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Abstract In this work, we present a cogent and physically well-bedaselution for neutron stars
envisaged with a core layer having quark matter satisfyireg MIT-bag equation of state (EoS), meso
layer with Bose-Einstein condensate (BEC) matter satigfynodified BEC EoS and an envelope having
neutron fluid and Coulomb liquids satisfying quadratic E&8.the required physical and geometrical
parameters like gravitational potentials, pressuresiaragelocity, anisotropy, adiabatic index, mass
function, compactification factor, and gravitational andface redshift functions show a feasible trend
and are continuous with smooth variation throughout theriot and across the regions of the star.
Further, causality condition, energy conditions, stat&bgity criterion (using Tolman-Oppenheimer-
Volkoff equation) and Herrera cracking stability critariare met throughout the star. The approach seems
to be resulting in more realistic and accurate modeling ellast objects, particularly realized by us for
X-ray binary stars 4U 1608-52\( = 1.7 My, R = 9.5 km) and SAX J1808.4-3658{ = 1.2 M,

R = 7.2 km). Furthermore, we have ascertained that the continuityhefstability factor in all three
regions of the stars demand a smaller core. As the core regitime star increases, the stability factor
becomes discontinuous at all the interfaces inside the star

Key words: stars: interiors — stars: neutron — Galaxy: stellar content

1 INTRODUCTION matter in the discernible cosmoM#@nn 2020 Potekhin
201Q Heiselberg 2001Heiselberg & Hjorth-Jensen 2000

Neutron stars are stellar residues left after supernovgatiimer & Prakash 20048aym & Pethick. 1979
explosions. Due to the unavailability of an Earth based

laboratory, the comprehensive description of neutrorsstar ~ On€ Of the groundbreaking earlier works on interior
may be useful to grasp the nature of four fundamentaftructures of neutron stars is credited3mzberg(1977).

forces, i.e., gravitational, electromagnetic, weak anzhgf Many researchers have hypothesized the possibility of dif-

force under extreme conditions. Despite having an u|tra]ferent matter compositions inside neutron stars comgyisin

dense matter distribution and gravity, stellar objectts sti severallayers including the inner and outer cores, innér an
exist with a staggering amount of composite structure. outer crusts, mz?mtle, ocean, envelope and atmosphere. The
The atmospheres of these objects starting from th&Ore may contain quark matter, quark-gluon plasma (QGP)

surface and beyond are composed mostly of hydrogeReSides witnessing the phenomena of hyperonization, pion

and helium. The outer crust, with a thickness of aand/or kaon condensation. A plasma envelope may be

few hundred meters, contains atomic nuclei and freém"de up predominantly of neutron fluid, atoms andfor

electrons, while the inner crust, a very dense solid IayerCOUIOmbquuids Ruderman 19685inzburg 1969Migdal

is made of free neutrons and electrons as well as heavié‘r%o Qlendgnnlng 1992 Alford 2001, Bedaque et al.
atomic nuclei. The next layer is an outer core, having2002 Pisalski & Wilczek 198%

a neutron-rich quantum liquid. Finally, at the innermost  The possibility of a quark core is due to the stability
part the strong force, responsible for the fundamentabf quark phase over hadronic phase at the interior of a
interaction between quarks in nucleons, paves the wagompact star\Witten 1984 Farhi & Jaffe 1984 Authors

to the inner core, a mysterious but ultra-dense type ofCheng et al. 199&etter et al. 1995Phukon 200Phave
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suggested that strange stars have a low density nuclear Corerlike
crust with a thin electron layer between crust and core.

Colpi et al. (1986 predicted that the quark-diquark core Intermediate

is wrapped by a low density nucleon envelope. The layer (arust)-like
idea of a deconfined quark core inside a low density

mixed phase envelope was presente®bggo & Lavagno Envelope-like

(200). Chavanis & Harko(2012 examined a tentative
insight that due to their superfluid properties some compact
stars may comprise a substantial amount of their matter in
the form of a Bose-Einstein condensate (BEC). However,
the prospect of the existence of some BECs in neutron
stars was mooted bglendenning(2000. The role of  Fig 1 Three layered relativistic model of X-ray binary star
BEC in kaons/anti-kaons in compact objects was studied idU 1608-52.

Banik & Bandyopadhyay2003 and Banik et al.(2004.
Kapusta (20049 emphasized that neutrino superfluidity
may also contribute to BEC in the study of complex
structure of compact objects (see afgauki 2007).

envelope consisting of matter distribution endowed with
linear and quadratic EoSs, respectivétant et al(2019
andGedela et al(2019 also studied core-envelope stellar
) models of various stars and successfully verified contynuit
Multi-layer structures of neutron or strange starSqt most of the physical parameters except stability factor,

have invigorated various researches to inquire intQransyerse pressure and velocity at the junction of the core
core-envelope or two layer modeling in the setting of,. 4 envelope.

general relativity. In this model, the core and envelope are  \1otivated by various two layer model®ant et al.

assumed to be individually satisfying distinct equations(zozo proposed a three layered relativistic hybrid star
of state (E0Ss) and/or gravitational metric potential(S)mqoge| in the setting of general relativity. In order to make
At last, the interfaces are matched applying the Dormoisg,e model, an intermediate layer was sandwiched between
Israel condition to ascertain the continuity of all the ia core and envelope which paved the way to understand
physical parameters. The first core-envelope model wage tron star modeling in a more realistic and accurate way.
proposed byBondi (1964 with an EoSp = p/3. |5 pantetal(2020, the authors also verified continuity
Afterwards, many authors D@s & Narlikar 1975 4t some of the physical parameters at the junctions of all
Vaidya & Tikekar 1982 Sharma & Mukherjee 2001 ¢ hree interfaces. Due to the discontinuous nature of
2002 Usmani 2011 Rahaman etal. 2012a Chanetal. - giapijity factor, transverse pressure and velocity at each
2011 Durgapal & Gehlot 19691971 Paul & Tikekar ot the interfaces, these conditions were not studied by
2005 Tikekar & Thomas 2005 Thomasetal. 2005  pant et al.(2020. In this paper, we construct a more

