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Abstract By means of identical cubic elements, we generate a partition of a volume in which a particle-
based cosmological simulation is carried out. In each cubicelement, we determine the gas particles with a
normalized density greater than an arbitrarily chosen density threshold. By using a proximity parameter, we
calculate the neighboring cubic elements and generate a list of neighbors. By imposing dynamic conditions
on the gas particles, we identify gas clumps and their neighbors, so that we calculate and fit some properties
of the groups so identified, including the mass, size and velocity dispersion, in terms of their multiplicity
(here defined simply as the number of member galaxies). Finally, we report the value of the ratio of kinetic
energy to gravitational energy of such dense gas clumps, which will be useful as initial conditions in
simulations of gravitational collapse of gas clouds and clusters of gas clouds.
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1 INTRODUCTION

The gravitational collapse of gas clouds takes place by the
accretion of gas from low-density to high-density regions,
such that the result of this process can be the formation
of galaxies or stars, depending on the density and length
scales involved, seeKlessen & Hennebelle(2010). In an
intermediate stage of the collapse process, it is possible
that these dense gas structures show a dynamic behavior
characteristic of the final systems already formed, be
they galaxies or stars. For this reason, those intermediate
structures are called protogalaxies or protostars. In both
cases, they can be identified with very dense gas cores,
which do not shine on their own.

The idea about the existence of a direct relation-
ship between the proto-structures and their descendants,
whether galaxies or stars, will have more support as
long as the collapse of the gas cores occurs in a more
or less isolated way, with each one producing one or
a few final products, seePadoan & Nordlund(2002),
Hennebelle & Chabrier (2008), Hennebelle & Chabrier
(2009), Oey (2011) andHopkins(2012). It is in this last
point, on which the attacks of the opponents to this idea
are based, because they argue that stochastic processes are
inherent to the general process of formation of structures,
seeBonnell et al.(2001), Bate et al.(2003) andClark et al.
(2007).

A remarkable example of this idea is seen in the
similarity between the core mass function (CMF) and the
stellar initial mass function (IMF), seeOffner et al.(2014).
Both functions share the same mathematical form, with the
only difference between them being that the CMF is shifted
to larger masses with respect to the IMF.

It is an observational fact that galaxies tend to
agglomerate in bounded structures, which are called
depending on the number of members, for instance
clusters, with a number of galaxies varying within 30–
300; loose groups with 3–30 members; compact groups
with 4–8 and binaries with 2 members. In addition, 30
percent of the galaxies are observed to be isolated, 10
percent forming binaries; 0.1 percent in compact groups;
50 percent of the galaxies are observed in loose groups
while only 10 percent forms clusters, seeMamon(1996).
In addition, it is now well-known that about 50 percent
of all galaxies in the Universe are collected into low-
multiplicity groups, with four or less member galaxies.
Observationally,Hickson(1982) reported the properties of
one hundred compact groups of galaxies identified in the
Palomar Observatory Sky Survey. Consequently, one may
suspect that the gas clumps, out of which galaxies form
by gravitational collapse, are perhaps also grouped into
small groups with a few members. If such a relation exists,
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then maybe it can be seen in cosmological numerical
simulations.

With regard to numerical aspects, there are many
problems associated with identifying a galaxy within the
framework of a cosmological simulation to compare their
clustering properties with observations. Characterizing
the clustering of matter in a cosmological simulation is
a complicated issue that has been considered over the
last 30 years. Many codes have been developed and
tested to analyze the highly irregular and filamentary
clumpy structure of the simulations. A summary of the
development of this area has recently been presented by
Knebe et al.(2011), who compared the results obtained by
relying on some dark-matter halo finder codes on the same
test data with either a cosmological simulation or a mock
catalog of dark-matter halos.

In general terms, the basic objective of most of
these codes has been to identify isolated dark-matter
halos, seeEisenstein & Hut(1998). Most of the early
codes discarded the clustering of gas in their calculations,
partly (i) because they were applied to dark-matter only
simulations or (ii) because of the well-established idea that
dark-matter was clustered earlier and shortly after the gas
reached the center of these dark-matter structures to form
dense gas clumps, seeWhite & Rees(1978). Recently, a
new generation of more refined codes has focused on the
determination of sub-halos embedded within a larger host
halo, which is a harder computational problem; see for
instanceCañas et al.(2019). It should be noted that many
of these codes are not publicly available. Other codes that
are open source can be difficult to understand and run
because a lot of parameters are involved.

In this paper we consider the gas component of a
typical hydrodynamical cosmological simulation, which
tries to imitate the Illustris simulation, that was described
by Vogelsberger et al.(2014). The size of the simulation
box (around 106 Mpc), the values chosen for the content
of matter, the expansion rate H0 of the Universe and other
parameters, that were used in the Illustris simulation, have
also been used in the lower resolution simulation presented
in this paper, which was developed with the publicly
available code Gadget2; seeSpringel(2005). This set of
cosmological parameters has been determined utilizing the
most recent observations, seePlanck Collaboration et al.
(2014), and are currently one of the most accurate. It
must be emphasized that the simulation used for this
paper should not be compared to the Illustris one, because
adopting the same cosmological parameters does not make
them equivalent. Important features such as star formation,
cooling, feedback, etc., which were included in the Illustris
simulation are not included in the simulation used in this
manuscript.

We next apply our mesh-based code to generate a
partition of the simulation box in terms of identical cubic
elements, at the scale of 0.8–1.6Mpc. We then determine
a subset of cubic elements, whose average normalized
density above a threshold value is given in advance, at the
order 30–300 times the average cosmic density. We then
consider the densest cubic elements to identify isolated
gas clumps and produce a list a neighboring gas clumps.
Next, we count the number of groups detected in terms
of their multiplicity (the numbers of members or richness)
and we calculate the physical properties of these groups
in a statistical sense, including the mass, size, velocity
dispersion and multiplicity function of the gas clumps.

The particular partition sizes and overdensities con-
sidered in this paper as free parameters can be motivated
as follows. The spherical top-hat approximation considers
that overdense matter expands with the Universe up to
the turnaround point, where it stops expanding and starts
collapsing. Later, the surrounding regions will follow its
collapse gradually. The turnaround radius of cosmological
structures in the top-hat approximation varies from
1.7 Mpc for small galaxy groups to 7 Mpc for large galaxy
clusters. In addition, cosmological N-body simulations
have confirmed the top-hat approximation since a long
time ago, so that the radius in which the overdensity is
178 times the mean density determined the limits of the
infalling region.

