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Abstract The polarization characteristics of an astronomical telescope is an important factor that affects
polarimetry accuracy. Polarization modeling is an essential means to achieve high precision and efficient
polarization measurement of the telescope, especially for the alt-azimuth mount telescope. At present, the
polarization model for the telescope (i.e., the physical parametric model) is mainly constructed using the
polarization parameters of each optical element. In this paper, an artificial neural network (ANN) is used to
model the polarization characteristics of the telescope. The ANN model between the physical parametric
model residual and the pointing direction of the telescope is obtained, which reduces the model deviation
caused by the incompleteness of the physical parametric model. Compared with the physical parametric
model, the model fitting and predictive accuracy of the New Vacuum Solar Telescope (NVST) is improved
after adopting the ANN model. After using the ANN model, the polarization cross-talk from I to Q, U, and
V can be reduced from 0.011 to 0.007, and the crosstalk among Q, U, and V can be reduced from 0.047 to

0.020, which effectively improves the polarization measurement accuracy of the telescope.
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1 INTRODUCTION

The solar magnetic field plays a critical role in solar
activity, and the corresponding observed data is of great
importance to study the mechanism of solar activity (Yan
et al. 2018; Xue et al. 2020). At present, the solar
magnetic field is mainly derived by the spectropolarimetric
measurement of observational targets based on the Zeeman
effect, and the polarization effect of the solar telescope
is supposed to be removed from polarization observations
(Skumanich et al. 1997; Beck et al. 2005a,b; Ichimoto et al.
2008; Schou et al. 2012; Hofmann et al. 2012; Anan et al.
2018; Ahn & Cao 2019; Hou et al. 2020; Harrington et al.
2019). Thus, we need to measure the polarization property
of solar telescope with polarimetric instruments, and the
conventional method for the polarization calibration of
the telescope is installing an instrumental polarization
calibration unit (ICU), which usually consists of a polarizer
and a retarder, in the front of the relay optics or the whole
telescope to measure the Mueller matrix of the telescope.
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For example, the German Vacuum Tower Telescope (VTT)
on Tenerife (Beck et al. 2005a,b), the Solar Optical
telescope (SOT) onboard Hinode (Ichimoto et al. 2008),
the Helioseismic and Magnetic Imager (HMI) aboard
the Solar Dynamics Observatory (SDO) (Schou et al.
2012), the GREGOR solar telescope (Hofmann et al.
2012), the New Solar Telescope (NST) at Big Bear Solar
Observatory (Ahn & Cao 2019), the New Vacuum Solar
Telescope (NVST) (Wang et al. 2013; Liu et al. 2014;
Hou et al. 2020), the Daniel K. Inouye Solar Telescope
(DKIST) (Harrington et al. 2019) and the future European
Solar Telescope (EST) (Bettonvil et al. 2010). Since
there is no relative rotation of optical elements while the
space telescope or ground-based telescope without relay
optics points to the target, the polarization property of
these telescopes remains constant with time if we do
not consider the degenerate of mirror coatings (Ichimoto
et al. 2008; Schou et al. 2012). In comparison, the large
aperture ground-based telescopes are usually installed on
an alt-azimuth mount, and consist of relay optics to
convey the light to the Coude laboratory, where the focal
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plane is stationary and more instruments can be added
(Hofmann et al. 2012; Hou et al. 2020; Ahn & Cao 2019;
Harrington et al. 2019). This leads to the time-dependent
incidence angles on optical elements along the light path
to the optical laboratory. Thus, the polarization property
of the telescope and focal instruments is time-varying
and depends on the pointing direction of the telescope
(Skumanich et al. 1997; Beck et al. 2005b; Yuan 2014,
2019; Liu et al. 2015).

The polarization calibration for the space telescope or
ground telescope without relay optics is relatively simple
since there is no need to consider the pointing direction
of the telescope, and the calibration result can be directly
used for the correction of polarimetric observations. It is
more complicated to calibrate the polarization property
of a ground-based solar telescope with relay optics, and
we cannot directly use the calibration result to correct the
observed data since the polarization property changes over
time. Therefore, it is essential to construct a polarization
model, the relationship between the polarization property
and time (or pointing direction) of the telescope, for a
ground-based telescope with relay optics.