Tikekar & Jotania 2009 Takisa & Maharaj 2016  regjistic and accurate model of stellar objects, partityila
Hansraj et al. 201,6Singh et al. 20208) studied core- X-ray binary stars 4U 1608-52)( = 1.7M., R =

envelope solutions for the Einstein field equations byy £ km) and SAX J1808.4-3658\( = 1.2 M., R =

assuming different E0Ss. It is a painstaking task 107 9.y |n addition, we have realized that continuity of the
consider realistic EoSs for poly-layered stellar objectsgapijity factor in all three regions of the star SAX J1868.4
The generally used EoSs for core — envelope modelggsg demands a smaller core. As the core region of the star
of a neutron star include linear EoS with MIT bag jncreases, the stability factor becomes discontinuouts at a
model  Sharma & Maharaj 2007 Takisa & Maharaj e interfaces inside of the star. Following the article of
20133 Thirukkanesh & Ragel 2013 Takisaetal. pant et a1(2020, we slightly modify the nomenclature of

2014 Mauryaetal. 2019 Esculpi&Alom 2010 66 regions with three distinct EoSs of a three layered
Bhar et al. 201} quadratic EoSKeroze & Siddiqui 2011 hybrid star model as follows (see Fit):

Maharaj & Takisa 2012 Takisa et al. 2014aBhar et al. . o . _

2016 2017 Sunzu & Thomas 2018 Govenderetal. (i) Quark core-like inner region with MIT-bag EoS;
2017 2019 Gedelaetal. 2019 polytropic EoS (ii) Crust like intermediate region with modified BEC
(Ngubelanga & Maharaj 2017 Noureenetal. 2019 EoS; _ . _ .
Takisa & Maharaj 2013b Van der Waals EoS (iii) Envelope-like region with quadratic EoS.

(Thirukkaneshetal. 2034 and  Chaplygin's EoS Corresponding to the above defined three regions of
(Bhar etal. 2018Benaoum 2002Rahaman etal. 2010 his hybrid star model, three interfaces, namely, core-

Takisa et al. (2019 studied a core-envelope model intermediate layer interface, intermediate layer-erpelo
with the core layer having a quark matter distribution andnterface and envelope-boundary interface are considered
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and using Dormois-Israel conditions all three interfacesanisotropic pressure due to shear flow, dissipative fluxes
are required to match for continuity of all the physicaland inhomogeneities in energy-density during dissipative
parameters. Our proposed model affirms that all thelownfall. However, the magnitude of the attained pressure
physical and geometrical parameters have viable trendnisotropy would rely on the specific characteristics of
and values. Further, these parameters are continuous withe system. In fact, in any equilibrium configuration
smooth variations throughout the star’s interior resgltin which is the final stage of a dynamic regime, the
in a more realistic and accurate modeling of stellaracquired anisotropy during this dynamic process does not
objects. We propose relativistic three layer models ofdisappear in the final equilibrium state, and therefore the
X-ray binary star 4U 1608-52 and SAX J1808.4-3658&esulting configuration, even if initially having isotrapi
(Gangopadhyaetal. 201l3nd discuss their behaviors pressure, should in principle exhibit pressure anisotropy
through graphical representations and in the form of tablesThe measure of anisotrofyA) of the fluid sphere can be
calculated as

2 EINSTEIN FIELD EQUATIONS IN THREE

LAYERED MODEL A = 8m(pt — pr). (6)

We consider the most general form of a static spatiallyConsidering the transformations= 72, z(z) = e~ ")
spherically symmetric line element for the interior space-and y(z) = ¢("), the field Equations3)—(6) take the

time as forms
1—-=2 ,

ds® = e”di® — dr? — r2(d6° + sin® 0dg?), (L) 8mp=—— — 27, )
wherer and A are some unknown functions of the radial Srp. — 9 y  1-z 8
coordinate- to be determined. b = Zg oz ®)

We assume an anisotropic matter distribution inside

the fluid sphere and the energy-momentum tensor is 2y" y’2 2y’ Y

idered 8mpy = 2|(— - = z)r+ —— |+ (1 +a ), (9)
considered as Yy Yy Y

Tj = [(pe + p)v'v; — peg; + (pr —POX'X5),  (2) 2"y o1

! T ’ 8TA = 2( z 73—2)1;“'(1”%” xz, (10)

where p, p,. and p, are energy density, radial pressure

appraised in the direction of the space-like vectorwhere(’) and (") represent first and second derivatives

and transverse pressure in the orthogonal direction t@jith respect tar respectively.