It must be clarified that the computational method
described above is not new to the field. Consequently,
there are no advantages of this algorithm over those in
the literature. For this, it should be considered as a less
sophisticated version of the above mentioned methods, see
Knebe et al.(2011). Dobbs & Pringle(2013) considered a
clump-finding algorithm based only on a surface density
threshold criterion, so that a galaxy model is divided into a
Cartesian grid; this clump-finding algorithm allowed them
to study the evolution of giant molecular clouds. Motivated
by these results, we apply our code at its first stage of
development, since there is no need to refine it any further
to achieve the objectives of interest, which we outline as
follows. In addition, in cosmological simulations, the most
commonly applied value of overdensity to define a dense
clump is 200 times the average cosmic density, see for
instanceKnebe et al.(2011).

First, we study the dynamics of gas at sufficiently large
scales, in order to characterize its grouping properties.
Second, we calculate the ratio of kinetic energy to
gravitational energy of the gas clumps. Therefore, the
physical properties of giant gas complexes (typical radius,
mass, 3D-velocity dispersion and the level of kinetic
energy) obtained as results from the calculations reported
in this paper are expected to be relevant as suitable sets
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of initial conditions from cosmological simulations, to
address the problem of gravitational collapse of clouds and
clusters of clouds.

Several comments are now presented to emphasize
some potential benefits of this paper. First, this problem
of gravitational collapse of clouds and clusters of
clouds cannot be studied directly by means of present-
day cosmological simulations, because the resolution is
insufficient to resolve properly the scales needed. To
alleviate this situation, the zoom-in simulations were
introduced since a long time ago. For example,Suginohara
(1994) smoothed the initial distribution of particles and
obtained a smoothed density field on a 1283 grid. Then
they extracted 10 cubic regions, so that each one was
used as initial state for their zoom-in simulations. In
this paper, we report the average physical properties
obtained considering all the cubic elements that cover a
cosmological hydrodynamical simulation.

Second, the value of the ratio of kinetic energy to
gravitational energy has proved to be very important
in numerical simulations for modeling the gravitational
collapse of gas cores, because it measures the relative
importance of the kinetic energy provided initially, see
for instance Miyama et al. (1984), Hachisu & Eriguchi
(1984), Hachisu & Eriguchi (1985), Tsuribe & Inutsuka
(1999a) and Tsuribe & Inutsuka(1999b). In the best
case, the initial conditions for the studies of gas
core collapse are motivated from observations, see for
instance,Bergin & Tafalla(2007) (and references therein)
which reported the physical properties of cloud cores.
Particularly, the virial parameter, which is directly related
to the ratio of kinetic energy to gravitational energy, has
recently been measured byKauffmann et al.(2013) who
recently compiled a catalog of 1325 molecular gas clouds.
Observational values of the ratioEkin

Egrav
for prestellar cores

have been found to be within the range 10−4 to 0.07, see
Caselli et al.(2002) andJijina et al.(1999). As far as we
are aware, no observational estimates of this ratio for large
gas structures, such as the ones considered in this paper,
have been reported elsewhere. It can also be expected that
the value of this ratio may be relevant in the collapse of
clouds and clusters of clouds, seeArreaga-Garcı́a(2016)
andArreaga-Garcı́a(2017).

Third, the usefulness of the calculations on the
statistical properties of groups of gas clumps mentioned
above can be illustrated byPerez et al.(2006a) and
Perez et al.(2006b). These authors constructed 2D and
3D catalogs of galaxy pairs from cosmological hydro-
dynamical simulations, so that the 3D catalog contained
88 galaxies in pairs, whose statistical properties were
compared with galaxies in pairs found in the Two-
degree-Field Galaxy Redshift Survey (2dFGRS) catalog.

In addition, inPerez et al.(2006a) (Perez et al.(2006b)),
the authors investigated tidal interactions and their effects
on star formation (on colors and chemical abundances).
It can be seen that these studies can be extended to
galaxy groups with a higher number of members, so that
a statistical analysis of higher multiplicity galaxy groups,
like the one proposed in this paper, can be useful.

The rest of this paper is structured as follows.
In Section 2 we describe the simulation and some
computational issues are presented in Sections2.1 and
2.2. The code that will be applied in this paper is
presented in Section2.3. To characterize the code, some
plots are described in Section2.3, which are presented
in terms of the number of cubic cells. The results in
terms of physically meaningful quantities are described
in Sections3, which include calculation of the mass
function, the size function and the multiplicity function
of the gas clumps of the simulation1. In Section3.5 we
present the determination of the dimensionless ratio of
the gravitational energy to the potential energy of the gas
clumps. The statistical properties of gas clump groups is
described in Section3.4. Section4 discusses the results
obtained and Section5 makes a comparison with other
papers to highlight the consistency of the results obtained
and also their shortcomings. Finally, in Section6 some
concluding remarks are provided.

2 THE SIMULATION

We consider a small part of the observable Universe, which
is defined by a cubic box, whose side length isL = 106

Mpc. The initial content of matter is characterized by
Ωm = 0.2726 and the content of dark energy isΩΛ =

0.7274. The sum of these quantitiesΩm + ΩΛ = 1.0
corresponds to a flat model of the Universe, expanding
with a Hubble parameter H0 = 100 h km s−1 Mpc−1. h
is an indetermination factor, given byh = 0.704. These
values that we have chosen for the content of matter and
the expansion rate H0 are the most accurate that have
been determined via the most recent observations, see
Planck Collaboration et al.(2014) andVogelsberger et al.
(2014). The average mass density in this region of the
Universe to be simulated is given byρ0 = 2.92× 10−30 g
cm−3 and the initial and final redshifts are fixed atz = 127

andz = 0, respectively.
To generate a set of density perturbations consistent

with this cosmological model, we utilized the publicly
available code provided by2. The simulation particles were

1 The term multiplicity must be understood in this paper as the
number of members collected into a group. The term gas clump here
indicates a large collection of gas, which will likely form adenser
structure by means of the gravitational collapse.

2 http://www.h-its.org/tap-software-en/
ngenic-code/

http://www.h-its.org/tap-software-en/ngenic-code/
http://www.h-its.org/tap-software-en/ngenic-code/
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Fig. 1 The fraction of the number of cubic elements
having a ratio of the normalized density with a value less
than the value of the horizontal axis. The vertical lines at
1.5 and 2 determine the density threshold of the chosen
cubic elements, as defined in the text, see Sect.2.3.

initially placed in the center of 1024 partition elements
of a uniform mesh, so that an initial power spectrum
P (k) can be constructed by moving the simulation
particles according to the linear spectrum defined by
Eisenstein & Hu(1999), and the expected minimum and
maximum wave numbers arekmin = 1.0 × 10−6 and
kmax = 100 h Mpc−1, respectively. The normalization of
the power spectrum was fixed at a value ofσ8=0.809.