Polarization modeling for the large-aperture ground
telescope is a complex problem with multiple factors,
such as the polarization characteristics of each mirror, the
relative rotation between the mirror groups, the alignment
error between the mirror groups, and the model error of
mirrors. Besides, some telescopes have vacuum windows,
and their polarization characteristics are difficult to
describe with a simple model. Therefore, the polarization
model based on the ideal optical system assumption, which
is referred to below as the physical parametric model,
can include the main polarization characteristics of the
telescope, but it is difficult to take all the polarization
factors into account. The parameters of the physical
parametric model are obtained by fitting the polarization
calibration data and the measured Mueller matrix of the
telescope. The maximum deviation of the polarization
calibration data from the physical parametric model of the
telescope varies with telescopes and ranges from 0.04 to
0.08 (Anan et al. 2018; Ahn & Cao 2019; Yuan 2019).
Thus the accuracy of the parametric model needs to be
improved since the requirement of the model accuracy is
much higher than the previous deviation. It is difficult to
improve the model accuracy of the physical parametric
model because the source of the model deviation cannot
be determined.

With the development of observational technology in
astronomy, the amount of astronomical data continues
to increase, which also makes it more difficult for

J.-G. Peng et al.: A Novel Method for Telescope Polarization Modeling

astronomers to process and analyze data. Machine learning
has developed rapidly in recent years and was used
to deal with problems in astronomy and astrophysics.
With its advantages in the recognition and extraction
of image structures, the analysis of the implicit corre-
lation of complex data, and the classification of data,
machine learning has shown great potential in handling
astronomical tasks, such as gravitational wave detection,
searching for exoplanets, classification of galaxies and
spectra, prediction of solar flares, calibration of solar
magnetographs (Baron 2019; George & Huerta 2018;
Pearson et al. 2018; Kim & Brunner 2017; Huang et al.
2018; Hala 2014; Hao et al. 2018; Guo et al. 2020). The
previous research based on machine learning also inspires
us to use this approach to tackle new issues, which are
suitable for machine learning and cannot be well addressed
by conventional methods.

Telescope polarization modeling is such a problem
that it is suitable for machine learning owing to its great
capacity of fitting, and has not been properly solved by the
physical parametric model since the fitting and predictive
accuracy is insufficient. Thus, we utilize machine learning
to establish the relationship between the Mueller matrix
of the telescope, which can describe the polarization
property of the telescope, and the pointing direction of
the telescope (represented by the altitude and azimuth
angle of the telescope). In this article, we take the New
Vacuum Solar Telescope (NVST) as an example and
derive the polarization model of the telescope based on
machine learning — ANN to be exact. The artificial neural
network (ANN) polarization model can provide more
accurate fitting and predicting of the Mueller matrix of the
telescope, and output the Mueller matrix of the telescope
according to the time or pointing direction. The accuracy
of the ANN polarization model is about 0.02 in all Mueller
matrix elements, and higher than 0.007 for the first column,
which requires higher accuracy in modeling. The ANN
polarization model for NVST meets the requirements of
the telescope polarization modeling.

Section 2 contains the description of the optical con-
figuration of NVST, the polarization characteristics of the
telescope’s optical system, and the results of the physical
parametric model. The structure and hyperparameters of
the ANN polarization model are described in Section 3.
The training results of the ANN polarization model and the
model predictive performance are presented in Section 4.
The conclusions and discussions are given in Section 5.
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Fig.1 The schematic of NVST optical configuration.