pr, respectively. In co-moving coordinates! is the

normalized 4-velocity ang’ is the unit space-like vector In order to make a three layered model for relativistic

in the radial direction. stellar objects, it is mandatory to classify space-time int
Utilizing energy momentum tensoR) the Einstein  three layers comprised of the core layer< r < R.),

field equations (with the unit§’ = ¢ = 1) can be written  intermediate layerg. < r < R;) and envelope layer

as (R; < r < R.). We now consider the following three line
(1—e™)  de elements corresponding to the above defined three layers
8mp = 3
Uy 3 + P ) as
ve=r  (1—e?) ds?|. = e¥=M a2 —e ) dr? —r2 (dh? +sin® 0d¢?), (11)
8, = . 2 ’ (4)

ds?|; = "M dt? —e N dr? —12(df? +sin® 0d¢?), (12)

e o o 20 20 2 Y12 AP 12 20102 | e 2 142
8mpr = e 20407 —vA+ il B (5) ds?|, = e’ dt? —e* (M dr? —r2 (dh?+sin® 0d¢?). (13)

where “” denotes derivative with respect to the radial3 FORMULATION OF
coordinater. CORE-INTERMEDIATE-ENVELOPE-LIKE

Recently, Herrera (2020 observed the fact that | AvERS
physical processes obtained in the study of stellar
evolution always tend to produce pressure anisotropyenceforth, letters in lower scrit, i and e correspond
even if the system is initially assumed to be isotropic.to the core, meso or intermediate layer and envelope,
The initial isotropic configuration may lead to local respectively of a relativistic star model.
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3.1 Core-like Layer Having Quark Matter Satisfying
MIT-bag EoS

For the core layerd( < r < R.), we select the samg., as
in Gedela et al(2019 for ¢* satisfying the MIT-bag EoS

A s

=e¢ =14 ——- 14
z=¢e +(tz+1)2’ (14)

Pr, = ap — b, (15)

wheres, t, a and b are constants. Using Equatior,(
(8), (10), (14 and (5), we get

y'(x) L <s(a(3 —tx) +tr+1)

y(x) tr+1 (16)
dmb(te +1)% \ 0
st+(tz+1)2)
On integration 16), we obtain
y ="
ﬁh;anh*l(do) _dnbz
= Cld2€< eVeFa ), (17)

where C; is an integration constant. Applying the
transformationz = 72 and (4) and (7), the physical

variables 7)-(10) become
s (r2t — 3)

TSt (18)

Pe

24
Do = as (7’ t 3) b, (19)

 8r (r2t +1)° -
ds s (dys + ds) — 16mbds (2t +1)°

, (20
327 (r2t +1)* (r25 + (r2t + 1)2) 20

Pt.

Ac = pt, — Dr.» (21)

where
s+ 2t(tx + 1)

NV R

dy = ((a + 1)1 + 4nb(s + 2t))

do =

—a

dy = (tz + 1) (sz + (tz + 1)2)23_2“ :
ds = 64726%r2 (2t +1)° — 12as,
dy =94 + ((a — 4)a — 1)r*t?
+2(a(14 — 3a) + 1)r’t + 3,
ds = dat (r*t (r*t (6 — r’t) +12) +2)
dg =12 (as (r2t — 3)
+2t (r® (t (r*t+3) +5) +3)) + 2.

With the help of the transformatiom = 2, the

physical parameters mass.(r), compactification factor
(uc(r)), gravitational redshift4,, (r)) and surface redshift
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(25, (r)) for the core layer( < r < R.) can be obtained
from the following expressions:

3

me(r) = 477/7“2/)ch = —m, (22)
wo(r) = M) 1 (23)
¢ r 2(r2t + 1)
2g.(r) = e7v? -1, (24)
1
2. (r) = NeroR 1. (25)

3.2 Intermediate Layer having BEC Matter Satisfying
Modified BEC EoS

For intermediate layeri{. < r < R.), we select the same
metric potentialy,.- as assumed in the core layer satisfying

a modified BEC EoS (the classical BEC EoS has the form

p x p?)
i ST

ph’:dp27f7

wheres, t, d andf are constants. Utilizing Equationg)(
(8), (10), (26) and @7), we obtain

y'(z)
y(z)

(27)

s+ 8m(te +1)?
2 (sx + (tx +1)?)
B ds?(tx — 3)?
167 (tr + )4 (s + (tr + 1)2)

(28)

On integrating 28), we get

d tanh ™ (dp) + d6) (29)

where(Cs is an integration constant.

With the help of Equations26) and @9 and the
transformationz = r2, the field Equations7)-(10) can
be written as

s (7’2t — 3)

g = — 30

P 8 (r2t +1)° (30)
ds® (r’t — 3 ?

Dr;, = ( ) 6 fa (31)

 64m? (r?t+1)

—12872dyo f (r2t +1)° + (ds — do) s (r2t — 3)
204873 (12t 4 1)"° (7“25 + (r2t+ 1)2)
dn1
204873 (r2¢ + 1) (TQS +(r2t+ 1)2) ’

Pt; =

+

(32)

Ai = Pt; — Pris (33)
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where
g — (3dt?(3s + 8t) + 6472 fs) log (sz + (tz + 1)?)
o 22
d (s(3ta(9tx 4 22) + 55) + 48t(tx + 1)?)
3(tx +1)3

— 3d(3s + 8t)log(tax + 1) — 647° fx ,
6472 fs(s 4 2t)

t2\/s(s + 4t)

2 (9ds2 + 42dst + 32dt? — 167Ts)
t24/s(s + 4t) ’

dg = d*r?s> (r2t — 3)3 — 647272 (r2t + 1)7 ,

dy

do =327d (r2t +1)° (3413t (—12+ 3r%¢°
+3r't(s — 4t) — r*(17s + 301)))
dyo =dr?s? (7’2t — 3)2 + 167 (7’2t + 1)3
(r2t (r2 (t (r2t + 3) + s) + 3) + 1) ,
di1 = 4096W4f27“2 (er + 1)12 .