It should be noted that the code2 generates the initial
set of particles in pairs; that is, for each dark-matter particle
there is a gas particle, so that the numberNDM of dark-
matter particles and the numberNG of gas (G) particles are
both equal to23 887 872. Hence, the particles have masses
given bymDM = 3.18×109M⊙ andmG = 6.4×108M⊙,
respectively. The time evolution of the simulation up to
z = 0 required a little more than 5000 CPU hours, running
on 250 processors in the cluster Intel Xeon E5-2680 v3
at 2.5 Ghz of LNS-BUAP. The computational method, to
be described in Section2.3 and whose results will be
described in3, will be applied only to the last output, that
is, the snapshot at redshiftz = 0.

2.1 Resolution and Equation of State

The resolution of a simulation can be characterized by

the Jeans wavelengthλJ =
√

π c2

Gρ
where c is the

instantaneous speed of sound andρ is the local density
andG is the Newtonian gravitational constant. A more
useful form for a particle-based code is the Jeans mass,

MJ , which is given byMJ ≡ 4
3
π ρ

(

λJ

2

)3
= π

5
2

6
c3√
G3 ρ
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Fig. 2 The distribution function of the number of gas
particles (shown on the horizontal axis) inside each chosen
cubic element (featured on the vertical axis).
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Fig. 3 Spatial distribution of all the cubic elements
satisfying the density condition defined in Sect.2.3 using
partition P6. The length of a side is 100 Mpc.

The values of density and speed of sound must be
updated according to the ideal equation of statep = c2ρ.
The average gas temperature atz = 127 is T = 245

K, so the ideal speed of sound can be obtained by the
relation c =

√

γ kB T/mp whereγ ≡ 5/3, kB is the
Boltzmann constant andmp is the proton mass. From these
relations we obtainλJ = 0.16 h−1 Mpc and the Jeans
massMJ = 3 × 108 M⊙. The smallest mass particle that
an SPH calculation must resolve to be reliable is given
by mr ≈ MJ/(2Nneigh), whereNneigh is the number
of neighboring particles included in the SPH kernel; see
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Bate & Burkert(1997). The ratio of the simulation mass
mG calculated above to this resolution massmr is then
given bymG/mr = 569 for the simulation.

2.2 The Evolution Code

The simulations of this paper are generated by the particle-
based code Gadget2, which is based on the SPH method for
evolving the particles according with the Euler equations
of hydrodynamics; seeSpringel (2005). Gadget2 has a
Monaghan-Balsara form for artificial viscosity, seeBalsara
(1995), so that the strength of the viscosity is regulated by
setting the parameterαν = 0.75 andβν = 1

2
× αv, see

equations (11) and (14) inSpringel(2005). The Courant
factor has been fixed at0.1.

The SPH sums are evaluated utilizing the spherically
symmetric M4 kernel ofMonaghan & Lattanzio(1985),
and so gravity is spline-softened with this same kernel.
The smoothing lengthh establishes the compact support
so that only a finite number of neighbors to each particle
contribute to the SPH sums. The smoothing length changes
with time for each particle so that the mass contained in
the kernel volume is a constant for the estimated density.
Particles also have gravity softening lengthsǫ, which
change step by step with the smoothing lengthh, so that
the ratioǫ/h is of order unity. In Gadget2,ǫ is set equal to
the minimum smoothing lengthhmin, calculated over all
particles at the end of each time step. It must be noted that
the upper bound of the softening length implemented in
Gadget2 code to run the simulations of this manuscript is
0.02 Mpc.

2.3 The Cubic Partitions

Our code makes a partition of the simulation box by means
of a set of identical cubic elements. Let us define the level
l of the partition, so that the number of partition elements
per side of the simulation box is given by 2l. In this paper,
only partition levels 6 and 7 will be considered, so that the
numbers of length elements per simulation side are 64 and
128, respectively. For these partitions, the total numbers
of identical cubic elements in which the entire simulation
volume is divided are therefore (2l)3 ≡ 262 144 and
2 097 152, respectively. Let us label these partitions as P6
and P7, respectively. It should be noted that the side length
of each cubic element of the partitions P6 and P7 is 1.66
Mpc and 0.83 Mpc, respectively.

We next determine the average gas density inside each
cubic element of the partitions, by applying a method
often found in particle simulations, which is the nearest
grid point (NGP) method, seeBirdsall & Fuss(1997). It
deposits the entire mass of the particle to the NGP. For the
partitions P6 and P7, the number of cubic elements with

a non-negligible number of particles is around 130 000
and 1 000 000, respectively. Let us define the normalized
density of the cubic element bylrho0 = log10 (ρ/ρ0),
where ρ0 is the average mass density of the Universe,
as described in Section2. Then, the average density of
this set of cubic elements is< lrho0 >= 0.23 and
< lrho0 >= 0.026, respectively. The standard deviation of
the normalized density isσlrho0 = 0.89 andσlrho0 = 1.05,
respectively.

To start our study, we arbitrarily chose the initial
values for the minimum normalized density, denoted by
lrho0min, so that in this paper, only the two values of
lrho0min=1.5 and 2 will be considered. We will focus only
on those cubic elements of the partition whose normalized
density is greater than this value oflrho0min. In Figure1,
the values oflrho0min are shown on the horizontal axis, so
that all the cubic elements of the partitions located to the
right-hand side of those vertical lines will be defined as the
chosen cubic elements; that is, they satisfy the condition
log10 (ρ/ρ0) > lrho0min. These values oflrho0min=1.5
and 2 respectively correspond to an overdensity∆ of 31
and 316 times the average matter density of the Universe,
ρ = ∆ ρ0. It must be emphasized that this overdensity
value∆ is determined such that the matter with a density
ρ greater than∆ ρ0 is virialized in a given cosmology.
The most commonly utilized value in simulations for the
overdensity is∆ =200, seeKnebe et al.(2011).

Some of the properties of these sets of chosen cubic
elements of the partitions are displayed in Table1, as
follows: column one shows the label of each partition;
column two features the partition level defined above and
the number of identical cubic elements; column three lists
the minimum density value used to define the set of chosen
cubic elements; column four shows the number of chosen
cubic elements per each partition; column five displays the
number of cubic elements that are linked as neighbors, see
Section3.3below and column six lists the peak number of
gas particles found in only one cubic element of this set of
chosen cubic elements.

It should be mentioned that the number of particles
inside each cubic element can also be regarded as the
selection criterion to define the chosen cubic elements.
In this case, there would be a minimum particle number
given before-hand, so that only those cubic elements with
a greater number of particles would be considered in the
calculation of properties. However, the results are more
interesting when the criterion is based on density. In
Figure2 we plot the distribution function of the number of
cubic elements against the number of gas particles inside
each cubic element.

