have hit earth are full halo CMEs with an angular width of 360 degrees, it is also representative that the weight of angular width in Euclidean distance is particularly great. But the angular width does not weigh as much in the cosine distance as it does in Euclidean distance, but it does have some proportion. The same physical quantity that has this property is temperature. However, performance of proton density is the opposite, which is smaller in cosine distance than Euclidean distance. Although the weights of these physical quantities are not exactly the same in the cosine distance and Euclidean distance, they still have a certain reference value.

By applying the optimal weight summarized from the training set, it is notable that the results of the validation data are improved, which are shown in Table 3. After training process, there are four groups of weights correspond to four kinds of errors. ME is usually not



**Fig. 1** The relationships between the four errors and the weights of 18 features by calculating the cosine distance, the performance results in mean error (a), mean absolute error (b), standard deviation (c), and root-mean-square error (d) were obtained.

 Table 1
 The summary of errors and optimal weights in train samples for mean error, mean absolute error, standard deviation, root-mean-square error in cosine distance.

| Feature | CPA   | MPA   | AW    | Linear  | Initial | Final | $V_{20Rs}$ | F10.7 | Bx    | By    | Bz    | Solar<br>wind | Proton density | Temperature | Flow     | Plasma | Latitude | Longitude |
|---------|-------|-------|-------|---------|---------|-------|------------|-------|-------|-------|-------|---------------|----------------|-------------|----------|--------|----------|-----------|
|         |       |       |       | Speed   | Speed   | Speed |            |       |       |       |       | speed         |                |             | pressure | beta   |          |           |
| ME      | 0.85  | -0.82 | 1.4   | -3.22   | -2.17   | -3.47 | -1.73      | 0.26  | -0.76 | -0.56 | -0.5  | 0.08          | -2.25          | -2.18       | -0.74    | -1.87  | -1.87    | -1.89     |
| Weight  | 0     | 0     | 11    | 23      | 12      | 47    | 46         | 40    | 16    | 16    | 50    | 20            | 34             | 18          | 10       | 42     | 19       | 19        |
| SD      | 24.84 | 25.27 | 24.70 | 5 13.5  | 22.17   | 24.79 | 24.96      | 25.05 | 25.1  | 24.58 | 23.37 | 25.64         | 24.71          | 25.37       | 24.46    | 23.82  | 24.73    | 24.65     |
| Weight  | 15    | 0     | 4     | 35      | 7       | 41    | 46         | 47    | 2     | 3     | 0     | 1             | 9              | 16          | 9        | 8      | 11       | 0         |
| RMSE    | 25.03 | 25.28 | 24.84 | 4 23.7  | 22.21   | 25.02 | 25.02      | 25.05 | 25.26 | 24.58 | 23.38 | 25.8          | 24.71          | 25.42       | 24.47    | 23.83  | 24.79    | 24.8      |
| Weight  | 15    | 0     | 4     | 35      | 7       | 41    | 46         | 47    | 2     | 3     | 0     | 1             | 9              | 16          | 9        | 8      | 11       | 0         |
| MAE     | 18.75 | 19.1  | 18.39 | 9 18.13 | 17.33   | 18.55 | 19.01      | 19.03 | 19.06 | 18.91 | 17.94 | 19.4          | 18.31          | 19.4        | 18.07    | 18.19  | 19.09    | 18.61     |
| Weight  | 15    | 0     | 4     | 35      | 7       | 41    | 46         | 47    | 2     | 3     | 0     | 1             | 4              | 1           | 9        | 8      | 11       | 0         |

The first row of the table represents the 18 features, with the order as follows: CPA, MPA, angular width (AW), CME linear speed, CME initial speed, CME final speed, CME speed in 20RS ( $V_{20Rs}$ ), F10.7, the *x*-axis component of the magnetic field ( $B_x$ ), the *y*-axis component of the magnetic field ( $B_y$ ), the *z*-axis component of the magnetic field ( $B_z$ ), average daily speed of solar wind, solar wind daily average proton density, solar wind average daily temperature, average daily flow pressure of solar wind, plasma beta, latitude and longitude coordinates of the active region, unit of errors: h. The data in the table correspond to the time errors of each feature, and the next line indicates the corresponding optimal weight.

considered, so the remaining three weights correspond to three errors. Under cosine distance, the weights corresponding to standard deviation and root-mean-square error in training data are same, which can be regarded as an experiment. So there are two experiments in cosine distance and three experiments in Euclidean distance. For cosine distance, the best results are in first line, the mean error, standard deviation, root-mean-square error and mean absolute error of validation sets are -6.48, 18.54, 19.36 and 15.24 h respectively, whose weights are corresponding to MAE in training data. For Euclidean distance, the best results are the second experiments in Euclidean. The ME, SD, RMSE and MAE are -1.46, 19.15, 19.21 and 15.13 h respectively.

In the testing set, we showed a significant advantage reducing the mean absolute error to about 11 h, and the forecasting ability is excellent and speed is very fast. A test set of 20 CME events was also used to compare the

190-7



**Fig. 2** The relationships between the four errors and the weights of 18 features by calculating the Euclidean distance, the performance results in mean error (a), mean absolute error (b), standard deviation (c), and root-mean-square error (d) were obtained.



**Fig.3** Exhibit the errors calculated severally by recommended model of the cosine distance and Euclidean distance, and the errors of other models in average value, the best results, and the worst results.

predicted arrival times as shown in Table 4. The first row is the result of cosine distance, and the second row is the result of Euclidean distance. Compared with the results of the training set, the performance of the test set shows the SD, RMSE and MAE are smaller than those for training set. The total number of CME events that have hit earth in history is only more than 200. Although, choosing 10% of them as the test set is bound to have some contingency and instability, the result still can verify the ability of the method to some extent.

Currently, there are limited methods for predicting CME arrival time. The recommendation method was firstly



**Fig. 4** *Top*: From left to right, snapshots of the CME event occurring at 2015 August 12 14:48 UT provided by SOHO LASCO C2. *Bottom*: From left to right, snapshots of the CME event occurring at 1999 August 9 3:26 UT.