The transformation: = 2 provides the expressions

of the physical parameters;(r), u;(r), zq, (r) andz,, (r)
for intermediate layerR. < r < R;) as

7’35

i\r) = i T2 ar = ———
ml( ) 4 / Pld 9 (r2ﬁ N 1)2 ) (34)
wi(r) = M T (@)
! r 2(r2t + 1)
zgi(r) = e /2 -1, (36)
1
zs,(r) = ) L. (37)

3.3 Envelope-like Layer having Neutron Fluid or
Coulomb Liquids and Quadratic E0S

For the envelope layeti{; < r < R.), we consider the
samey,.,. as above satisfying a quadratic EoS

Ao s

z=¢e ‘=1+W7 (38)

Pr. =ap’ +p -7, (39)
wheres, t, «, 8 and~y are constants. Using Equation,(
(8), (10), (38) and B9), we obtain

y'(x) s+ 8my(tr +1)2
y(z)  2(sz+ (tz+1)?) (40)
_ s(tr - 3) (aus(te — 3) + 87 B(tz + 1)?)
167 (ta + 1)* (sz + (tz + 1)2)
On integrating 40), we get
Ye = Czexp dl\%ixﬁ%};: s , (41)
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where(Cs is an integration constant.
In view of Equations 88) and @1) and employing
the transformation: = r2, the field Equations7)—(10)
become
S (TQt — 3)

87 (r2t +1)° (42)

Pe =

S (r2t — 3) (as (r2t — 3) + 878 (r2t + 1)3)
642 (r2t +1)°

Pr. =
-7,
(43)
dys + 6477s (r*t + 1)6 (di9r?s + dis) + dag
t =
204873 (r2t 4+ 1)"° (r25 + (r2t+ 1)2)
(44)
(45)

Ac = pi, — Pr.
where

dip =t* (16m(B + 1)s — v (95% + 42st + 32t%))
+ 647%ys(s + 2t) ,

o (s(3ta(9tx 4 22) + 55) + 48t(tx + 1)?)

d =
9 3(tw + 1)

— 642y |

dyy = (log(tx + 1))(327r,8—9as—24at)+
(64#2'ys+t2(7327rﬂ+9as+24at))

(log (sz + (tz +1)%)) 22 ;

d15 = 167T04d1682 (7’2t — 3) (7’2t + 1)3
— 10247°ydy7 (r*t +1)”
+ a?rist (r2t — 3)4 ,

dig = — 615t + 752 ((8 — 6)s + 24t)

+ 2r1((17 — 383)s + 30t)
+3r%(38s +8t) — 6,

di7 = 2753 + 1t ((B + 2)s + 6t)
+r3(6t —3Bs) + 2,

dig = =48 (Pt + 1) (Pt (r*t —8) + 3)

dig = — 18y + 982 + r*3(=207 + (B — 4)8 — 1)
+2r%t(6ay + B(14 = 3B8) +1) + 3,

dao = 40967472 (r2t +1)"7 .

The parametersi.(r), u.(r), z4, (r) andz,, (r) for
the envelope layer{; < r < R.) whenz = 2 are as
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follows Mop——___ sutets-s2 |
(r) = 4 / 2pudr = —— 15 (46) oot ;
me(r) = 41 [ 77°pedr = — R [ ]
2 (r2t +1)° P ]
me(r) r?s 5| —coe ]
Ue(r) = = - P (47) by f . —
r 2 (7»2t + 1) £ 07  —---- Intermediate layer ]

= ~—— Envelope
Ze(T) = 671)6/2 - 17 (48) 06 e ]
1 [ e 1
25, (1) = —/———=—1. (49) [ - 1
1 — 2ue(r) L PPt 7]
o 2 s e s

4 MATCHING AT THE JUNCTIONS OF LAYERS

AND BOUNDARY Fig.2 Variation in metric potentials with for the X-ray
binary star 4U 1608-52.
For well-behaved solutions, all the three interfaces, i.e,
core-intermediate (C-I), intermediate-envelope (I-EJlan 4.3 Continuity of E-B Interface
envelop-boundary (E-B) interfaces, are required to match
for continuity of the physical parameters consideringThe envelope metricd@) must be connected smoothly over
Dormois-Israel conditions. the boundary with the Schwarzschild exterior solution

2M 2MN -1
4.1 Continuity of C-I layer junction ds®|, = (1 — T)dﬁQ — (1 -= ) dr?
_ 2 2 02 2
The core layer metricl(l) should be matched smoothly r(df” + sin” 0d¢”)

with intermediate layer metrid@) atr = R., thatis, at the pressure free bounda¥y (defined byr = R.).
\ \ Continuities of* ande” across the boundary are known as
e (Re) = e (Re), (50)  the first fundamental form of the Dormois-Israel junction
e’ (R.) = " (R,), (51)  condition[ds?]s; = 0, yielding
andp, must be continuous at= R, i.e., ere (R.) = (1 — QRM)% , (56)
pr.(Re) = pri(Re). (52) e”(Re) = (1 — 2M) . (57)
R
Itimplies that On the other handy, should vanish at the surface of the
star ¢ = R.), i.e.,
ap(RC) —b = Vp2(Rc) —0.
pr.(Re) =0. (58)

4.2 Continuity of I-E Layer Junction

The above expression corresponds to the second funda-

The intermediate layer metricl?) must be matched mentalform(G,,z"]s; = 0, wherez” denotes unit vector
smoothly with envelope layer metri¢®) atr = R;, that  Projected in the radial direction.