The spatial distribution of the identical cubic elements
defined in this section is displayed Figures3 and 4, in
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Table 1 The Partitions and Some Properties

Partition label Partition level (nct) lrhomin nce nceMult ngpmax

P6 6 (643) 2.0 6795 5060 24 801
P7 7 (1283) 2.0 50 537 32 891 17 017
P6t 6 (643) 1.5 14 408 11 874 24 801
P7t 7 (1283) 1.5 85 810 64 192 17 107
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lrho0

-1.93

4.72

Fig. 4 Spatial distribution of all the cubic elements
satisfying the density condition defined in Sect.2.3 using
the partition P7. The length of the side is 100 Mpc.

which the normalized density value appears in the right-
hand column of each plot aslrho0.

3 RESULTS

To highlight the spatial scale of the simulation and the code
presented in this paper, let us now summarize, very briefly,
the well-established current scenario about the formation
of structure in cosmological simulations. At the scale of
100 Mpc and redshiftz = 0, our simulations will produce
a cosmic network of dense filaments. At a scale of 10 Mpc,
the most massive dark-matter halos will be formed mainly
at the intersection of those filaments. At a scale of a few
Mpc, the gas will condense and start forming virialized
regions in the center of the collapsed dark-matter halos,
so that galaxy clusters will appear. At a scale of a few kpc,
the dense gas will form galaxies, so that at the nucleus of
some of the galaxies, at the scale of a few pc, the gas will
collapse gravitationally to start forming stars.

In Sections3.1-3.3, we will characterize the set of
chosen cubic elements defined in Section2.3. The gas
particles contained in these chosen cubic elements of
the partitions will be considered as an approximation of
the distribution of the gas clumps, as is explained in
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Fig. 5 (Top) The mass distribution function for the
chosen cubic elements of the partitions. The vertical axis
shows the number of chosen cubic elements having a
mass featured on the horizontal axis. (Bottom) The size
distribution function for the chosen cubic elements of the
partitions. The vertical axis features the number of chosen
cubic elements having a radius displayed on the horizontal
axis.

Sections3.4 and3.5. It will be seen that an approximate
size of these gas clumps is of the order of 1 Mpc or less,
while the groups formed by these gas clumps are of the
order of a few Mpc, and can therefore be identified with the
structures forming virialized regions of gas (as mentioned
in the previous paragraph).
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3.1 The Distribution Function of the Mass for the
Chosen Cubic Elements

We first count the gas particles within each chosen
cubic element of the partition and thus immediately have
the mass contained. We determine the minimum and
maximum masses of this set of gas particles and make a
mass partition in terms ofnbin = 50 bins, so that we
count all the chosen cubic elements with a mass within
each mass bin. The resulting distribution function of the
mass of the chosen cubic elements is displayed in the top
panel of Figure5.

The behaviors of these curves are all similar, as
expected: they are quite separated for the smallest mass
scale, indicating that there is a large difference in the
number of low-mass chosen elements found in each
partition. The smallest mass scale identified for all the
partitions is aroundlog10 (M/M⊙) ≈ 11.2, whereas the
largest mass scale, according to column six of Table1, is
around 13, although the number of chosen cubic elements
decreases significantly in the plot around a mass scale of
12.2.

It appears that the pair of curves for partitions P6-P7
and P6t-P7t is closer to each other. This indicates that for
the mass determination, the resolution parameter of the
partitions seems to be more important than the density
threshold parameter.

3.2 The Distribution Function of the Radius for the
Chosen Cubic Elements

Let us now estimate a distribution function of the size for
the dense gas contained in each chosen cubic element.
We again re-consider the gas particles determined in
Section3.1 to calculate the center of mass and then locate
the particle that is furthest from this center of mass but
still inside the chosen cubic element, so that half of this
distance is defined as a geometrical measure of the set
of gas particles contained in the cubic element. We next
make a radial partition of the radii thus obtained in terms
of nbin = 50 radial bins, so that a distribution function can
be obtained by this procedure, as depicted in the bottom
panel of Figure5.

Let us emphasize that the radius of the horizontal axis
in both panels of Figure5 is just a label to identify the
shells of the radial partition. Letrmax be the maximum
distance of the furthest particle from the center of mass, as
mentioned in the paragraph above. Then, for the grids P7
and P7t we havermaxP7 and for the grids P6 and P6t we
havermaxP6. As expected, we always havermaxP7 <

rmaxP6. This indicates that the grids P6 and P6t have
radial shells with a width larger than the radial shells of
the grids P7 and P7t. For this reason, the curves for the

grids P6 and P6t are located to the right side of the curves
for the grids P7 and P7t.

It should be noted that the partitions P6 have, in
general, a core radius that is larger than those of the
partitions P7, so that the average radius is around 0.3 and
0.1 Mpc, respectively. The fixed size of the cubic element
of each partition, as explained in Section2.3, determines
an upper limit for the distribution function of the radius.
However, the radii detected by this procedure are quite
smaller than this upper limit.

It appears that the pair of curves for the partitions P6-
P6t and P7-P7t is closer to each other. This indicates that
for the size determination, the density threshold parameter
of the partitions seems to be more important than the
resolution parameter.

3.3 The Distribution Function of the Multiplicity for
the Chosen Cubic Elements

To take further advantage of the partitions described in
Section2.3, we now determine the chosen cubic elements
located in the same neighborhood. To do this, we first
define a proximity parameter, which must be a distance.
We start this calculation by arbitrarily using the hypotenuse
of the cubic element of the partitions, as defined in
Section2.3, so that in the case of the partitions P6, this
proximity parameter is fixed at 1.44; for the partitions P7
it is fixed at 2.88 Mpc.

We next determine all of the chosen cubic elements
whose geometric centers are separated by a distance
smaller than or equal to this proximity parameter. Let
us define the multiplicity as the total number of cubic
elements that are all linked to each other in this way; the
result of this procedure is displayed in Figure6. Following
this procedure, we have a list of neighbors for each chosen
cubic element, which will be used again in Section3.4.

The case of groups with multiplicity 10 is remarkable,
because many of these groups have been detected
simultaneously with the same partition. For instance, the
partition P6 detects five groups of multiplicity 10; 38 were
detected with the partition P6t; only two were detected
with the P7 and 13 were detected with the P7t. An example
of such a highest multiplicity group is featured in Figure7,
where it can be noted that the gas clumps follow a filament.
In addition, it should also be noted that the group shown in
Figure7 has been detected with both partitions P7 and P7t.

Column five of Table1 expresses the total number
of chosen cubic elements that are grouped in the some
multiplicity level detected by this procedure. These
numbers indicate that about 74 percent of the chosen cubic
elements for partition P6 are placed into groups while 82
percent are placed in partition P6t. In the case of partitions
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P7 and P7t, these fractions decrease to 65 percent and 74
percent, respectively.

3.4 Statistical Properties of Gas Clump Groups

To relate the gas particles contained in a chosen cubic
element with a gas clump, in this section we impose two
conditions on these gas particles so that they belong to gas
clumps if and only if: (i) the number of gas particles is
greater than 10 and (ii) only gas particles withΦi < 0 will
be considered to be in a gas clump.