2 THE POLARIZATION PROPERTY OF THE
NVST

Figure 1 shows the optical configuration of the NVST,
the labels with M represent mirrors, the labels with W
mean vacuum windows, and the label F means focal plane.
The sunlight entering the solar telescope from vacuum
window W1 is reflected by or transmitted through M1,
M2, M4, M3, W2, W3, M5, M6, M7, W4 and then
enters the Coude laboratory; the focal plane F3 is the
Coude focal plane. An ICU, which can generate a known
polarization state with a rotating polarizer and a rotating
retarder, is mounted near the focal plane F2 after the
secondary mirror M2 of the telescope to calibrate the
polarization characteristics of optical elements after M2.
A polarimeter, which consists of a rotating retarder and a
fixed polarization analyzer, is installed near the focal plane
F3 to implement polarimetry. The polarimeter is followed
by a multi-wavelength spectrograph and a high-resolution
magnetograph, both of which are designed to achieve
polarimetric observation of the photospheric line Fe I
532.4 nm. The polarization calibration data are obtained by
the spectrograph with a polarimeter at 532.4 nm, in order
to separate the polarization property of the telescope from
the polarimetric observations. Based on the polarization
calibration data, we can build up the polarization model of
the telescope. The primary aim of this paper is to validate
the practicability of telescope polarization modeling based
on machine learning, the detailed parameters of the ICU,
the polarimeter, and the processing of the polarization

calibration data is to be found in the work of Hou et al.
(2020).

A previous study by Yuan (2014) has reported that
the polarization effect, described by the Mueller matrix,
introduced by the telescope’s primary and secondary
mirror is at the level of 10~°, which is much smaller than
the noise level (10~3) of the polarimetric instrument. In
addition, it has been demonstrated that the main vacuum
window’s polarization characteristics of the NVST are
negligible, smaller than 10~2, and only introduce crosstalk
between the circular polarization and linear polarization,
for most of the observational time in the article Liu et al.
(2015). Therefore, the polarization property, specifically
the Mueller matrix, measured by the ICU and polarimeter
can represent the polarization characteristics of the whole
telescope. As shown in Figure 1, there are four mirrors
(M4, M5, M6, and M7) with an incident angle of 45° in the
relay optics of the telescope, and each mirror can produce
considerable polarization due to the large incident angle. In
addition, M5, M6, and M7 share the same incident plane,
which means the polarization effect of the three mirrors
has to be added up, so the NVST has a strong instrumental
polarization. The azimuth angle of the telescope changes
rapidly at noon near the summer solstice, which can cause
a rapid change of the Mueller matrix of the telescope since
the geographic location of NVST (longitude=102°57"11",
latitude=24°34’47") is in the vicinity of the Tropic of
Cancer. The polarization effects of the vacuum windows
(W2, W3, and W4) in the optical path are uncharted.
These factors all add to the complexity of polarization
calibration and polarization modeling of the telescope.
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Thus, the present physical parametric model of NVST
cannot describe the polarization characteristics of NVST
well.

In previous literature Yuan (2014, 2019), a physical
parametric model for the NVST was built up and the
parameters were derived after the model fitting. Figure 2
provides the measured and simulated Mueller matrix
profile of NVST at different universal times on 2019
April 24, and the difference between them. Each subgraph
corresponds to the element of the 4 x4 Mueller matrix, and
there is no apparent discrepancy between the measured
and simulated Mueller matrix in Figure 2(a), indicating
that the physical parametric model can describe the main
polarization characteristics of the NVST. It can be seen
from Figure 2(a) that the Moz, Moy, M3o, M3y, Myo,
and M3 elements have values close to 1 or —1, suggesting
that the polarization effect of the telescope is significant
and can cause serious crosstalk between Q, U, and
V signals. Furthermore, these Mueller matrix elements
change drastically over time, especially the Mas, Moy,
M3, and Msy. Therefore, the polarization model, which
can characterize the polarization effect of the telescope, is
of great significance to improve the efficiency and accuracy
of the polarimetric instruments.

Even though the physical parametric model coincides
with the measured Mueller matrix in Figure 2(a), the
differences between them are not ignorable in Figure 2(b)
and are systematical over time. For example, the maximum
residual error of the M3, element is about 4%, which
means that there remains a maximum of 4% crosstalk from
Q to U after calibration by the physical parametric model.
The maximum systematic residual errors of My; and M3
are about 1%, which need to be handled carefully since
the I signal is usually dozens of times larger than the
Q, U, and V signals in solar observation. The deviation
between the present physical model and measured Mueller
matrix of other days is at the same level of Figure 2 and
has different tendencies over universal time. Thus, the
polarization model requires improvement while the noise
level is about 3 x 1073 of the intensity in the continuous
spectrum.