 Table 2
 The summary of errors and optimal weights in train samples for mean error, mean absolute error, standard deviation, root-mean-square error in Euclidean distance.

| Feature      | CPA   | MPA   | AW    | Linear  | Initial | Final | $V_{20Rs}$ | F10.7 | Bx    | By    | Bz    | Solar<br>wind | Proton density | / Temperatur | e Flow   | Plasma | Latitude | Longitude |
|--------------|-------|-------|-------|---------|---------|-------|------------|-------|-------|-------|-------|---------------|----------------|--------------|----------|--------|----------|-----------|
|              |       |       |       | Speed   | Speed   | Speed |            |       |       |       |       | speed         |                |              | pressure | beta   |          |           |
| ME<br>Waight | 2.59  | -1.21 | 2.17  | -3.3    | -3.73   | -0.07 | -2.04      | 0.94  | -0.03 | -0.7  | -0.33 | 0.44          | -0.37          | -1.41        | -1.11    | -0.07  | -0.17    | 1.29      |
| weight       | -19   | 8     | 48    | 31      | 21      | 17    | 27         | 14    | 11    | 34    | 50    | 8             | 15             | 24           | 31       | 45     | 15       | 17        |
| SD           | 23.5  | 23.68 | 23.68 | 3 19    | 20.72   | 23.2  | 23.18      | 24.03 | 22.78 | 23.84 | 22.47 | 22.76         | 23.79          | 22.53        | 24.91    | 23.15  | 24.25    | 24.97     |
| Weight       | 4     | 0     | 48    | 46      | 35      | 27    | 28         | 13    | 2     | 2     | 0     | 17            | 27             | 21           | 2        | 13     | 6        | 0         |
| RMSE         | 23.75 | 23.74 | 23.78 | 8 19.11 | 20.86   | 23.21 | 23.23      | 24.05 | 22.15 | 24.15 | 22.69 | 22.77         | 23.81          | 22.54        | 25.09    | 23.27  | 24.32    | 25.19     |
| Weight       | 4     | 0     | 48    | 46      | 35      | 27    | 28         | 14    | 2     | 2     | 0     | 17            | 42             | 21           | 8        | 13     | 6        | 0         |
| MAE          | 17.72 | 17.44 | 17.66 | 5 15.05 | 16      | 17.61 | 17.81      | 19.16 | 17.62 | 18.35 | 17.57 | 18.42         | 17.78          | 17.21        | 18.82    | 18.2   | 17.96    | 18.92     |
| Weight       | 4     | 0     | 48    | 31      | 14      | 27    | 28         | 2     | 2     | 0     | 0     | 16            | 4              | 21           | 2        | 45     | 6        | 0         |

**Table 3** The summary of the statistics errors for validation samples in cosine distance and Euclidean distance (The scale in the second column is the optimal combination of weights for all the features, error unit: h).

| Model               | Test Number | Weights                                       | ME    | SD    | RMSE  | MAE   |
|---------------------|-------------|-----------------------------------------------|-------|-------|-------|-------|
| Continue d'internet | 1           | 15:0:4:35:7:41:46:47:2:3:0:1:4:1:9:8:11:0     | -6.48 | 18.54 | 19.63 | 15.24 |
| Cosine distance     | 2           | 15:0:4:35:7:41:46:47:2:3:0:1:9:16:9:8:11:0    | -5.7  | 21.33 | 22.08 | 17.46 |
|                     | 1           | 4:0:48:31:14:27:28:2:2:0:0:16:4:21:2:45:6:0   | 0.42  | 21.2  | 21.2  | 17.15 |
| Euclidean distance  | 2           | 4:0:48:46:35:27:28:13:2:2:0:17:27:21:2:13:6:0 | 1.46  | 19.15 | 19.21 | 15.13 |
|                     | 3           | 4:0:48:46:35:27:28:14:2:2:0:17:42:21:8:13:6:0 | 2.4   | 19.67 | 19.82 | 15.92 |
|                     |             |                                               |       |       |       |       |

used and compared the prediction results with that of the models issued on the CME Scoreboard<sup>6</sup> (developed at the Community Coordinated Modeling Center, CCMC). These results can be seen in Table 5. In this table, the first column shows the CMEs temporal information, the second column showing the observed CMEs arrival time to earth, the third column showing the predicted time and time error in cosine distance, the fourth column also showing the predicted time and the last

three columns of the table show the results of the other models. It can be manifested that the two predicted results in cosine and Euclidean distance fall between the worst and the optimal errors of other model, and evenly distributed around the average values. Among the last three columns, the average values of other models indicate a very small error. After all, the difference of error between each model is relatively large, so the average value will be reduced. The remaining two columns correspond to the best and worst results of the other models, respectively. An interesting finding is that there are events in the cosine distance and

<sup>6</sup> https://kauai.ccmc.gsfc.nasa.gov/ CMEscoreboard/

Y. Shi et al.: Predicting the CME Arrival Time based on the Recommendation Algorithm

| Model              | Weights                                       | ME    | SD    | RMSE  | MAE   |
|--------------------|-----------------------------------------------|-------|-------|-------|-------|
| Cosine distance    | 15:0:4:35:7:41:46:47:2:3:0:1:4:1:9:8:11:0     | -0.93 | 16.75 | 16.77 | 13.89 |
| Euclidean distance | 4:0:48:46:35:27:28:13:2:2:0:17:27:21:2:13:6:0 | 0.68  | 13.75 | 13.77 | 11.78 |

Table 4 The Results of Test Set for Cosine Distance and Euclidean Distance (Error Unit: h)

**Table 5** The results of the test set using recommendation model, the average error, best result and worst result of 32 models submitted to the CME scoreboard (Since the scorecard only has data from 2013, there are only 31 events for comparison in the end, unit: h).