To begin with the characterization of the gas clumps
and their grouping properties, we first re-consider the list
of neighbors obtained in Section3.3. In addition, the
proximity parameters for all the partitions are the same as
those that were utilized in Section3.3.

The application of these conditions on the list of
neighbors has the immediate result that the number of
groups per multiplicity decreases significantly, as can be
seen in Figure8, which must be compared to Figure6.
In addition, the groups with multiplicity 10 are no longer
detected for any of the partitions. Consequently, on thex-
axis of Figure8, a multiplicity number is shown if and only
if a non-zero number of groups is detected.

By only taking into account the groups of gas
clumps detected after these conditions, we now calculate
their average physical properties in terms of both their
multiplicity and the partition in which they were found.
The average mass resulting from the groups is displayed
in Figure 9. According to Section2, the gas particles of
the simulation have all the same mass, as given bymp ≈
6.4 × 108 M⊙, so that the plots in Figure9 also contain
information about the average number of gas particles per
group of a given multiplicity.

The panels of Figure9 seem to indicate that the mass
of a middle multiplicity group is always larger than the
mass of the highest multiplicity group detected.

The average radius per group is displayed in Figure10.
It should be emphasized that this radius makes sense
only in geometrical terms. To obtain this radius, we first
calculate the center of mass of the set of gas particles per
each group. Then, we determine the gas particle furthest
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away from this point and take half of this distance as the
radius per each group. Next, we calculate the average of
all these radii and we express the result in terms of the
group multiplicity. The panels of Figure10 indicate that
the radius of a lower multiplicity group is larger than the
radius of the highest multiplicity group detected.

Finally, the average velocity dispersion of the groups
detected is depicted in Figure11. We emphasize that this
velocity dispersion is calculated in the usual statistical
sense: we calculate the magnitude of the velocity vector
for all the gas particles of a given group, we then obtain
the average velocity of all the groups and the dispersion is
determined as the standard deviation, so that it is the square
root of the variance; seePress et al.(1992). The results are
shown in terms of the multiplicity number.

It should be emphasized that use of the symbol<>g

(in the vertical axis of all of the figures described up to this
point) indicates that the physical properties are calculated
using all of the gas particles associated with all of the
detected groups. However, to complement Table1, we now
consider all the gas particles of a given multiplicity but
this time irrespective of the particular group to which they
belong. The total number of gas particles detected in terms
of their multiplicity is plotted in Figure12.

To take advantage of these results, we now summarize
in Table2 the fitting curves for all of the physical properties
of the galaxy groups, that is, those indicated previously by
the symbol<>g.

A measure of the variation of the fitted data can be
obtained by calculating the sum of squares of residuals,
denoted here bySS, so that a standard error can be defined
by SE =

√

SS/dF , wheredF is the number of degrees
of freedom, which is defined as the number of fitted points
minus the number of fitting parameters. The goodness of
a fit can be established by introducing the variance of
residuals (or reducedχ2

ν), which is given bySE2. These
values are reported in the last column of Table2 for
each fitting formula. In principle, a value ofχ2

ν around 1
indicates a good fit; a value ofχ2

ν ≫ 1 indicates a poor
model fit; finally, a value ofχ2

ν < 1 indicates that there is
noise in the model fit, which is usually called “over-fitting”
the data.

The goodness of the fitting parameters can be
established by a confidence interval, which is determined
by the best value of a fitting parameter± tS∗SE, wheretS
is the value from thet-distribution for the specified number
of degrees of freedom and with 95 percent confidence.
In Table 3 we report these confidence intervals, so that
the order of the fitting formulae listed in Table2 is still
followed in Table3.

Finally, by calculating the meanxave and standard
deviationSD of the data arrayx, withnp = 6 points in this

Table 3 Confidence interval of the best value of the fitting
parameter. The order of the fitting formulae expressed in
Table2 is still followed here.

Symbol Best value Left side Right side
I1 1802.23 1796.1 1808.4
ms 0.841847 –5.3 7.0
I2 17.12 9.3 24.9
n2 3.2 –4.7 11.0
ms2 4.09 –3.8 11.9
lma1 0.29 –0.17 0.76
lma0 12.16 11.67 12.62
ms 1.79 1.32 2.26
rad1 0.079 –0.026 0.18
rad0 0.378 0.27 0.49
ms 1.63 1.53 1.74
σ1 1.47 –81.84 84.79
σ0 16.326 –67.0 99.6
ms 0.0437996 –83.3 83.3

case, which are plotted on the vertical axis of each of the
top right panels in Figures8-11, a confidence interval of
the physical properties can be determined by the equation
xleft = xave − tS ∗ SD/

√
np for the left side and by the

equationxright = xave + tS ∗ SD/
√
np for the right side,

so that these values are reported in columns 4 and 5 of
Table4.

In order to quantify the influence that the use of the
grid P6 can have on the results, in Table5 we repeat
only the calculation described in the paragraph above, by
considering the physical properties plotted in the vertical
axis of each of the top left panels of Figures8-11.

3.5 The Distribution Function of the Ratio Ekin

|Egrav|
of

the Gas Clumps

We now continue the characterization of the dense
gas clumps contained in the chosen cubic elements by
calculating their ratio of the kinetic energy to gravitational
energy. The energies involved are:

Ether =
3
2

∑

i mi
Pi

ρi

Ekin = 1
2

∑

i miv
2
i ,

Egrav = 1
2

∑

i miΦi

(1)

where the summations include all of the gas particles inside
each chosen cubic element, so thatΦi is the gravitational
potential,vi is the velocity,mi is the mass andPi is the
pressure.

In simulations of the gravitational collapse of clouds,
the dynamic behavior is mainly determined by the values
of the ratio of the thermal energy to the potential
energy, Ether

|Egrav|
, and the ratio of the kinetic energy

to the gravitational energy, Ekin

|Egrav|
; see Miyama et al.

(1984). In addition, these ratios are very important to
determine the stability of a gas structure against gravita-
tional collapse, so that collapse and even fragmentation
criteria can be constructed in terms of these ratios; see
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Fig. 8 The number of groups (ng) detected are shown on they-axis (using the symbol×) in terms of the multiplicity (m)
shown on thex-axis. Two lines are included in the top-right panel to fit thedata with the following formulae:ng1(m) =
I1 ∗ exp(−m/ms) (fit 1) andng2(x) = I2 ∗ (x/ms2)

−n2 (fit 2). The values of the fitting parameters areI1 = 1802.23,
ms = 0.841847, I2 = 17.1243, n2 = 3.18728 andms2 = 4.09685.