is, Using Equation§8), we have
i (R) = e (R:), (53) aPQ(Re) + Bp(Re) —v = 0,
e""(R;) = e (R;), (54) whereR, is the radius of the star.
The nine interface condition5Q)—(58) along with the
andp, must be continuous at= R;, thatis, sixteen constants, namedyt, a, b, d, f, o, 3, v, C1, Cs,
Cs, R, R;, R. and M, form an undetermined system of
pr(Ri) = pr. (Ri) - (55) equations. Solving the above system of equations, mass
M, core radiusR,., intermediate radiu$; and envelope
Itimplies that radius R, of the star can be obtained from the following
) ) expressions:
vp*(Re) =6 = ap™(Ri) + Bp(Ri) — 7. R3s
M=——"r (59)

C2(R2t+1)2°
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Fig. 3 Variation of density with- for the X-ray binary star
4U 1608-52.
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and the remaining constant, C> andC; are evaluated
as

(Re — 2M) 1y exp (— e

R, ’

T3 tanh~ ! (o¢)
/512 /514t +72

Cs =

(63)
Co =74Cy (R2t + 1) 250710
37 tanhfl(gi)
W + 76
4877' )

(64)

X exp

3d(3548t)
167

Cl :T7CQ (Rgt + 1) —2a=

379 tanh ™! (0,.)

“VeeEvera TS
487 ’

(65)

xexp | —

where
2t (Rit+1) + s
o = ———F—F——
g NENCET:

for k= e, i, c,

- . ‘
P
0.00006 ‘~~~ 4U1608-52 1
N~~
s X
[ S
0.00005 |- AN 1
~
S b
€ 0.00004 |-
x
< r
= 000003 |
e r = Core
= 000002
[ === Intermediate layer
0.00001 [ —— Envelope
oL I I I | J
0 2 4 6 8

r (km)

Fig.4 Variation of radial and tangential pressures with
for the X-ray binary star 4U 1608-52.

012 ——— ——— ——
4U1608-52 1

o0l Ss ]
0.08 |
Pz/P

006 ]

0.04 -

09 =

03 =

o4 =

_ 8ma (R —3) ds(R2t—3)2

T TR+ 1) (R2t+1)°

ds (R?t — 3) 2
(R2t+1)6 7
(R?t — 3) (as (R?t —3) + 873 (Rt +1) %)
(RZt+1)6 '
_ 2R%t(32m3 — 3ds + 3as) 16as
(R#t+1)6 (R2t+1)6

8BRSt

(RZt+1)6"°
247 + R}2 (4876 + ds — as) + 9ds — 9aus
(R?t+1)6

Pressure-Density Ratios

P/ ]
Intermediate layer

8as

0.02 -

——— Envelope

000 ]

r (km)

Fig.5 Variation of pressure density ratiog,(p, p:/p)
with r for the X-ray binary star 4U 1608-52.

+ o1 —02)

. ((Rit3)(&5(R§t3)+8ﬂ'ﬁ(R§t+l)3)
b —

(R2t+1)°

6471'2 9

(60)
as 87 f 3218
f B S ((R§t+1)4 + (R2t+1)2 - (RZt+1)3 + o3 + 04)

- 6477'2 9

(61)
sos (R%t — 3

! ( ) (62)

T 64n2 (R2t+1)6

(R2t+1)°>’
o5 =873 + Rt (24m3 + 8wBR2t (R2t + 3) + as)
—3as,

n = (R2s+ (R2 +1) %) A5 — "
x (R2t +1) G20

o (s (3R2t (9R2t 4 22) + 55) + 48t (R2t + 1) ?)

2= (R2t +1)3

— 1927%yR? |

75 =3 (t* (167(B + 1)s — a (9s* + 42st + 32t%)))
+ 1927%ys(s + 2t)

_3(d—a)(3s+8t) _2mfs 4 2mys
327 22

Ti= (R¥(s+2t)+ R}t* +1) ~°
75 =t* ((d — ) (— (95° + 42st + 32t%)) — 1670s)

+ 6472 f5(s 4 2t) — 64m%ys(s + 2t),



162-8
23F S
— ~
/ [3.37.2.45.)\,__
20 \]
4
[
Maximum Mass 1
S1sf /1
= /
10+ //
0.3 /"
00 —e e g

Fig. 6 Variation of mass withR.

———
4 U 1608 -52

————— Intermediate layer

m(r) (km™") and u(r)

05~ —— Envelope

—”
—
-

00— mmm =S S =T

r (km)

R. K. Bisht et al. A Relativistic Model of Stellar Objects with Core-crustvelope Division

T
9 4U1608-52
L z’ ]
03l ]
=
5 [ = Core 1
3 02} ]
© P omm——— Intermediate layer i
—— Envelope %
01l ]
00 f——~="""" ]
L L L L ! B
0 2 4 6 8

Fig.8 \Variation of gravitational and surface redshifts
(zi(r), zs(r)) with r for the X-ray binary star 4U 1608—
52.

L 4 U 1608 - 52
8.x107° - R
& L
c 6.x107° - 4
= L
-C: | = Core
2 4.x10°f , 4
2 [ =——— Intermediate layer
€
< F = Envelope
2.x10° - e b
f”’,
Of—— 4
0 2 4 6 8

r (km)

Fig.7 Variation of mass and compactification factor with Fig. 9 Variation of anisotropy A (r)) with » for the X-ray

r for the X-ray binary star 4U 1608-52.