| CME events   | Arrival time | Predicted  | results | Predicted<br>(Euclidean | results | The average value | The best result | The worst result |
|--------------|--------------|------------|---------|-------------------------|---------|-------------------|-----------------|------------------|
|              |              | prediction | error   | prediction              | error   | of other models   | of other models | of other models  |
|              |              | time       | ciror   | time                    | ciror   | of other models   | of other models | of other models  |
| 201303150712 | 16 78        | 31.02      | 14.87   | 83.0                    | 37.12   | 1 38              | 3 53            | 31.53            |
| 201303130712 | 40.78        | 48.12      | -14.87  | 62.63                   | 0.87    | 1.58              | 1.8             | 36.2             |
| 201304110724 | 74.03        | 40.12      | -15.58  | 68.48                   | -0.87   | -11.05            | 7.12            | -50.2            |
| 201307021312 | 51.7         | 52 57      | 0.87    | <b>52 57</b>            | 0.87    | 13.6              | -7.12           | 22.67            |
| 20130222212  | 81 A         | 32.37      | _19.2   | 70.08                   | _1.42   | 0.27              | 4.18            | 13.63            |
| 201312120330 | 87.67        | 72 48      | -15.18  | 72.48                   | _15.18  | _10.2             | 1 73            | _19.62           |
| 201402040123 | 79.27        | 66.25      | _13.02  | 94.83                   | 15.10   | _15.08            | _0.58           | -25.95           |
| 201402120000 | 68.4         | 31.92      | -36.48  | 68.48                   | 2.68    | 0.33              | 0.30            | _24.32           |
| 201404021330 | 45 52        | 31.92      | -14.08  | 48.12                   | 2.00    | 5.45              | -1 22           | 25.63            |
| 201406041248 | 76.07        | 73.5       | -2.57   | 72.35                   | -3.72   | 6.94              | 5.4             | 8 47             |
| 201408151748 | 85.15        | 66.25      | -18.9   | 60.28                   | -24.87  | -9.75             | -9.37           | -26.77           |
| 201409101800 | 45.88        | 43.55      | -2.33   | 56.12                   | 10.23   | 4.82              | -0.43           | 29.18            |
| 201412170500 | 110.18       | 98.83      | -11.35  | 98.83                   | -11.35  | -32.22            | -13.22          | -39.22           |
| 201503150148 | 50.95        | 64.63      | 13.68   | 50.82                   | -0.13   | 9.83              | 7.52            | 13.92            |
| 201506210236 | 39.95        | 83.9       | 43.95   | 35.65                   | -4.3    | 1.82              | -0.98           | 5.02             |
| 201506221836 | 42.88        | 38.55      | -4.33   | 35.65                   | -7.23   | 4.68              | -0.95           | 10.05            |
| 201508121448 | 65.68        | 70.63      | 4.95    | 67.57                   | 1.88    | 21.12             | 16.7            | 25.83            |
| 201509041936 | 66.4         | 69.08      | 2.68    | 97.67                   | 31.27   | 42.78             | 18.53           | 69.53            |
| 201509180500 | 49.07        | 40.82      | -8.25   | 99.5                    | 50.43   | 17.38             | 6.55            | 27.55            |
| 201511041448 | 51.5         | 63.5       | 12      | 73.5                    | 22      | 13                | 4.85            | 21.43            |
| 201512160936 | 78.67        | 78.48      | -0.18   | 67.03                   | -11.63  | -14.17            | -9.45           | -18.45           |
| 201512281212 | 60.63        | 52.7       | -7.93   | 83.9                    | 23.27   | -5.48             | -3.48           | -14.48           |
| 201601142324 | 94.55        | 85.15      | -9.4    | 66.25                   | -28.3   | -3.57             | -8.97           | -20.97           |
| 201604101112 | 92.38        | 87.1       | -5.28   | 55.5                    | -36.88  | -12.58            | 5.17            | -25.98           |
| 201607171048 | 60.28        | 117.12     | 56.83   | 85.15                   | 24.87   | 27.77             | 7.57            | 50.92            |
| 201607282224 | 111.6        | 100.6      | -11     | 108.95                  | -2.65   | -11.38            | 0.62            | -23.38           |
| 201611050424 | 97.67        | 99.42      | 1.75    | 99.42                   | 1.75    | -18.62            | -10.87          | -29.87           |
| 201707140125 | 52.57        | 34.23      | -18.33  | 60.63                   | 8.07    | 9.42              | 3.77            | 16.67            |
| 201709042036 | 50.62        | 41.58      | -9.03   | 68.4                    | 17.78   | -1.18             | -1.13           | -16.38           |
| 201709061224 | 34.23        | 83.9       | 49.67   | 68.4                    | 34.17   | 14.27             | 7.5             | 23.5             |
| 201808202124 | 100.6        | 80.17      | -20.43  | 78.52                   | -22.08  | -3.9              | -4.87           | 18.5             |

the Euclidean distance that was recommended the same historical events, and the error is very small. The two events took place on 2013 September 29 at 22:12 UT and 2016 November 5 at 4:24 UT. The recommend historical events are 2017 July 14 1:25 UT and 2016 October 8 18:36 UT.

Based on the prediction results of recommended model and other models, we list the four types of errors for the 31 events listed above in Table 6. Our mean error is -3.50 h under the cosine distance and 3.50 h under the Euclidean distance, respectively. After averaging the errors of all events for other models, the mean error of all events in average values is 1.9 h. The mean absolute error of cosine distance is 15.52 h, and the mean absolute error of Euclidean distance is 14.86 h, which has certain comparability with other models. Although the result is not

 Table 6
 Four Errors in Different Models (unit: h)

| Models                            | ME    | MAE   | SD    | RMSE  |
|-----------------------------------|-------|-------|-------|-------|
| Cosine distance                   | -3.50 | 15.52 | 21.40 | 21.68 |
| Euclidean distance                | 3.50  | 14.86 | 19.65 | 19.96 |
| The average value of other models | 1.90  | 11.57 | 14.72 | 14.84 |
| The best result of other models   | 0.85  | 5.54  | 7.18  | 7.23  |
| The worst result of other models  | 3.37  | 24.12 | 26.92 | 27.13 |

as good as the average errors of other models, whose mean absolute mean is 11.57 h. The main reason is that most of the 31 events are distributed in the training set, and the optimal weights are selected from the verification set. The errors for these events were ordinary, but the time error for the test set mentioned above was small.

Figure 3 shows the errors of the recommended model and other models. The black dotted line among image represents a statistical average of other model, and

yellow crosses express the optimal results of the other models. In contrast, blue crosses represent the worst result. Furthermore, our statistical results of cosine distance correspond to the red dots and green dots correspond to Euclidean distance, which fall nearly between the fork of blue and yellow, more balancing distribution near the black dotted line. The model prediction results for different events were fairly balanced, with no significant deviations, while other models do not guarantee that the prediction results were perfect every time.

