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Abstract The Central Molecular Zone (CMZ) is a ring-like structure sitting at the center of the Milky
Way. Using the 870 µm continuum map from the APEX Telescope Large Area Survey of the Galaxy
(ATLASGAL), we study anisotropy in the density structure of gas in the CMZ utilizing the 2D correlation
function. To quantify the spatial anisotropy, we define the critical angle θhalf , as well as the anisotropy
parameter A ≡ π

4θhalf
− 1. We find that the density structure is strongly anisotropic at a large scale (∼

100 pc), and the degree of spatial anisotropy decreases with decreasing scale. At the scale of ∼ 10 pc, the
structure is still mildly anisotropic. In our analyses, we provide a quantitative description of the anisotropic
density structure of gas in the CMZ, and the formalism can be applied to different regions to study their
differences.
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1 INTRODUCTION

Situated at the center of the Milky Way, the Central
Molecular Zone (CMZ) is an unusually dense molecular
cloud complex with a size of a few hundred parsecs
(Launhardt et al. 2002). A total mass of 3 × 107M� is
found inside this region (Dahmen et al. 1998; Molinari
et al. 2014). Observations indicate that the gas in the
CMZ has high volume densities (with a mean value of
∼ 104 cm−3, Li & Zhang 2020) and high column densities
(about ∼ 1023 cm−2, Lis & Carlstrom 1994).

In spite of the widespread presence of dense gas, the
star formation efficiency (SFE) is about 10 − 100 times
lower than the standard values (Kauffmann et al. 2013;
Longmore et al. 2013; Emsellem et al. 2015; Jeffreson
et al. 2018). The dynamics in this region can be affected
by a variety of processes, such as gravitational instability,
turbulence, tidal force, cloud-cloud collision, shear, etc.
(Longmore et al. 2013; Jeffreson et al. 2018; Kruijssen
et al. 2019).

The shear on a cloud will cause a velocity difference
between its near side and its far side with respect to the
Galactic center, which stretches the gas into long streams.
The strength of shear can be quantified using the shear
timescale, which is tshear = (∂Ω/∂r × r)−1. In the Milky

Way, shear is believed to be responsible for creating large-
scale filamentary structures (Dobbs & Bonnell 2006).
Some first hints on the importance of shear came from
the discovery of kpc-sized filamentary structures (Li et al.
2013; Goodman et al. 2014; Wang et al. 2015). Further
observations have found that the filamentary structures
with sizes of a few to a few tens of pc tend to stay parallel
to the Galactic disk (Li et al. 2016; Wang et al. 2015),
indicating that shear is dynamically important on these
scales. In some cases, shear can play a dominant role in
determining the star formation activity: recent results from
Li & Zhang (2020) indicate that shear alone is responsible
for the observed low level of star formation seen in the
CMZ region.

One way to reveal the role of shear is to study the
alignment of filamentary structures (Li et al. 2016; Wang
et al. 2015). However, this approach, although effective, is
cumbersome to implement. Besides, the evolution of the
interstellar medium is a multi-scale process, and ideally,
we would like to know the role of shear over a range
of scales. As studying the role of shear considering the
alignment of filamentary structures only allows us to probe
the scales comparable to the lengths of the filaments, better
methods are needed. In this paper, we develop a formalism
to quantify the anisotropy of the density structure of the
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Fig. 1 Left panels: Column density distribution in the CMZ of the Galactic center observed by the survey: the ATLASGAL
at 870µm, with a beam size of 19.2′′ and a typical noise level of 50–70 mJy beam−1. The horizontal bar in the upper
right corner indicates a length of 100 pc. The yellow contours in Fig. 1(c) indicate the region where the flux intensity is
more than 3 Jy beam−1 (8.31×1021 cm−2). The yellow contours in Fig. 1(e) signify the region where the flux intensity is
more than 5 Jy beam−1 (1.385× 1022 cm−2). Right panels: 2D correlation functions Cauto,n. In Fig. 1(b), the correlation
function is computed using the emission map. In Figs. 1(d) and 1(f), we plot the correlation function computed from
clipped emission maps where we set the value of regions where I > 3, 5 Jy beam−1 to Imax = 3, 5 Jy beam−1, which
correspond to NH2 = 8.31 × 1021 cm−2 and 1.385 × 1022 cm−2 respectively.

CMZ quantitatively applying the two-dimensional (2D)
correlation function, with which the role of shear can be
studied over a range of scales. In Section 2, we present the
data. In Section 3, we describe the methods and present the
results. In Section 4, we give a conclusion.

2 DATA

We examine the 870µm map from the APEX Telescope
Large Area Survey of the Galaxy (ATLASGAL) (Schuller
et al. 2009). The observations were carried out with the
APEX 12 m submillimeter telescope in dust emission
continuum with an angular resolution of 19.2′′ and a
sensitivity of 50 mJy beam−1. We assume that the CMZ
region has a mean distance of 8.2 kpc, estimated from
the updated distance to Sgr A from Gravity Collaboration
et al. (2019). The corresponding spatial resolution is ∼
0.76 pc. The size of the selected region is about 477 pc
× 159 pc. The maps contain contaminations from the
fore/background, and this amounts to around 10% of the
total flux (Li & Zhang 2020). Thus, the contributions from

fore/background emission to the overall correlation should
be insignificant.