Based on the present physical model and the pointing
direction of the telescope, the rate of the Mueller matrix
change in different months and observational times can
be acquired. In the months around the summer solstice,
the Mueller matrix of the telescope changes greatly with
time at noon because of the drastic change of the azimuth
angle. The measured Mueller matrix of the telescope
would deviate from the actual value at the corresponding
time owing to the duration of the calibration measurement,
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which also needs to be considered in the subsequent data
processing.

3 THE STRUCTURE OF THE MACHINE
LEARNING MODEL

Due to the complexity of the polarization characteristics
of the NVST, the physical parametric model cannot fully
describe the relationship between the Mueller matrix and
the pointing direction (i.e., the altitude and azimuth angle)
of the telescope. Therefore machine learning, specifically
the ANN, is adopted to construct the polarization model
of the telescope. Take advantage of ANN’s performance
in regression, the ANN model can be used to describe the
intricate nonlinear relationship between the input data and
the target value (Baron 2019).

Since the physical parametric model includes the
principal polarization characteristics of the telescope, the
residual of the physical parametric model is set as the
target value while the altitude and azimuth angle of the
telescope is the input data. Because the first element of
the Mueller matrix residual is O, the other 15 elements are
used as the target value during machine learning training.
The ANN model here is used to establish the relationship
between the residual of the physical parametric model
and the altitude and azimuth angle. After the ANN model
is derived, the combination of the physical parametric
model and the ANN model can be used to describe the
polarization property of the telescope, and the Mueller
matrix of the telescope can be obtained according to the
altitude and azimuth angle of the telescope.

Figure 3(a) shows the basic structure of the ANN
model used in this article, including an input layer, a
hidden layer, and an output layer. The neurons of the
hidden layer are fully connected to the neurons of the
input and the output layer. The structure of each neuron
is shown in Figure 3(b) and the activation function used in
the hidden layer is the sigmoid function. In Figure 3(a), Azi
and Alt in the input layer is the azimuth and altitude angle
of the telescope, and AM,;; in the output layer corresponds
to the element of the Mueller matrix residual. The hidden
layer here only consists of a single layer with 20 neurons,
since more neurons or layers can increase the possibility of
overfitting, and the predictive accuracy of the ANN model
would even decrease.

The Bayesian regularization algorithm is adopted in
the training process, and the mean square error (MSE)
is used as the loss function. The main parameters are
displayed in Table 1, which are selected according to the
fitting and predictive performance.
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Fig.2 Comparison of the measured Mueller matrix and the physical parametric model on 2019 April 24.
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Fig. 3 The artificial neural network (ANN) model.

Table 1 The Main Parameters of the ANN Model

Parameters Value  Description

Max_epochs 1000 Maximum number of epochs to train
Train_ratio 70% Ratio of training data

Val_ratio 15% Ratio of validation data

Test_ratio 15% Ratio of testing data

Max fail 30 Maximum number of validation failures
Min_grad 10~19  Minimum gradient of performance
Goal 6 x 106 Goal for performance

Learn_rate 0.001  Learning rate

4 RESULTS
4.1 Data Preprocessing

Since the ANN model is derived from the polarization
calibration data, the data preprocessing is a significant
approach to suppress the influence of measurement error
and noise. The calibration data obtained in 2019 are
shown in Figure 4, which are displayed by the azimuth
and altitude angle of the dataset. Each data point has a
corresponding measured Mueller matrix residual, which
will be set as the target value of the ANN model. Each
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Fig.5 Loss function of the machine learning model during
training.

trajectory with the specified marker in Figure 4 represents
the data of the corresponding date.