Table 2 Fitting Formulae of the Mean Physical Properties of Groups in Terms of Their Multiplicity (m)

Symbol Fitting formula Figure Variance of residualsχ2
ν

Ng(m) 1802.23 × exp (−m/0.841847) Figure8 8.37
Ng(m) 17.1243 × (m/4.09685)−3.18728 Figure8 10.94

< log (M/M⊙) > (m) 0.29483 × (m/1.78779) + 12.1551 Figure9 0.04
< r > (m) 0.0795668 × (m/1.63) + 0.37783 Figure10 0.001
< σv > (m) 1.47406 × (m/0.0437996) + 16.326 Figure11 1253.93

Hachisu & Eriguchi (1984), Hachisu & Eriguchi (1985)
and the references therein. These ratios also characterize
very well the gravitational collapse by capturing the
most representative events, including fragmentation, which
may leave an imprint on the value of these ratios; see
Arreaga-Garcı́a & Saucedo Morales(2012).

It must be mentioned that most of the codes considered
in Knebe et al.(2011) apply a procedure to improve the
list of particles that potentially belong to a halo. We did
not implement a complete procedure to remove unbound
gas particles. However, only gas particles withΦi < 0

have been considered in the calculation of Section3.5,
because these particles are gravitationally linked. Once

these particles are selected in each chosen cubic element,
we then calculate the ratios defined in this section. It
is important to emphasize that only those chosen cubic
elements with a number of particles greater than 200 are
considered in this calculation.

We consider it to be more illustrative to present the
results of this calculation in terms of the number of cubic
elements,nce found within a given interval of the ratio
Ekin

|Egrav|
, as has been done in previous sections. The result is

featured in Figure13.

The curves thus obtained indicate that most of the
chosen cubic elements have low-values of the ratioEkin

|Egrav|
,
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Fig. 9 The average mass of the groups detected in terms of the multiplicity shown on thex-axis. A line is included in
the top-right panel to fit the data with the following formula: lmf(x) = lma1

∗ (x/ms) + lma0
. The values of the fitting

parameters arelma1
= 0.29483, lma0

= 12.1551 andms = 1.78779.

so that most of the gas inside each chosen cubic element is
clustered such that its average value isEkin

|Egrav|
< 1.

4 DISCUSSION

In this paper we applied a mesh-based code to generate a
uniform cubic partition to characterize the clustering and
grouping properties of gas clumps at galaxy cluster scales
utilizing a typical cosmological simulation.

It must be first emphasized that the results reported
in Sections3 depend strongly on the parameters of the
partition, as expected. This is a common situation, even
in highly-refined codes presented elsewhere, in which
the main parameters of the code must be given before-
hand. Here, we will consider other features to clarify the
results obtained and their dependence on the partition
used. The basic partition depends on two parameters,
namely: the level of resolution and the density threshold.
The low-resolution partitions were labeled as P6 and
P6t, corresponding to a density threshold of 2 and 1.5,
respectively; analogously, the high-resolution partitions
were labeled as P7 and P7t, respectively.

A high fraction of the chosen cubic elements contained
more than 500 particles, as can be seen in Figure2, so
that the gas clumps are expected to be well represented in
this low-resolution simulation. However, the edges of the
chosen cubic elements of partition P6 and P6t were visible
in Figure 3. This indicates that the size of their typical
cell element was too big, and there can be more than one
gas clump contained in each cell element. Fortunately, the
edges were less visible in the partitions P7 and P7t, as can
be seen in Figure4. This indicates that only the core of
the largest gas clumps was captured by each cell element.
These features can be seen as shortcomings of this method.
On the other hand, a positive feature of this method is that
it can certainly identify filamentary distributions of cubic
elements. Nevertheless, by comparing the distributions of
cubic elements seen in Figures3 and 4, one then can
ascertain the critical role played by the normalized density
threshold: the higher its value, the better its representation
of the gas clumps by the set of chosen cubic elements.

A large number of chosen cubic elements were linked
in lower-multiplicity groups. Specifically, in the case
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Fig. 10 The average radius of the groups detected with the multiplicity shown on thex-axis. A line is included in the
top-right panel to fit the data with the following formula:radf (x) = rad1 ∗ (x/ms) + rada0. The values of the fitting
parameters arerad1 = 0.0795668, rad0 = 0.37783 andms = 1.63.

of multiplicity 2, the ratio of these numbers between
partitions P7 to P6 is around 8. This means that there are 8
times more binary systems of the chosen cubic elements in
partitions P7 than those detected in partition P6. A similar
ratio was observed in the case of partitions P7t to P6t;
see Figure6. This behavior indicates that a change in the
resolution has a significant impact. Meanwhile, a small
change in the density threshold does not strongly affect
the larger number of the chosen cubic elements detected
in partitions P7 and P7t as compared with those obtained
for partitions P6 and P6t.

However, analogous ratios constructed with the
number of chosen cubic elements of multiplicity 2 between
the partition P7t to P7 and P6t to P6 indicate that the
change is smaller than that observed in the previous
paragraph, so that it is now about 1.6. This means that the
number of binary systems of chosen cubic elements does
not duplicate when we change the density threshold from
2 to 1.5 in partitions with the same level of resolution.

As noted in Section3.4, after imposing the two
conditions on the gas particles contained in the chosen

cubic elements, the number of groups detected in terms of
their multiplicity decreased significantly. Let us consider
again the case of multiplicity 2 that was discussed above,
then the ratio between the numbers of groups detected in
the partitions P7 to P6 and P7t to P6t is now of order 4. This
means that now there are 4 times more binary systems of
gas clumps in the partitions of level 7 than those detected
in the partitions of level 6. Surprisingly, a comparison of
the analogous ratios between the partitions P7t to P7 and
P6t to P6 indicates that they are of the same order 4.

The numbers of interest detected for partitions P6t
and P7t almost doubled when compared to those detected
for the original partitions P6 and P7 (e.g., the number
of chosen cubic elements, the number of groups, etc.)
Meanwhile, the physical properties of the groups are
comparable; for instance, the mass scale in terms of
log10 (M/M⊙) for partition P6 ranges within 12.9–13.4;
while for partition P6t, it ranges within 12.4–13.1; for
partitions P7 and P7t we observed the normalized mass
range within 12.3–13.3 and 11.8–13.4, respectively.
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Table 4 Confidence Interval of the Physical Properties by Using the Grid Partition P7

Label Mean Standard deviation Left side Right side
Ng 40.8 59.11 -6.47 88.13

< log (M/M⊙) > 12.9 0.31 12.65 13.15
< r > (Mpc) 0.56 0.07 0.50 0.62

< σv > (Km/s) 167.78 62.69 117.60 217.94

Table 5 Confidence Interval of the Physical Properties by Using the Grid Partition P6

Label Mean Standard deviation Left side Right side
Ng 11.4 14.61 -1.77 24.57

< log (M/M⊙) > 13.11 0.19 12.9 13.23
< r > (Mpc) 1.03 0.14 0.90 1.16

< σv > (Km/s) 181.5 42.26 143.42 219.58

Apparently, it will be easier to lose the gas clumps o-
riginally detected when the multiplicity of the associations
of chosen cubic elements is higher. It is very likely that
the gas clumps associated with higher-multiplicity groups
are too small and do not meet the conditions imposed in
Section3.4. It is also possible that the highest-multiplicity
groups still detected in Section3.4are incomplete in their
number of members in view of this behavior.