3 METHODS AND RESULTS

3.1 The Correlation Function

Our data are taken from Schuller et al. (2009), from which
the column density can be calculated by utilizing

NH2
=

FνR0

Bν(TD)ΩκµmH
, (1)

where Fν is the flux density, R0 ∼ 100 is the gas-to-dust
ratio, Ω is the solid angle of the telescope beam, µ ∼ 2.8 is
the mean molecular weight of the interstellar medium with
respect to hydrogen molecules (Kauffmann et al. 2008)
and mH is the mass of a hydrogen atom. We adopt a
uniform temperature of TD = 20 K (Ginsburg et al. 2016;
Molinari et al. 2010; Traficante et al. 2011). At 870µm,
κ = 1.85 cm2 g−1 (Ossenkopf & Henning 1994) and

Bν(TD) =
2hν3

c2
1

e
hν
kTD − 1

. (2)
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Fig. 2 (a) The region is divided with different radii and l is the distance from the origin. (b) The region is divided with
different angles. We symmetrize it into the range of 0 to π

2 . The colorbar is θ/π.

Here, we have assumed a uniform temperature for the
whole region. In reality, the temperature varies by around
5 K, leading to an uncertainty of about 20% for individual
regions. As the errors in column density caused by
temperature variations are small compared to the intensity
variations, the contribution from temperature to the overall
correlation should be minimal.

To quantify the anisotropy of the density structure,
we evaluate Cauto, which is the 2D correlation function.
Assuming that f(x, y) represents the intensity distribution
in the x–y plane, its Fourier transform is

f(k1, k2) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−i(k1x+k2y) dxdy. (3)

We first calculate the power spectrum in k-space. f† is the
conjugate of f .

P (k1, k2) = f(k1, k2)f†(k1, k2). (4)

Then the correlation function in the real space Cauto is
obtained by the inverse transform

Cauto(x, y) =
1

4π2

∫ b

a

∫ b

a

P (k1, k2)ei(k1x+k2y) dk1dk2.

(5)
The column density map of the CMZ is displayed

in Figure 1(a). The normalized 2D correlation function
(Cauto,n ≡ Cauto/Cauto,max) based on the flux data
is shown in Figure 1(b). Note that calculations done in
Fourier space assume a periodic boundary condition. To
minimize boundary effects, we add zero paddings around
our maps before performing the calculations. We note that
in some cases, a very significant amount of emission is
contained in a very small region (e.g. the Sgr B2 region).
To evaluate their contributions to the overall correlation,
we experiment with performing clipping operations to
the data at regions where the flux is larger than a
certain threshold of 3 Jy beam−1 (8.31 × 1021 cm−2)
and 5 Jy beam−1 (1.385 × 1022 cm−2), separately. This
is achieved by setting the values of regions where the
flux is above a threshold to that threshold. We set flux
data more than 3, 5 Jy beam−1 (8.31 × 1021 cm−2,

1.385 × 1022 cm−2) to Imax = 3, 5 Jy beam−1 (8.31 ×
1021 cm−2, 1.385 × 1022 cm−2). The regions where the
flux data are more than 3, 5 Jy beam−1 (8.31×1021 cm−2,
1.385 × 1022 cm−2) are marked yellow in Figure 1(c)
and Figure 1(e), respectively. The clipping operation
effectively reduces the dynamic range of the maps. The
correlation functions computed from these clipped maps
are presented in Figure 1(d) and Figure 1(f). By comparing
the clipped results (Fig. 1(d) and Fig. 1(f)) to the unclipped
ones (Fig. 1(b)), we are able to evaluate the contribution to
the correlation function from regions with different column
densities.

From all these correlation functions, we observe that
the contours in the center (at small scales) are nearly
roundish, but at larger scales, the contours are elliptical
where the long axes of the ellipses are aligned with the
mid-plane of the Milky Way. This is an indication that
shear is dynamically important in the region.

3.2 Quantifying the Spatial Anisotropy

To further quantify the spatial anisotropy measured as
a function of the scale, we divide the region into rings
of different radii. Each ring is characterized by the l

parameter, which is the distance from the origin (Fig. 2(a)).
For each ring, we plot the value of the correlation function
against θ, which is the angle measured with respect to
the Galactic mid-plane. We have considered all the points.
In addition, θ has been transformed to the range (0,π2 )
(Fig. 2(b)). Due to symmetry, θ is between 0 and π.
Additionally, we assume that the structure of the CMZ is
symmetric had we turned it upside down (horizontal mirror
symmetry). Thus, we only need to plot θ between 0 and π

2 .
As an example, we plot the results from a ring at

l ∼ 33.4 − 35.8 pc. The ring width ∆l is 10 pixels, about
2.4 pc. In Figure 3(a), we plot the Cauto,n against θ. Here,
the spatial anisotropy can be seen from the fact that the
correlation is stronger along the l direction where θ = 0,
but becomes weaker as θ increases.