In order to mitigate the influence of the uneven
distribution of the data or the errors in the dataset on the
model training, the data are processed with the following
three steps:

1. Remove the data points with large measurement
errors. Each Mueller matrix measurement of the telescope
has six ICU states and eight polarimeter states, thus
producing 48 different polarization states. Five frames are
acquired to reduce the noise level in each polarization state,
and we can get an intensity from each frame. The whole
process takes about 53 seconds since 240 intensities are

Mueller matrix of the telescope. The maximum value of
Mueller matrix change can reach 0.3 per minute at noon in
months around the summer solstice. If the change rate of
the Mueller matrix is too large, larger than 0.01 per minute,
the measured result would deviate from the real value and
such data should be removed. According to the physical
parametric model, the rate of Mueller matrix change can
be derived and used to remove the bad data points.

3. Data equalization. Due to the limitation of
observational time, weather, and other factors, the data
in Figure 4 is unevenly distributed among azimuth and
altitude angles. For example, the data observed from
February 12 to February 17 account for 45% of the total
data, and all the data distributed in the area with a low
altitude angle, which would add to the weight of this area
if the data is not equalized. Therefore, the axis of azimuth
and altitude angle in Figure 4 are divided evenly by 5
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degrees. A maximum number of 15 data points are adopted
in each 5 x 5 grid, and the redundant data points are
eliminated to make the dataset as even as possible.

After removing the error data and equalization, the
dataset is used for machine learning in the next step. The
data from 2019 March 16 and April 24, which account
for 15% of the whole dataset, are extracted as the testing
dataset of the machine learning model. The remaining 85%
of the data are divided randomly by ratio for the training
dataset (70%) and validation dataset (15%).

4.2 Training Results

Based on the machine learning model in Section 3 and the
processed data in Section 4.1, machine learning training
is implemented. Figure 5 shows the relationship between
the loss function and the training epoch in the machine
learning process. As can be seen from the figure, the
loss function dropped rapidly after the training started,
and the training process finally stopped because the loss
function of the validation dataset did not drop further for
30 consecutive epochs. The smallest MSE in the validation
dataset was 9.2928 x 1076.

Figure 6 shows the fitting and predictive performance
of the ANN model. The left panels provide the relationship
between the predicting result of the ANN model and the
target value. The target value corresponds to the Mueller
matrix residual value for machine learning, and all the
matrix elements are displayed in the same plot. If the
data point lies on the line of ¥ = X, it means the
predictive result equals the training target. The data points
are distributed centrally around the line of ¥ = X, and
the correlation coefficient is 0.9685 in the training and
validation dataset in Figure 6(a). As for the testing dataset
in Figure 6(b), the correlation coefficient between the ANN
model and the target value is 0.9497, and the data points
distribute closely to the line of ¥ = X as well, which
shows the predictive capacity of the ANN model.

The right panels of Figure 6 present the histograms
of the Mueller matrix residual and compare the residual
distribution before and after the ANN model is involved.
The peak-to-valley (PV) value of the residuals in the
training and validation dataset is reduced from 0.0891
to 0.0363 after the ANN model is used. In the testing
dataset, the PV value is 0.0352 after using the ANN model.
Therefore, the performance of the polarization model is
considerable when the physical parametric model and the
ANN model are combined.

Comparing the histograms in Figure 6, the PV value
of the testing dataset is even smaller than that of the
training and validation dataset after using the ANN model.
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Therefore, the root mean square (RMS) of the deviation is
also displayed in the histogram since the PV value could
be easily affected by the larger error points.

4.3 Testing Results

In order to test the predictive capacity of the ANN model
further, we examined the performance of the model for
each Mueller matrix element in a whole observational day.
Figure 7 shows the polarization model residuals of the
telescope’s Mueller matrix on 2019 April 24, the blue
points indicate the residuals of the physical parametric
model over time, and the red points represent the residuals
after the ANN model is employed. Each subgraph in the
figure corresponds to the Mueller matrix element, the
horizontal axis indicates the universal time, and the vertical
axis shows the residual value of the Mueller matrix. The
smaller the deviation of value from 0, the higher the
accuracy of the corresponding model.