While it is true that only gravitationally bounded gas
particles were used to identify gas clumps and determine
group properties in Section3.4, it must be noted that no
test was made to check whether the gas clumps that were
placed in groups are gravitationally bound to each other. In
addition, the proximity parameter introduced in Section3.3
was motivated by the size of the cubic element of the
partitions, which means that it can be changed and the
results are going to be changed accordingly.

However, a proximity parameter can in principle be
found, so that its cubic partition is the better choice for
a given simulation. In fact, N-body simulations and the
friends-of-friends algorithm have been applied to calibrate
these kind of codes to obtain values of linking length
parameter, so that it makes the best identification of galaxy
groups in catalogs; see for instanceNorberg et al.(2003),
Padilla et al.(2004) andNorberg et al.(2002).

In Section3.5we calculated the ratio of kinetic energy
to gravitational energy of all the gas clumps contained in
the chosen cubic elements. These values can be useful
as initial conditions for simulations of the formation of
star clusters, like the ones simulated byKlessen & Burkert
(2000) and Klessen & Burkert (2001). However, the
physical properties of the gas cloud progenitors that
will produce the star clusters by gravitational collapse
are difficult to obtain, mostly because these cluster
precursors are very difficult to be observed. Nevertheless,
Jackson et al.(2018) have recently observed “a high mass
molecular cloud with unusually large linewidths,” which
indicate that its level of kinetic energy is so high that this
cloud was difficult to be considered as a gravitationally
bound system. These authors claimed that if this system

were successfully identified as a star cluster progenitor,
then this cloud must be dominated by extreme turbulence.
It has been shown elsewhere that this kind of highly
turbulent cloud can still collapse and form protostars, see
Arreaga-Garcı́a(2018).

5 COMPARISON WITH OTHER PAPERS AND
OBSERVATIONS

A natural way to assess the results reported in this paper
is by means of a comparison with other simulations. In
spite of the fact that our gas structures are just a crude
representation of the real distribution of galaxies, we will
also try to make a comparison with observations. In order
to keep these comparisons tractable, in this section we will
focus only on the results obtained by relying on partition
P7t, which has given us the best results.

With regard to the numerical simulations side, there
is a rich literature on multiplicity functions in cosmology
that can be mentioned. For instance, employing early dark-
matter only simulations,Gott & Turner (1977) described
the clustering of galaxies in terms of a multiplicity
function, defined as the fraction of galaxies in single,
double, triple systems, etc.Bhavsar et al.(1981) deter-
mined the number of groups in terms of the number of
galaxy members.Efstathiou et al.(1988) compared the
multiplicity function obtained from N-body simulations
with the Press and Schechter formalism, which presented
an approximate theory for the form of the multiplicity
function, seePress & Schechter(1974). A mathematical
definition of multiplicity is given by Efstathiou et al.
(1988), which is “the multiplicity of each particle ism if it
is part of a group with more than 2m−1 but no more than
2m members.”

The ratio of the number of galaxy forming groups with
2 or 3 members to the number of galaxies in groups of 4
or 5 members is 4 according toBhavsar et al.(1981) and
8 according toEfstathiou et al.(1988). According to our
plots featured in the right column of Figure8, our ratio is
around 8.
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Fig. 11 The average velocity dispersion of the groups detected in terms of the multiplicity shown on thex-axis. A line is
included in the top-right panel to fit the data with the following formula:σf (x) = σ1 ∗ (x/ms) + σ0. The values of the
fitting parameters areσ1 = 1.47406, σ0 = 16.326 andms = 0.0437996.

Thomas & Couchman(1992) presented simulations
on the formation of a rich cluster of galaxies, in which
many small galaxies are detected in the region around
the central galaxy by using a minimum density cut of
180 times the mean density of the simulation, so that
12 gas clumps are located in the outer region beyond 1
Mpc and 20 gas clumps within this radius. Figure 11 of
Thomas & Couchman(1992) presented a projection to the
X-Y plane of the particle distribution. It displays a galaxy
distribution very similar to that shown here in Figure7.

In addition, in Perez et al. (2006a), the authors
located the gravitationally bounded gas structures of a
cosmological hydrodynamical simulation by relying on the
friends-of-friends algorithm, seeDavis et al.(1985). Then,
they continued by looking for condensed gas substructures
within regions of 0.5 Mpc, centered on each bounded
system localized, so that they identified a galaxy-like
object with those gas concentrations found as substructure.
They found 364 systems in pairs. After applying a
proximity criterion, they finally obtained 88 galaxy-like
objects in pairs. From these samples they constructed a 3D

catalog and conducted a statistical analysis. This method
goes beyond the capabilities of the code presented in this
paper, which does not allow capturing gas substructures,
so that a comparison is difficult to make. However, their
number of galaxies in pairs seems to be quite small as
compared with the more than 700 binary systems we found
by using the partition P7t.

Sales et al.(2007) found an average of about 10
satellite galaxies within the virial radius by using a friends-
of-friends algorithm on a hydrodynamical simulation of
a small region, which was taken from a cosmological
simulation box and then re-simulated with the zoom-in
technique, that is, at higher resolution but preserving the
tidal fields from the whole box. It is interesting to mention
that in this paper, groups of gas clumps up to 10 members
were studied, because groups with a larger number of
members were not found.

With regard to the observational side, it must be
emphasized that catalogs of galaxies and clusters of
galaxies have been generated from the data published by
the 2dFGRS, see for example (Tago et al. 2006). The final
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Fig. 12 The total number of gas particles found in any group with the multiplicity shown on thex-axis.

release of the 2dFGRS contained 245 591 galaxies out of
which all groups of galaxies cataloged were constructed
using selection criteria and a cluster-finding method
based on the well-known friends-of-friends algorithm, see
Davis et al.(1985). Tago et al.(2006) identified 7657 and
10 058 groups of galaxies in the Northern (N) and Southern
(S) parts of the 2dFGRS, respectively.

These numbers are quite large compared with the
numbers reported in this paper, because we obtained 1363
groups of gas clumps in the P7t cubic partition, see
the right bottom panel of Figure8. Nevertheless, some
physical properties obtained here are similar to those
reported byTago et al.(2006). For instance, the size of
most of the groups of galaxies detected byTago et al.
(2006) is within 0.1–0.5h−1 Mpc (see the left panel of
their fig. 3). Meanwhile, the average effective radius of
groups of galaxies found byTago et al.(2006) is 0.61
h−1 Mpc. In this paper, we obtained an average group
radius in the range of 0.5-0.8 Mpc, as can be seen in
the right bottom panel of Figure10. The dispersion of
velocity found byTago et al.(2006) is similar for both
the N and S parts of the 2dFGRS, around 200 km s−1 for
groups of galaxies with less than 10 members (see the left

panel of their fig. 4). In this paper, we obtained an average
dispersion of velocity within the range of 80 to 200 km s−1,
as can be seen in the right bottom panel of Figure11.