## 4.2 Discussion

The purpose of using recommendation algorithm is not only giving the prediction of arrival time of a certain CME, but also introduce a similar event to operational forecasters, who can give a modified prediction according to the results of models and experiences. Such as, on 2015 August 12 14:48 UT, there was a partial halo CME erupting as shown in Figure 4(a)-(c). If the forecaster confirms that the CME will reach Earth, but does not know when it will arrive. We can input its parameters into the recommendation system and the system will recommend a similar historical CME on 1999 August 9 3:26 UT, which is shown in Figure 4(d)–(f). By comparing these two CME events, the propagation time of the former event is 65.68 h, and the arrival time of the latter is 67.57 h. Therefore, the recommended error is around 1.88 h, which is acceptable. Through the comparison of Figure 4, we can also find the similarities between the two events. First of all, both of the two eruptions are partial halo CME, and the CPA and MPA is very similar. In addition to this, the four CME speeds of two events are around  $400 \,\mathrm{km} \,\mathrm{s}^{-1}$ . So the time of their arrival on Earth was very close. By directly comparing the images of the recommended events, the reliability of the model is proved on the other hand.

The events used in this study are only for the CMEs arriving on Earth, which limited the sample number used. Because there are so few cases, there is no guarantee that every event will have a similar historical outcome. Due to the limited number of samples, the accuracy of the model will be greatly limited. At present, the recommendation algorithm is outstanding in many directions, but no one has done similar experiments in the space physics, so our model is also a new attempt that used simple methods to achieve comparable results. Currently, our model was not yet able to predict whether CMEs can reach the Earth or not. Further attempts are excepted to be made in the future, trying to use a large number of CME data in the history for training and matching. A more complete model can predict whether CME will hit the Earth firstly. If it will hit the Earth, the model will then give the forecast time and recommend CME with a similar history for the forecast work reference.

#### **5 SUMMARY**

In this paper, we implemented a recommended algorithm to predict the arrival time of a new CME event based on the CME events in the history. Firstly, a multiple association list containing 18 characteristic parameters was made by integrating the CME list, near-Earth ICME list, solar flare list, active region and corresponding solar wind parameter. Secondly, the prediction method of CME arrival time was performed by applying a recommendation algorithm for the first time. The similarity between two CME events is calculated using cosine distance and Euclidean distance, respectively. The error analysis of test data indicates that the MAE is 11.78 h in the Euclidean distance test set, better than the result from cosine distance calculation. Thirdly, the result of the recommendation method was compared to that of other models issued on the CME scoreboard, which verifies the model reasonable. The result based on Euclidean distance can keep up with other models in the CME scoreboard. The recommendation model can not only predict the arrival time of CMEs, but also provide the information of similar historical events to operational space weather forecasters, which will be a helpful reference for artificial empirical prediction of CME effects.

Acknowledgements This CME catalog is generated and maintained at the CDAW Data Center by NASA and The Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA. For near-Earth ICME list, we acknowledge all the various experimenters who have made their data available through the ACE Science Center and other sources. A portion of this work is supported by a NASA Heliophysics Guest Investigator Grant. The flare catalog is developed by the Smithsonian Astrophysical Observatory and is based on the Hinode Flare Catalog maintained by ISAS/JAXA and the Institute for Space-Earth Environmental Research (ISEE) at Nagoya. This work was supported by the National Natural Science Foundation of China (Grant Nos. 12071166 and 42074224).