It can be seen from Figure 7 that the deviation of the
residual from O is significantly reduced after using the
ANN model. In particular, the Mueller matrix elements
M, and M3, have considerably improved, the maximum
deviation drop from about 0.047 to 0.020, other Mueller
matrix elements also have significant improvements. The
improved model for the Moz, Moy, Mso, Mgy, Mys
and M3 can effectively reduce the crosstalk among Q,
U, and V, and the maximum crosstalk between Q, U,
and V is reduced from 0.047 to 0.020. In addition, even
though the deviation of My, M3y, My, is smaller than
0.011, the improvements of these elements are extremely
important because the I signal of the observational target
is generally much larger than the Q, U, and V signals. It
can be seen that the data points of these three elements are
basically distributed around 0 after using the ANN model.
The maximum deviation is about 0.007, which efficiently
reduces the influence of crosstalk from I to Q, U, and V.

Compared with Figure 2(b), the data gap around
5 o’clock UTC in Figure 7 is due to the eliminated
data points in the data preprocessing, since these points
experienced rapid Mueller matrix changes during the
measurement.

The predictive performance of the ANN model for the
testing dataset on 2019 March 16, is shown in Figure 8.
The maximum deviation of the Mueller matrix on March
16 is reduced from 0.047 to 0.016, which also achieves
great improvement even though the number of the data
points is much less than that on 2019 April 24, because
of the limited observational time.

The predictive performance in the testing dataset
confirms the effectiveness of the ANN model, which can
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generate the Mueller matrix of the telescope at specific
times.

5 CONCLUSIONS AND DISCUSSION

This paper has proposed a new method for polarization
modeling of a large ground-based telescope, which
involves the physical parametric model and the ANN
model. The ANN model, which is a supplement of the
physical parametric model, is established based on the
relationship between the Mueller matrix residual of the
physical parametric model and the pointing direction of
the telescope. The combination of the physical parametric
model and the ANN model, which is called the compound
polarization model, can characterize the polarization
property of the telescope very well. The compound
polarization model is stable and has high accuracy since it
has the advantages of both the physical parametric model
and the ANN model.

When training for the ANN polarization model, we
have tried deriving the model from the Mueller matrix
of the telescope instead of the Mueller matrix residual
of the physical parametric model. It was found that the
performance of the ANN model derived from the Mueller
matrix is as good as that of the ANN residual model in the
training dataset, but there may be a large model deviation
when the former one was used for predicting the Mueller
matrix of the telescope. The ANN model of the Mueller
matrix residual is more stable because it is a correction
of the physical parametric model, while the ANN model
of the Mueller matrix has no physical constraint. Thus,
the residual of the physical parametric model is adopted

to build up the ANN model or the compound polarization
model in this paper.

The maximum deviation between the polarization
model and the measured Mueller matrix of the NVST
is reduced from 0.047 to 0.02, which can suppress
the crosstalk between the Stokes parameters of the
observational targets after polarization correction. In
particular, the crosstalk from I to Q, U, and V, which has a
higher accuracy requirement, is reduced from 0.011 to less
than 0.007.

When setting up the structure of the machine learning
model, the results of the multilayer neural network and
single-layer neural network have been compared. The
residual of the training dataset would decrease when
adding the number of network layers or the number of
neurons in each layer, but the performance in the testing
dataset would not improve further. Especially when the
number of hidden layers of the neural network reaches five
layers (20 neurons in each layer), the predictive results
on the testing dataset become even worse, owing to the
overfitting of the data. Therefore, a single hidden layer
with 20 neurons is finally employed to build up the ANN
model.

Since the accuracy of the ANN model is highly depen-
dent on the training data, the polarization characteristics
of the telescope can be properly described only if the data
covers all the areas of the azimuth and altitude angle. Thus,
it requires a dataset of at least half a year with a time
interval of less than a month. In addition, the calibration
data in each day is oversampled, which means the sampling
intervals can be longer while the time span remains the
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same for a whole day. For example, it only takes half an
hour to acquire calibration data every 1.5 hours, therefore
scientific observations can take place in the rest time.
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