To quantify the spatial anisotropy at scale l,
we define the so-called half correlation angle θhalf ,
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Fig. 3 (a) The distribution of Cauto,n against θ. (b) Ccumulative,n- θ/π relation. Ccumulative,n is the normalized cumulative
correlation function. The vertical line marks where Ccumulative,n is 0.5.
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Fig. 4 (a) θhalf/π - l relation. θhalf decreases with l in the CMZ. (b) Anisotropy-l relation. The left vertical line indicates
where the Jeans lengths lJ (6 pc) and the right vertical line represents the Toomre lengths lT (17 pc) estimated by
Henshaw et al. (2016). The solid line is the anisotropy-l distribution calculated with raw data. The dashed line is the
anisotropy-l distribution calculated by setting raw data more than 3 Jy beam−1 (8.31×1021 cm−2) to Imax = 3 Jy beam−1
(8.31 × 1021 cm−2). The dashed line with stars is the anisotropy-l distribution calculated by setting raw data more than
5 Jy beam−1 (1.385 × 1022 cm−2) to Imax = 5 Jy beam−1 (1.385 × 1022 cm−2). The straight line at scales larger than 10
pc is the linear fit of data, log10 A ≈ 1.4 log10 l − 2.2.

which is the critical angle within which half of the
correlation function is contained. To derive θhalf , we
define the so-called cumulative correlation function
Ccumulative(θ) =

∫
Cauto,n(θ)dθ, then we normalize it,

obtaining the normalized cumulative correlation function
Ccumulative,n(θ) = Ccumulative(θ)/Ccumulative,max(θ).
θhalf is obtained by solving Ccumulative,n(θ) = 0.5.
The procedure is illustrated in Figure 3(b). For isotropic
structures, θhalf = π

4 , whereas for structures that are
preferentially aligned with the disk mid-plane, θhalf <
π
4 . An example of how we derive θhalf is presented in
Figure 3(b).

The above-mentioned exercise allows us to study how
the spatial anisotropy evolves as a function of the scale. In
Figure 4(a), we plot θhalf against the scale, and where θhalf
decreases with the increasing scale. This indicates that the
spatial anisotropy is stronger at larger scales.

We further define the anisotropy parameter

A ≡ π

4 θhalf
− 1 . (6)

A > 0 means that at the scale of interest, the density
structure is anisotropic, and the value of A measures
the degree of anisotropy. For a homogeneous region, the
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correlation strength is evenly distributed between 0 and π
2 .

At θhalf = π
4 , A will be 0. As θ = 0 corresponds to the

direction along which the correlation is concentrated, in
most cases, θhalf < π

4 and A > 0. In Figure 4(b), we plot
A against the scale. We also plot regions where we have
chosen different Imax. We note that at scales below 10 pc,
the anisotropy parameter depends on the value of Imax.
Thus, we should only interpret results from scales larger
than 10 pc, as only in this range do results from different
Imax converge. At scales larger than 10 pc, we perform a
fit to our data and find log10 A ≈ 1.4 log10 l − 2.2. The
anisotropy is strong on a large scale, and it decreases with
decreasing scale. At around l = 10 pc, the density structure
is still moderately anisotropic.

We further add the two vertical lines indicating the
Toomre length lT ≈ 17 pc and the Jeans length lJ ≈ 6 pc
(Henshaw et al. 2016), respectively. The Jeans length is the
length scale above which gravity can induce collapse, and
the Toomre length is the length below which self-gravity is
stronger than shear. The density structure is expected to be
anisotropic at l > lT, and this is confirmed by our results.
Apart from this, we can still observe a significant amount
of anisotropy at lT > l > lJ.

4 CONCLUSIONS

We study the density structure of gas in the CMZ
by applying the 2D correlation function. We find that
the density structure is strongly anisotropic where the
correlation is strong along the l direction, suggesting that
shear is dynamically important.

To quantify anisotropic density structure, we define the
half-correlation angle θhalf and the anisotropy parameter
A ≡ π

4θhalf
− 1. The density structure is strongly

anisotropic at l = 100 pc, and is slightly anisotropic at
l = 10 pc. Between 10 pc and 100 pc, we find that

log10 A ≈ 1.4 log10 l − 2.2.

We propose a picture where at a large scale (l > 10 pc),
shear is dynamically important such that it can change the
density structure of the gas significantly, and its strength
diminishes as one moves to smaller scales. At l . 10 pc,
as shear should have roughly the same strength as self-
gravity, the gas can enter a state called “shear-enabled
pressure equilibrium” (Li & Zhang 2020). The formalism
developed here can be applied to study the role of shear
in different regions in a quantitative fashion and reveal the
differences.
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