# Appendix A: NEAR-EARTH ICME EVENT LIST FOR THE ACTIVE REGION

| No.      | Near-Earth ICME | CME           | $NOAA^{a}$    | Coordinate       | Flare              | Filament <sup>b</sup> |
|----------|-----------------|---------------|---------------|------------------|--------------------|-----------------------|
|          | Date and Time   | Date and Time | Active Region | _                | Date and Time      | -                     |
| 1        | 199701100400    | 199701061510  |               | S18E06           | Flare              |                       |
| 2        | 199702100200    | 199702070030  |               | S40W5            |                    | Y                     |
| 3        | 199704110600    | 199704071427  | 8027          | S28E12           | 199704071407       |                       |
| 4        | 199705150900    | 199705120530  | 8038          | N21W19           | 199705120455       |                       |
| 5        | 199705261600    | 199705212100  |               | N06W12           | Only Sunspot       |                       |
| 6        | 199708031300    | 199707300445  |               | N35W12           |                    | Y                     |
| 7        | 199709031300    | 199708300130  | 8078          | N14E05           | 199708292332       |                       |
| 8        | 199709212100    | 199709172028  | 8084          | N22W88           | 199709171803       | 37                    |
| 9        | 199710011600    | 199709280108  | 8000          | N40W00           |                    | Y<br>V                |
| 10       | 1997102200      | 199710001528  | 8090          | N/5F30           |                    | I<br>V                |
| 12       | 1997110270000   | 1997110251120 | 8100          | \$21W39          | 199711040558       | 1                     |
| 13       | 199712101800    | 199712061027  | 0100          | N50E05           | 177711040550       | Y                     |
| 14       | 199712301000    | 199712260231  |               | S20E14           | Only Sunspot       | -                     |
| 15       | 199801070100    | 199801022328  |               | N30W27           |                    | Y                     |
| 16       | 199801210600    | 199801170409  | 8137          | S15E10           | Only Active Region |                       |
| 17       | 199801292000    | 199801251526  | 8144          | N13E37           |                    | Y                     |
| 18       | 199802171000    | 199802140655  | 8156          | S24E16           | Only Sunspot       |                       |
| 19       | 199803041300    | 199802281248  | 8169          | S14W44           | 199803011302       |                       |
| 20       | 199805020500    | 199804291658  | 8210          | S17E18           | 199804291637       |                       |
| 21       | 199805041000    | 199805021406  | 8210          | S17W22           | 199805021342       |                       |
| 22       | 199806241600    | 199806210535  | 8251          | N16W53           | Only Active Region |                       |
| 23       | 199810190400    | 199810151004  |               | N22W01           |                    | Y                     |
| 24       | 199811072200    | 199811040754  | 8375          | N18W07           | 199811040719       |                       |
| 25       | 199811090100    | 199811052044  | 8375          | N18W21           | 199811051955       | 37                    |
| 26       | 199811130200    | 199811091817  | 8378          | N14W03           |                    | Ŷ                     |
| 27       | 199904161800    | 199904130330  | 8511          | S16W 33          | Only Active Region | V                     |
| 28       | 199904210400    | 199904180830  | 8505          | N39E07<br>N30W08 | 100006241412       | Y                     |
| 30       | 199900272200    | 199900241551  | 8616          | N31W86           | Only Active Region |                       |
| 31       | 199907271700    | 199907232130  | 0010          | N13W09           | Only Support       |                       |
| 32       | 199907311900    | 199907280906  | 8651          | N24E65           | 199907280814       |                       |
| 33       | 199908120300    | 199908090326  | 8662          | S16E21           | Relate to 4 flare  |                       |
| 34       | 199909221900    | 199909200606  |               | S21E01           | 199909200122?      |                       |
| 35       | 200001221700    | 200001181754  | 8831          | S18E01           | 200001181726       |                       |
| 36       | 200002111600    | 200002080930  | 8858          | N28E14           | 200002080900       |                       |
| 37       | 200002121200    | 200002100230  | 8858          | N27W10           | 200002100208       |                       |
| 38       | 200002141200    | 200002120431  | 8858          | N25W38           | 200002120410       |                       |
| 39       | 200002210500    | 200002171931  | 8878          | S22W43           | Only Active Region |                       |
| 40       | 200004070600    | 200004041632  | 8933          | N17W70           | 200004041541       |                       |
| 41       | 200004182000    | 200004151035  | 8963          | N16E49           | Only Active Region |                       |
| 42       | 200005022000    | 200004290430  | 8976          | S06E01           | Only Active Region |                       |
| 43       | 200005131700    | 200005102006  | 8990          | N14E20<br>S22E57 | Only Active Region |                       |
| 44       | 200005102500    | 200005151220  | 8990          | S22E37           | Only Supercot      |                       |
| 45       | 200005250900    | 200005201450  |               | N18W03           | Only Sunspot       |                       |
| 40       | 200005241200    | 200005210720  | 9974          | N18F31           | Only Active Region |                       |
| 48       | 200006081200    | 200006061554  | 9026          | N20E10           | 200006061525       |                       |
| 49       | 200007110200    | 200007071026  | 2020          | N04E00           | Only Active Region |                       |
| 50       | 200007131300    | 200007111327  | 9077          | N18E33           | 200007111310       |                       |
| 51       | 200007141700    | 200007122030  | 10029         | S27W10           | Only Active Region |                       |
| 52       | 200007151900    | 200007141054  | 9077          | N18W09           | 200007141024       |                       |
| 53       | 200007200100    | 200007170854  | 10031         | N14E72           | Only Active Region |                       |
| 54       | 200007270200    | 200007230530  | 9091          | S12W06           |                    | Y                     |
| 55       | 200007281200    | 200007250330  | 9097          | N08W15           | 200007250249       |                       |
| 56       | 200008101900    | 200008062230  | 9104          | S19W67           | Only Active Region |                       |
| 57       | 200008120500    | 200008091630  | 9122          | N21E21           | Only Active Region |                       |
| 58       | 200009022200    | 200008291830  | 9142          | N15E09           | Only Active Region | 37                    |
| 39<br>(0 | 200009081200    | 200009050554  | 0165          | N29E12           | 200000160426       | Ŷ                     |
| 0U<br>61 | 200009180000    | 200009160518  | 9105          | N13W14           | 200010020012       |                       |
| 01<br>62 | 200010051000    | 200010020350  | 9170<br>0176  | 209E07           | 200010020013       |                       |
| 63       | 200010031500    | 200010022020  | 9170          | N02W18           | 200010022004       |                       |
| 64       | 200010131000    | 200010250826  | 1102          | N10W66           | 200010072545       |                       |
| 65       | 200011061700    | 2000110250826 | 9213          | N03W09           | 200011031902       |                       |
| 66       | 200011270800    | 200011241530  | 9236          | N22W07           | 200011241513       |                       |
| 67       | 200012230000    | 200012181150  | 9269          | N14W06           | 200012181111       |                       |