(RZt+1)3

76 = 3R (t(d — o) (R24(9s + 16t) + 225 + 32¢) )

(d — a)(55s + 48t)
(R?t+1)3 7

2ns(f—b) | 3d(3s+8t)
Tt aen

+192R?m% (y — f) +

7= (Rls+ (R2t+1)%)"

5 = 19212 R2(f — b)+

d (—3R2t (R2t(9s + 16t) + 22s + 32t) — 555 — 48t)

(R%t+1)3

T =t* (16mas + 9ds® + 42dst + 32dt°)
+ 64m%bs(s + 2t) — 6417 fs(s + 2t) .

The constants, ¢, a, b, d, f,a, § and~ are free

parameters.

5 INVESTIGATION OF WELL-BEHAVED
STELLAR MODEL

5.1 Geometrical Regularity

The metric potentialg~» ande” of the star 4U 1608—
52 at the center of the core = 0 are finite, positive,

binary star 4U 1608-52.

non-singular ande*|,—o = 1. Further, bothe=* and

e are monotonically increasing and decreasing outward
respectively besides being continuous at all the three
interfaces (Fig2).

5.2 Trends of Physical Parameters
5.2.1 Density and pressures

The matter densityp and pressurep, and p; for all

the three layers of the X-ray binary star 4U 1608-
52 are positive and monotonically decreasing outward
(Figs. 3 and4) besides being continuous at the respective
interfaces. The non-singularity and positivenes®,0fp;
andp at the center provide a regular solution, i.e.,

3as
Pro = P = ~—o— -b>0, (66)
iy
3
po = ——2 50 for s<0. (67)
v

Regularity of any physical solution is verified by the
Zeldovich criterion, i.e.}”pLo0 < 1 (Zeldovich 1962

- 8mb
ZQ:aJrl<1.

Po 3s (68)
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On solving Equations6), (67) and 68), we obtain 050 T ;Umoa‘ 5; ]
the following inequality 045 ;_____':::: _________ \2 ]
3(1—a)s <b< —3as . (69) oaof \\\ \
8w 81 S S ]
pr/p andp, /p are positive and less than 1 throughout the & °* vé
inside of the star and are continuous at the junctions (Fig. 3ot ]
5) [ —— Core 1
0.25 P Intermediate layer 1
i . i ) L ~—— Envelope ]
5.2.2 Mass-radius, compactification and redshift: o0p ‘V T
0 2 4 6 8
Mass (n(r)), compactification factor«(r)) and gravita- r (km)

tional and surface redshifts((r), z(r)) for all the three  _. L .
. . Fig.10 Variation of radial and transverse sound speeds
layers of the X-ray binary star 4U 1608-52 are continuous it - for the X-ray binary star 4U 1608-52.
at the interfaces. The increasing nature of the parameters
m(r) andu(r), andz,(r) and decreasing trend af,(r) —————————————t

with radial coordinate- are plotted in Figure§ and 8, e

respectively. Also, from Figurg, it is clearly visible that 1 TTTe-o_ ]
u(r) for the star 4U 160852 lies within the Buchdahl limit ~ °°[ TTe x
(Buchdahl 1959 from the center to surface of the star. « ]
From Figure6, one can observe that the maximum mass & o2t 2

2.46 My is obtained for radius.37 km, which is within B ]
the proposed limit oRhoades & Ruffin{1974. 01l ]

————— Intermediate layer

SAX J1808 .4 - 365

- Envelope

5.2.3 Anisotropy

00l ]

In Figure9, the radial pressure coincides with the tangen-
tial pressure at the core of the star, is continuous at all

the interfaces and increasing outwatde(rera & Santos Fig.11 Variation of radial and transverse sound speeds
1997). with r for the star SAX J1808.4—-3658.

r (km)

5.2.4 Causality condition 20 svtee-s2 T ‘i

The radial and tangential sound speedg, (v?) of
a compact star model satisfy the causality condition
throughout the interior of the staf (< v2, v} < 1).

Figure 10 demonstrates that? and v? are decreasing

————— Intermediate layer

Adiabatic index
S
T

functions ofr throughout the interior of 4U 1608-52 but —— Envelope
the continuity of the graph at the interfaces is obtained for -~ .~ ____ ]
v2 but not forv?. For the star SAX J1808.4-3658, both - 1
the sound speed®{, v7) are monotonically decreasing
outward besides being continuous at all the respectve o 2 4 & s
interfaces (Figl1l). r (km)

. - Fig.12 Variation of adiabatic indexI{) with r for the X-
5.2.5 Adiabatic index ray binary star 4U 1608-52.

For a relativistic anisotropic sphere, stability depends o
the adiabatic indeX',.. Corresponding to three layeis,, gt all the interfaces and satisfies the condition >

is defined asHeintzmann & Hillebrandt 1975 2. In the interior of stellar objects’, > Teiitical =
[ ot o 3 + 1(2UR). It is important to note that this relation
T T ’ . . . . .
L pry T is only valid for nearly Newtonian stars with uniform