The mass of the groups of galaxies can be estimated
by applying the virial theorem and a typical size and
velocity dispersion. For groups with three or a very
few more member galaxies, this dynamical mass is
within the range 1012.5 to 1014 M⊙, seeGeller & Huchra
(1983), Nolthenius & White (1987), Eke et al. (2004),
Berlind et al. (2006), Yang et al. (2005) and Yang et al.
(2007). In addition, by considering a large set of galaxies
contained in the Sloan Digital Sky Survey (SDSS)
Data Release 4 (DR4), seeAdelman-McCarthy et al.
(2006), Zandivarez et al. (2006) cataloged groups of
galaxies, whose relationship between environment and
physical properties was studied byMartı́nez & Muriel
(2006). In the bottom right-hand panel of Figure1,
Martı́nez & Muriel (2006) reported the log of the mass
distribution of the sample of groups against the number
of groups with more than four members. They found that
most of the groups have a log(M ) around 13, so that it is in
good agreement with the mass reported in the right-hand
panels of our Figure9 for gas groups with multiplicity 4.
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6 CONCLUDING REMARKS

Some galaxy surveys, like the Euclid Space
Mission (see Laureijs et al. (2011)), the SDSS
(see York et al. (2000)), the Plank Survey (see
Planck 2005, Planck Collaboration et al. 2014and
Planck Collaboration et al. 2016), among others, will
deliver new data shortly, so that the properties of galaxy
clustering and galaxy groups will continue to be probes to
study the growth of large scale structure in the Universe.
For this reason, the development of algorithms to detect
groups and clusters of galaxies is always needed.

With this purpose in mind, in this paper several
uniform cubic partitions of the simulation volume were
implemented to detect isolated dense gas clumps and
calculate their clustering and grouping properties at galaxy
cluster scales in a typical cosmological simulation.

Throughout Sections3.1 to 3.4, and particularly in
the first paragraphs of Section4, we demonstrated that
the low-resolution partitions P6 and P6t do not have
enough resolution to describe the clustering and grouping
properties considered, but the higher-resolution partitions
P7 and P7t do a better representation. A higher level
partition applied to a more resolved simulation will give
better results at a much higher computational cost.

It is less conclusive is if there is any advantage when
changing the normalized density threshold for a couple of
partitions of the same resolution, such as P6 to P6t or P7
to P7t. We remark that partition P7t detected the largest
multiplicity group of the simulation, even when compared
to partition P7.

In addition, we note that the highest multiplicity
groups presented in Section3.4 do not generally have the
largest size, mass and velocity dispersion when compared
with lower multiplicity groups detected with the same
partition. It can be expected that these physical properties
of a group increase with respect to their multiplicity
because more gas cloud members will need more space,
will accumulate more mass and their more distant particles
will go faster.

Therefore, we conclude that our description of the
grouping properties based on cubic partitions is partially
acceptable because the low-multiplicity groups detected
in this paper are in better agreement with these physical
expectations.

In the simulation presented in this paper, the structures
detected in small groups have a geometrical size within
the range of 0.45–1.25 Mpc as discussed in Section3.4.
It is likely that most of the dense gas clumps forming
these small groups will continue to collapse gravitationally,
so that their size will diminish while their density will
increase up to the point where galaxies will be formed.

It is therefore possible that the dynamics of the well-
observed small groups of galaxies at kpc scale have been
partially inherited from groups formed at a larger spatial
scale of Mpc. The most important prediction of this work
consists of the fitted curves that indicate how the physical
properties of the groups will change in terms of the number
of members or multiplicity, see Table2.

To establish the goodness of the fitting models, theχ2
ν

statistical test has been applied to the data. In principle,the
two fits for the number of groupsNg and for the velocity
dispersionσv would qualify as poor fitting models; the fit
for the log of the mass and the radius seem to be “over-
fitted.” For this reason, new fitting models need to be
proposed.

To continue with the inspection of the certainty
of the parameters of the fitting models, the confidence
interval has been calculated and is shown in Table3.
The confidence intervals are very wide in general, except
for the fitting parameters of the log of the mass<
log (M/M⊙) > and the radius< r >.

To take advantage of all the physical information
displayed on the vertical axis of Figures8-11 and at the
same time, to compare the results with the two sets of grids
P7 and P6, to assess the influence of the grid on the study
undertaken in this paper, in Tables4 and5 we listed the
mean, the standard deviation and the confidence interval
of each physical property.

By using the grid P6, a smaller number of low-
multiplicity groups are detected, with a similar mass
but with a slightly larger size and velocity dispersion
in comparison with the properties obtained by using the
grid P7. Being the log of the mass and radius, the only
physical properties which seem to be grid-independent,
these results would allow us to speak about the average
physical properties expected for low-multiplicity groupsof
protogalaxies.

Thus, one can set forth the second prediction of
this paper, which is that for low-multiplicity groups of
protogalaxies, the average log of the mass is within the
interval 12.65–13.23 and the average radius is within the
interval 0.5–1.16 Mpc.

The third prediction in this paper is based on the
calculation of the distribution of the chosen cubic elements
in terms of their ratio values ofEkin

|Egrav|
, which was depicted

in Figure13. It should be emphasized that we found that
most of the gas clumps have a low-value ofEkin

|Egrav|
. This

result is in agreement with observational estimates of the
ratio Ekin

|Egrav|
in pre-stellar gas cores which are within the

range 10−4–0.07, seeCaselli et al.(2002) andJijina et al.
(1999).

Among the advantages of our method, the program-
ming is easy and it leads in a natural way to the zoom-in
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Fig. 13 The distribution functions of the number of
chosen cubic elementsnce (shown on the vertical axis)
against their ratio of kinetic energy to gravitational energy
(displayed on the horizontal axis).

technique, in which a cell of the partition can be chosen to
re-simulate its content of matter and increase its number of
particles to represent only that particular region in a new
simulation box.

The zoom-in technique has allowed a single chosen
galaxy or dark matter halo to be studied in great detail,
see for instanceRoca-Fàbrega et al.(2016). In our case,
the results of this paper can be applied as suitable initial
conditions for numerical simulations that aim to follow
the dynamical evolution of small groups of galaxies; for
instance,Barnes(1985) and Aceves & Velázquez(2002)
have started their simulations with a value ofEkin

|Egrav|
in the

range 0.1–1.
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