Table A.1 Near-Earth ICME Event List for Active Region

| 1 | 9 | 0 | _ | 1 | 3 |
|---|---|---|---|---|---|
| • | ~ | ~ |   | • | ~ |

| No.      | Near-Earth ICME | CME           | NOAA <sup>a</sup> | Coordinate          | Flare                              | Filament |
|----------|-----------------|---------------|-------------------|---------------------|------------------------------------|----------|
|          | Date and Time   | Date and Time | Active Region     |                     | Date and Time                      |          |
| 68       | 200101240900    | 200101202130  | 9313              | S07E42              | 200101202120                       |          |
| 69       | 200103040400    | 200102281450  | 9360              | S11W37              | Only Active Region                 |          |
| 70       | 200103191700    | 200103160350  |                   | N37W50              |                                    | Y        |
| 71       | 200103281700    | 200103251706  | 9402              | N17E16              | 200103251636                       |          |
| 72       | 200103310500    | 200103281250  | 9393              | N13E00              | 200103281240                       |          |
| 73       | 200104010400    | 200103291026  | 9393              | N1/W18              | 200103291015                       |          |
| 74<br>75 | 200104041800    | 200104022208  | 9393              | S21F33              | 200104061921                       |          |
| 76       | 200104081400    | 200104001530  | 9415              | S23W19              | 200104001521                       |          |
| 77       | 200104130900    | 200104111331  | 9415              | S22W31              | 200104111326                       |          |
| 78       | 200104281400    | 200104261230  | 9433              | N17W25              | 200104261312                       |          |
| 79       | 200107090200    | 200107050354  | 9516              | N12W92              | Only Active Region                 |          |
| 80       | 200108172000    | 200108141601  | 9571              | N07W29              | Only Active Region                 |          |
| 81       | 200109240000    | 200109201931  | 9619              | N17W67              | Only Active Region                 |          |
| 82       | 200109291100    | 200109270454  | 9627              | S04W39              | Only Active Region                 |          |
| 83       | 200110010800    | 200109280854  | 9636              | N14E13              | 200109280830                       |          |
| 84<br>85 | 200110020400    | 200109291154  | 0652              | N00E07              | паге<br>200110001111               |          |
| 85<br>86 | 200110120400    | 200110091130  | 9653              | 522E11<br>N16W35    | 200110091111                       |          |
| 87       | 200110212000    | 200110221826  | 9672              | S18E13              | 200110121508                       |          |
| 88       | 200110292200    | 200110251526  | 9672              | S18W27              | 200110251502                       |          |
| 89       | 200111061200    | 200111041635  | 9684              | N05W28              | 200111041619                       |          |
| 90       | 200111192200    | 200111170530  | 9704              | S18E28              | 200111170525                       | Y        |
| 91       | 200111241400    | 200111222330  | 9704              | S18W38              | 200111222329                       |          |
| 92       | 200112300000    | 200112260530  | 9742              | N08W54              | 200112260504                       |          |
| 93       | 200203190500    | 200203152306  | 9866              | S09W06              | 200203152310                       |          |
| 94       | 200204171600    | 200204150350  | 9906              | S15W14              | 200204150355                       |          |
| 95       | 200204200000    | 200204170826  | 9906              | S14W41              | 200204170824                       |          |
| 96<br>07 | 200205111500    | 200205081350  | 9934              | \$16W 19<br>\$22E01 | 200205081327                       |          |
| 97       | 200205201000    | 200203100030  | 9948              | S22E01<br>S12W60    | 200205150815                       | v        |
| 99       | 200205252000    | 200203220330  | 10030             | N18E00              | 200205220554                       | 1        |
| 100      | 200208191200    | 200208161230  | 10069             | S07E11              | 200208161232                       |          |
| 101      | 200209080400    | 200209051654  | 10102             | N08E26              | 200209051706                       |          |
| 102      | 200209192000    | 200209170806  | 114               | S11W43              | Only Active Region                 |          |
| 103      | 200305300200    | 200305280050  | 10365             | S07W32              | 200305272307                       |          |
| 104      | 200305302200    | 200305290127  | 10365             | S07W45              | 200305290022                       |          |
| 105      | 200306171000    | 200306140154  |                   | N25W27              |                                    | Y        |
| 106      | 200308180100    | 200308142006  | 10431             | S10E02              | 200308140611                       |          |
| 107      | 200310242100    | 200310220830  | 10484             | N0/E25              | 200310211922                       |          |
| 108      | 200310280230    | 200310201734  | 10484             | N04W45              | 200310201721                       |          |
| 110      | 200310291100    | 200310281130  | 10486             | S16W11              | 200310281110                       |          |
| 111      | 200311201000    | 200311180850  | 10501             | N03E09              | 200310292049                       |          |
| 112      | 200401220800    | 200401200006  | 10540             | S13W09              | 200401200045                       |          |
| 113      | 200401232300    | 200401210454  |                   | S30E39              | 200401210511                       | Y        |
| 114      | 200407221800    | 200407201331  | 10652             | N10E32              | 200407201232                       |          |
| 115      | 200407241400    | 200407220731  | 10652             | N08E06              | Only Active Region                 |          |
| 116      | 200407252000    | 200407231606  | 10652             | N08W10              | Only Active Region                 |          |
| 117      | 200407270200    | 200407251454  | 10652             | N08W35              | 200407251514                       |          |
| 118      | 200409141500    | 200409120036  | 10672             | N05E33              | 200409120056                       |          |
| 119      | 200409181200    | 200409141012  | 10072             | NOOF10              | 200409140930                       |          |
| 120      | 200411072200    | 200411042330  | 10696             | N08W22              | 200411042240                       |          |
| 122      | 200411120800    | 200411100226  | 10696             | N08W62              | 200411100213                       |          |
| 123      | 200412122200    | 200412082026  | 10709             | N04W11              | 200412081959                       |          |
| 124      | 200501082100    | 200501051530  | 10715             | N04W33              | Only Active Region                 |          |
| 125      | 200501161400    | 200501131754  | 10718             | S07E07              | 200501131712                       |          |
| 126      | 200501171300    | 200501152306  | 10720             | N13W03              | 200501152258                       |          |
| 127      | 200501182300    | 200501170930  | 10720             | N13W30              | 200501170610                       |          |
| 128      | 200501211900    | 200501200654  | 10720             | N14W70              | 200501200701                       |          |
| 129      | 200502201200    | 200502170006  | 10734             | S05W34              | 200502162338                       |          |
| 130      | 200505200300    | 200505161350  | 10759             | N11W35              | 200505161246                       |          |
| 131      | 200303300100    | 200303201300  | 10/0/             | SUSE12<br>SOSE12    | 200303201420<br>Only Active Perion |          |
| 132      | 200505510400    | 200505202120  | 10786             | N12W04              | 200507071620                       |          |
| 155      | 20030/101000    | 200307071700  | 10/00             | 1N12 W 04           | 200307071029                       |          |