for [ = ¢,i ande. The trend of adiabatic index for all densities Chandrasekhar 1964a Moustakidis 201Y.
the three layers of the binary star 4U 1608-52 is plottedHere, I'.;itica1 depends linearly on the pressure-density
in Figure 12, where the adiabatic index is continuousratio at the center and can be evaluated as
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Table 1 Values of Free Parameters, (t, a, b, d, f, a, B3, v in (km)~2) to Obtain Mass, Radi of Core, Inner and
Envelope LayersR., R; and R, in km) for the Binary Star 4U 1608-52.
S t a b d f «a B8 0%
-0.48<10~2 1.1x1073 0.47 2.05x10~% 417 7.03x107° 245 0.18 117104
R R; R. M
1.47 4.9576 9.5 171
Table 2 Values of Free Parameters, (t, a, b, d, f, a, 3, v in (km)~2) to Obtain Mass, Radi of Core, Inner and
Envelope LayersR., R; andR. in km) for the Star SAX J1808.4—3658.
S t a b d f « B o'
—-0.78< 102 2x1073 0.38 2.7x107% 205.6 9.26x 10> 205 0.001 9.3x 1075
R R; Re M
0.399918 418522 7.2 1.2,
0.00075 [ =~ 4U1608-52 , 0.00001 | 4 (/160852 /F"-'-’—*
& 0.00070 F RSy 1 Sl e
E S 1 . Sx10tp - ]
= 0.000865 ] 4 r - F,
& —_—— ] 5 [ -—
£ 000060 ] Tt~ P+pr 1 > S S EE——
g: Sso § :\ Fa+Fp+Fy
,9:_" 0.00050 L — Core ] F— Core . o
& meme—— Intermediate layer ~ i ntermediate layer 1
0.00045F Envelope E 000001 I —— Envelope k
0'000407(‘)‘“2‘“‘4“‘6“;“‘8‘“‘: (‘) 2‘ “‘ éé

r (km)

Fig. 13 Variation of energy conditions withfor the X-ray
binary star 4U 1608-52.

3a(R%t+1)°Ur—AnbR?
po 3(R2t+1)%Ug ’

bro _—

where Ur = 4f. In this modell', > Teaiticat =

1.4952380052 for 4U 1608-52 and’, > [eritical =
1.48412698 for SAX J1808.4-3658.

5.2.6 Energy conditions

For a physically stable configuration, all the three layers

r (km)

Fig. 14 Variation of balancing forces with for the X-ray
binary star 4U 1608-52.

equation Ponce de Leon 1987or the respective three
layers(l = ¢, i, e) is given as

_vlptpn) dpn 2800r) _

2 dr r
From Figure 14, we can ascertain that the TOV
condition is satisfied within the star 4U 1608-52 and all
the three forces are continuous at all the interfaces, biyere
concluding that the system is in static equilibrium.

(70)

of the star should satisfy the three energy condition% 2.8 Herrera cracking stability criterion

(Maurya et al. 201 (i) Null energy conditiorp + p,- > 0
(NEC) (ii) Weak energy conditiong + p,. > 0,p > 0
(WEC,) andp + p; > 0, p > 0 (WEC,) and (iii) Strong
energy conditiop + p, + 2p; > 0 (SEC). The variations

of energy conditions withr for the star 4U 1608-52 in all

For the values mentioned in Tablésand 2, the Herrera
cracking condition, i.e.-1 < v} — v? < 0 is attained
for both the compact stars 4U 1608-52 and SAX J1808.4—

3658. The continuity of the profile of? — v? is obtained

the three layers are continuous at the interfaces andysatisfor the star SAX J1808.4—3658, but not for the binary star

realistic conditions as seen in Figuta

5.2.7 Static stability criterion using modified TOV
equation

In the equilibrium state, the resulting gravitationdl,],
hydrostatic ¢},) and anisotropic £;) forces should be

4U 1608-52 due to the continuity and discontinuity of
the graphs of; at the interfaces of the star respectively
(Figs.15and16).

6 DISCUSSION AND CONCLUSION OF THREE
LAYERED HYBRID MODEL

zero throughout the interior of the star and continuous aln the present article, we have studied a three layered
the interfaces. The Tolman-Oppenheimer-Volkoff (TOV) anisotropic stellar model, where the core part is outfitted
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with the MIT bag EoS, inner part equipped with modified - AU1608-52

BEC EoS and envelope part augmented with quadratic EoS | . ]

to interpret the interior structure of stellar objects. 003} ‘\\ ]
The three layered model is viable in all aspects for —~  t Y 1

the X-ray binary (low-mass X-ray binary, LMXB) star 4U :? N\

160852 and the potentially strange star SAX J1808.4— ~ -005} \\ E

3658. We have analyzed the model entirely for the star  _j [ — Core Y 3

4U 1608-52 through graphical representations of suitable | ----- Intermediate layer \\

parameter values (see Tableand?). “007L —— Envelope 1
The geometrical and physical attributes like*, o 2 4 s s

(1), pe(r), p(7), Dr/ 0y De/ Py 24(1), 25(7), v7 @ndvf and r am)

all the energy F:ondltlons for the binary §tar 4u 1608_5. ig. 15 Variation of stability factor withr for the X-ray
are non-negative at the center and satisfy the Zeldovic inary star 4U 1608-52.

condition throughout interior of the star 4U 1608-52.
Decreasing trends of these physical attributes from the 202, v+ o i i

center to the surface of the star are displayed in FigBres o0s 7_ ~~~~~ - SAXJ1808 4-3658 ]

4,3,5,8,10and13. Increasing trends of other physical and ‘\\

geometrical attributes, i.e2?, m(r), u(r), A(r) andT'(r) -0.06 ¢ Y 1

from center to surface of the star are exhibited in Fig@res .. _oos| \\ V-2 ]

7,9and12. Our three layer model fulfills all stable criteria ‘“Z

mentioned inPant et al(2020 in all the three regions for e 1

the star 4U 1608-52, i.e., -0z —— Core 1
(i) the adiabatic indexX’(r) > 3, (Fig. 12) which oal ;‘E;v—e;:l:rmediatela)'er ]

concludes that our model fulfills the Bondi adiabatic

condition @ondi 1964. 0 ! 2 8 4 ° 6 !