# Table A.1Continued.

|     |                 | 10            |                   | nucu.              |                                |            |
|-----|-----------------|---------------|-------------------|--------------------|--------------------------------|------------|
| No. | Near-Earth ICME | CME           | NOAA <sup>a</sup> | _ Coordinate       | Flare                          | - Filament |
|     | Date and Time   | Date and Time | Active Region     |                    | Date and Time                  |            |
| 134 | 200508090000    | 200508050854  | 10795             | N13E14             | Only Active Region             |            |
| 135 | 200508241400    | 200508220131  | 10/98             | S11W62             | 200508220133                   |            |
| 130 | 200509021800    | 200508311130  | 10803             | N11W13             | 200508311151                   |            |
| 13/ | 200509110500    | 200509091948  | 10808             | S09E54             | 200509092002                   |            |
| 120 | 200509151400    | 200309132000  | 10808             | S09E10<br>S05W20   | 200504100842                   |            |
| 139 | 200604151500    | 200607060854  | 10809             | S03 W 20           | 200504100842                   |            |
| 140 | 200007102100    | 200007000834  | 10090             | \$12W15            | 200608161617                   |            |
| 142 | 200608201300    | 200608262057  | 10905             | S08F05             | 200608761952                   |            |
| 142 | 200612142200    | 200612130254  | 10930             | S05W33             | 200608201352                   |            |
| 143 | 200612142200    | 200612130234  | 10930             | S05W47             | 200612130233                   |            |
| 145 | 200711192300    | 200711151850  | 10,000            | S07W18             | No active region in solar disk |            |
| 146 | 200812170300    | 200812120854  | 1009              | S25W90             | Only Active Region             |            |
| 147 | 200912191300    | 200912160430  | 1035              | N30W18             | 200912160124                   |            |
| 148 | 201002110800    | 201002070354  | 1045              | N23W01             | 201002070234                   |            |
| 149 | 201004051200    | 201004031033  | 1059              | S22W15             | 201004030954                   |            |
| 150 | 201004120100    | 201004080454  | 1061              | N17W44             | Only Active Region             |            |
| 151 | 201005281900    | 201005241406  | AR                | N18W32             | 20100524144                    | Y          |
| 152 | 201102181900    | 201102150224  | 1158              | S21W27             | 201102150156                   |            |
| 153 | 201103060900    | 201103030612  |                   | S14W16             | Only Active Region             |            |
| 154 | 201108050500    | 201108020636  | 1261              | N15W21             | Only Active Region             |            |
| 155 | 201108062200    | 201108040412  | 1261              | N15W49             | 201108040357                   |            |
| 156 | 201109100300    | 201109062305  | 1283              | N14W18             | 201109062220                   |            |
| 157 | 201109262000    | 201109241248  | 1302              | N12E47             | 201109241320                   |            |
| 158 | 201111020100    | 201110271200  | 1330              | N08E05             | Not clear                      |            |
| 159 | 201111131000    | 201111091336  | 1342              | N17E22             | 201111091335                   |            |
| 160 | 201111290000    | 201111260712  | 1353              | N08W49             | 201111260710                   |            |
| 161 | 201201210600    | 201201181224  | 1 100             | S19E03             |                                | Y          |
| 162 | 201201222300    | 201201191436  | 1402              | N29E15             | 201201191605                   |            |
| 163 | 201203090300    | 201203070024  | 1429              | NI/EI5             | 201203070024                   |            |
| 164 | 201203151700    | 201203131736  | 1429              | N18W62             | 201203131741                   | V          |
| 165 | 201205161600    | 201205120000  | 1447              | S15E20             | nare                           | Ŷ          |
| 167 | 201200102300    | 201200141412  | 1504              | \$10E01<br>\$17E06 | 201200141435                   |            |
| 169 | 201207030000    | 201207020830  | 1513              | N17W26             | 201207020705                   |            |
| 160 | 201207090000    | 201207041724  | 1515              | \$16W00            | 201207041039                   |            |
| 170 | 201207150000    | 201207121048  | 1520              | N03W05             | 201207120805                   |            |
| 170 | 201210010000    | 201209020400  | 1577              | N08W41             | 201209020158                   |            |
| 172 | 201210010000    | 201210050248  | 1584              | S22W40             | 201210050317                   |            |
| 173 | 201211010000    | 201210271648  | 1598              | S15W11             | flare                          | Y          |
| 174 | 201211130800    | 201211091512  | 1608              | S21E10             | Only Active Region             | -          |
| 175 | 201211241200    | 201211201200  | 1618              | N08E14             | Only Active Region             |            |
| 176 | 201211261200    | 201211231348  |                   | S39E10             | ,                              | Y          |
| 177 | 201301171600    | 201301131200  | 1640              | N28W35             |                                | Y          |
| 178 | 201303171500    | 201303150712  | 1692              | N09W03             | 201303150658                   |            |
| 179 | 201304141700    | 201304110724  | 1719              | N10W00             | 201304110716                   |            |
| 180 | 201306280200    | 201306232236  | 1776              | N11W63             | Only Active Region             |            |
| 181 | 201307130500    | 201307091512  | 1785              | N18E15             | 201307091325                   |            |
| 182 | 201310022300    | 201309292212  |                   | N17W27             | 201309292339                   | Y          |
| 183 | 201310090900    | 201310061443  |                   | S32E46             | 201310061424                   |            |
| 184 | 201312151600    | 201312120336  |                   | S24W40             | Only Active Region             |            |
| 185 | 201402080100    | 201402040125  | 1967              | S12W24             | flare                          |            |
| 186 | 201402160500    | 201402120600  | 1974              | S12W12             | 201402120425                   |            |
| 187 | 201402191200    | 201402161000  | 1977              | S11E01             | 201402160926                   |            |
| 188 | 201404052200    | 201404021336  | 2027              | N12E42             | 201404021405                   |            |
| 189 | 201404210700    | 201404181325  | 2036              | S16W41             | 201404181303                   |            |
| 190 | 201406082000    | 201406041248  | 2080              | S12E46             | Only Active Region             |            |
| 191 | 201408191600    | 201408151748  | 2144              | S17W33             | Only Active Region             |            |
| 192 | 201409122200    | 201409101800  | 2158              | N15W00             | 201409101745                   |            |
| 193 | 201409170200    | 201409121824  | <b>a</b> c (-     | N16W26             |                                | Y          |
| 194 | 201412220400    | 201412170500  | 2242              | S18W01             | 201412170451                   |            |
| 195 | 201501070700    | 201501030312  | 2253              | S07E09             | Only Active Region             |            |
| 196 | 201503171300    | 201503150148  | 2297              | S18W38             | 201503150213                   |            |
| 19/ | 201506230200    | 201506210236  | 23/1              | N13W00             | 201506210142                   |            |
| 198 | 201506251000    | 201506221836  | 25/1              | N13W13             | 201506221823                   |            |

Table A.1Continued.

| No. | Near-Earth ICME | CME           | $NOAA^{a}$    | Coordinate | Flare              | Filament <sup>b</sup> |
|-----|-----------------|---------------|---------------|------------|--------------------|-----------------------|
|     | Date and Time   | Date and Time | Active Region |            | Date and Time      |                       |
| 199 | 201507130600    | 201507100224  | 2384          | S28E47     | 201507100121       |                       |
| 200 | 201508152100    | 201508121448  | 2396          | S18W65     | Only Active Region |                       |
| 201 | 201509080000    | 201509041936  | 2410          | S26E13     | Only Active Region |                       |
| 202 | 201509210800    | 201509180500  | 2415          | S19W29     | 201509180404       |                       |
| 203 | 201511070600    | 201511041448  | 2443          | N06W09     | 201511041352       |                       |
| 204 | 201512200300    | 201512160936  | 2468          | S16W13     | 201512160903       |                       |
| 205 | 201512311700    | 201512281212  | 2473          | S22W19     | 201512281245       |                       |
| 206 | 201601191000    | 201601142324  |               | S24W13     |                    | Y                     |
| 207 | 201604140900    | 201604101112  | 2529          | N14E49     | 201604100549       |                       |
| 208 | 201607200700    | 201607171048  | 2565          | N05W08     | 201607170803       |                       |
| 209 | 201608021400    | 201607282224  |               | N26W10     |                    | Y                     |
| 210 | 201610130600    | 201610081836  | 2600          | N06E49     | Only Active Region |                       |
| 211 | 201611100000    | 201611050424  | 2606          | N08E46     | Only Active Region |                       |
| 212 | 201707161500    | 201707140125  | 2667          | N12W85     | 201707132340       |                       |
| 213 | 201709072000    | 201709042036  | 2673          | S08W16     | 201709042033       |                       |
| 214 | 201709081100    | 201709061224  | 2673          | S09W45     | 201709061202       |                       |
| 215 | 201808251200    | 201808202124  |               | N17W12     |                    | Y                     |

 Table A.1 Continued.

<sup>a</sup> Number of active region specified by NOAA; <sup>b</sup> Y indicates that the activity associated with a CME event is filament.

# References

- Ameri D., & Valtonen E. 2017, Sol. Phys., 292, 79
- Brueckner, G. E., Howard, R. A., Koomen, M. J., et al. 1995, Sol. Phys., 162, 357
- Cane, H., & Richardson, I. 2003, Journal of Geophysical Research (Space Physics), 108, 1156
- Detman, T., Smith, Z., Dryer, M., et al. 2006, Journal of Geophysical Research (Space Physics), 111, A07102
- Dryer, M., Fry, G., Sun, W., et al. 2001, Sol. Phys., 204, 265
- Feng, X., & Zhao, X. 2006, Sol. Phys., 238, 167
- Feng, X., Zhou, Y., & Wu S. 2007, ApJ, 655, 1110
- Ham, Y.-G., Kim, J.-H., & Luo J.-J. 2019, Nature, 573, 568
- Hess, P., & Zhang, J. 2015, ApJ, 812, 144
- Huang, Y., Zheng, F., Cong, R., et al. 2020, IEEE Transactions on Image Processing, 29, 8187
- Jin, M., Manchester, W., van der Holst, B., et al. 2017, ApJ, 834, 173
- Jolliffe, I. T., & Stephenson, D. B. 2012, Forecast Verification: A Practitioner's Guide in Atmospheric Science, 2nd Edition (Hoboken: John Wiley & Sons)
- Kang, Y., Li, L., & Li, B. 2021, Journal of Energy Chemistry, 54, 72
- Li, Y., & Luhmann, J. 2006, ApJ, 648, 732
- Liou, K., Sotirelis, T., & Richardson, I. 2018, Journal of Geophysical Research (Space Physics), 123, 485
- Liu, J., Ye, Y., Shen, C., Wang, Y., & Erdélyi, R. 2018, ApJ, 855, 109
- Liu, S., Yao, S., Zhu, G., Zhang, X., & Yang, R., 2021, Journal of Intelligent & Robotic Systems, 101, https://doi.org/ 10.1007/s10846-020-01289-8
- Manoharan, P. 2006, Sol. Phys., 235, 345
- Maričić, D., Vršnak, B., Veronig, A. M., et al. 2020, Sol. Phys., 295, 91

- Moon, Y. J., Dryer, M., Smith, Z., Park, Y., & Cho, K. 2002, Geophys. Res. Lett., 29, 1390
- Möstl, C., Amerstorfer, T., Frahm, R., et al. 2015, Nature Communications, 6, 7135
- Müller, D., Nicula, B., Felix, S., et al. 2017, A&A, 606, A10
- Núñez, M., Nieves-Chinchilla, T., & Pulkkinen, A. 2016, Space Weather, 14, 544
- Odstrcil, D., Riley, P., & Zhao, X. 2004, Journal of Geophysical Research (Space Physics), 109, A02116
- Paouris, E., & Mavromichalaki, H. 2017, Sol. Phys., 292, 180
- Poedts, S., Lani, A., Scolini, C., et al. 2020, Journal of Space Weather and Space Climate, 10, 57
- Richardson, I., & Cane, H. 2010, Sol. Phys., 264, 189
- Riley, P., Linker, J., Lionello, R., & Mikic, Z. 2012, Journal of Atmospheric and Solar-Terrestrial Physics, 83, 1
- Riley, P., Linker, J., & Mikić, Z., 2013, Journal of Geophysical Research (Space Physics), 118, 600
- Riley, P., Mays, L., Andries, J., et al. 2018, Space Weather, 16, 1245
- Schultz M., Betancourt C., Gong B., et al., 2021, Philosophical Transactions Series A, 379, 20200097
- Schwenn, R., dal Lago, A., Huttunen, E., & Gonzalez, W. 2005, Annales Geophysicae, 23, 1033
- Sinha, S., Srivastava, N., & Nandy, D. 2019, ApJ, 880, 84
- Smith, Z., & Dryer, M., 1990, Sol. Phys., 129, 387
- Sokolov, I., van der Holst, B., Oran, R., et al. 2013, ApJ, 764, 23
- Subramanian, P., Lara, A., & Borgazzi, A. 2012, Geophys. Res. Lett., 39, L19107
- Sudar, D., Vršnak, B., & Dumbović, M. 2016, MNRAS, 456, 1542
- Tóth, G., Sokolov, I., Gombosi, T., et al., 2005, Journal of Geophysical Research (Space Physics), 110, A12226

- van der Holst, B., Sokolov, I., Meng, X., et al. 2014, ApJ, 782, 81
- Vandas, M., Fischer, S., Dryer, M., Smith, Z., & Detman, T. 1996, J. Geophys. Res., 101, 15645
- Verbeke, C., Mays, M. L., Temmer, M., et al. Space Weather, 2019, 17, 6
- Vršnak, B., Žic, T., Vrbanec, D., et al. 2013, Sol. Phys., 285, 295
- Wang, C.-P., Kim, H.-J., Yue, C., et al. 2017, Journal of Geophysical Research (Space Physics), 122, 4210
- Wang, J., Ao, X., Wang, Y., et al. 2018, Journal of Space Weather and Space Climate, 8, A39
- Wang, Q.-J., Li, J.-C., Guo, L.-Q., 2021, RAA (Research in Astronomy and Astrophysics), 21, 012
- Wang, Y., Liu, J., Jiang, Y., & Erdélyi, R. 2019, ApJ, 881, 15

- Wang, Y., Ye, P.Z., Wang, S., et al. 2002, Journal of Geophysical Research (Space Physics), 107, 1340
- Watanabe, K., Masuda, S., & Segawa, T. 2012, Sol. Phys., 279, 317
- Webb, D. F., & Howard, T. A. 2012, Living Reviews in Solar Physics, 9, 3
- Xie, H., Ofman, L., & Lawrence, G. 2004, Journal of Geophysical Research (Space Physics), 109, A08103
- Yashiro, S., Gopalswamy, N., St. Cyr, O., et al. 2004, Journal of Geophysical Research (Space Physics), 109, A07105
- Zhao, X., & Dryer, M. 2014, Space Weather, 12, 448
- Zheng, F., Shao, L., & Han J. 2018, IEEE Transactions on Intelligent Transportation Systems, 19, 3387