(ii) the difference in sound speed$ — v? lies in the rem

interval(—1, 0) (see Fig15), which demonstrates that the Fig. 16 Variation of stability factor with- for the star SAX
hybrid model is potentially stable. However, the tangéntiaJ1808.4—-3658.

sound speed? and the stability factow? — v2 are not

continuous (removable discontinuity) at the interfaces of,(r) atthe center and core-intermediate interface increase
star 4U 1608-52. with higher mass of the stars whereas radial pressure at

(iii) the model represents a stable, static equilibriumthe center and core-intermediate interface decreases with

configuration in all the three regions by satisfying thehigher mass of the stars. At the boundary, with increase
generalized TOV-equation (Fig4). in the mass of the stars, the parameters like density

Further, we have ascertained that the parameter@nd surface redshift also increase andr) and z,(r)
namely, eX("), ev(r), pe(r), pe(r), p(r), pe/ps Pi/ps gomc@e at _th.e boundary of_the star whereas parameters
A(r), m(r), u(r), z4(r), zs(r), energy conditionsl'(r), like adiabatic index an_d rgdlal pressure.(_jecrease._lt may
v2(r) and TOV equation of forces are continuous andd€ observed that continuity of the stability factor in all
well behaved from the center to the surface of the staf® three regions of the star demands a smaller core. As
SAX J1808.4-3658. IiGlendenning(2000), it has been the core region of the stars increases, the stability factor
observed that energy jumps are perfectly consistent witRecomes discontinuous at all interfaces of the regions.
stable stars which is a common consequence of first-order
phase transitions. Due to low mass of SAX J1808.4-3658&, GENERATING FUNCTIONS OF THREE
the graphical representations«gf and the stability factor LAYERS
v? — v2 may lead to continuity at the interfaces (Fid4d.
and16). The primitive generating functions related to the geometry

The magnitudes of the physical attributes-), p(r), of quce—time d(r)) .and.matter. distributionI{(r)) fgr
po(r) and z,(r) at the center, interfaces and boundarysphencallysymmetrlc anisotropic systems are described a
for the stars 4U 1608-52 and SAX J1808.4-3658 aréHerreraetal. 2008
expressed in Table8 and 4 for the parameter values
displayed in Tabled and?2. From the tables, we notice
that the values of the physical quantitieér), p(r) and (r) = 87 (p, — pt) -

v) _ o[ S e~ 2yar
€ = €|: } s (71)
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Table 3 Variations inT'(r), p(r), p-(r) and z,(r) of the Star 4U 1608-52 an@ = 0.667 x 10~ %m3 kg ' s~2,
My =2 x 103kg andC = 3 x 103 ms~1.

Center Core-inner layer junction Inner layer-envelopecjiom Surface
T'(r) 4.5686 4.6718 5.6439 00
p(r) (gem3 x 101%) 2.8878 2.8833 2.8366 2.7
pr(r) (dynecnr?2 x 103%) 3.192 3.0893 1.4612 0
zg(r) 0.4385 0.4335 0.383 0.2117

Table 4 Variations in['(r), p(r), p.(r) andz,(r) of the Star SAX J1808.4 — 3658 afitl= 0.667 x 10~ m? kg ' 52,
Mg =2 x 103°kg andC = 3 x 105 ms~1.

Center Core-inner layer junction Inner layer-envelopecfiom Surface
T'(r) 4.5085 4.5223 6.0406 [e'S)
p(r) (@em3 x 101%) 2.876 2.875 2.816 2.7
pr(r) (dynecnm? x 103%) 4.204 4.185 2.42 0
zq(r) 0.3903 0.3898 0.3312 0.2247

The two generating functiongr) andII(r) of our model  Bhar, P., Murad, M. H., & Pant, N. 2015, Astrophys. Space, Sci.
in each layer for the X-ray binary star 4U 1608-52 are 359, 13

obtained as Bhar, P., Singh, K. N., & Pant, N. 2016, Ap&SS, 361, 343

2 (th ((a+ 1)s+2t (r2t+3)) +®1) 19 Bhar, P., Singh, K. N., & Pant, N. 2017, Indian Journal of

Ce = , Physics, 91, 701
2r (TQt +1) (TQ (t (r2t +2)+s5)+1) Bhar, P., Govender, M., & Sharma, R. 2018, Pramana-J. Phys.,
8 (r2t +1)" (12 (2t (r2t +2) + ) +2) + @o 90,5 _
i = 5 1, 5 2 ) Benaoum, H. B. 2002, arXiv:hep-th/0205140
167r (rt +1) (T (t (r t+ 2) +s)+ 1) Bondi, H. 1964, Proc. R. Soc. Lond. A, 281, 39
8y (r2t +1)° + g Buchdahl, H.A. 1959, Physical Review, 116, 1027
Ce Chan, R., Silva, M. F. A. D., & Rocha, P. 2011, Gen. Relativ.

167 (r2t+ 1)F (52 (¢ (12t + 2 1’
ar (r2t+1)" (r2 (¢ (r2t +2) +s) + 1) Gravit., 43, 2223

and Chandrasekhar, S. 1964, Astrophys, J., 140, 417
Chandrasekhar, S. 1964, PRL, 12, 114

1I =38 L = for | = ; and
(r) = 87(pr = pr.) G & atide, Chavanis, P. H., & Harko, T. 2012, Phys. Rev. D, 86, 064011

é1 = —3as — 87b (th + 1)3 + s+ 6t Cheng, K. S, Dai, Z. G., & Lu, T. 1998, Int. J. Mod. Phys. D, 7,
1
2.2/(.2 2 202 (2 6 3.9 .
¢g = dr*s” (r*t —3)" —64n’ fr* (r’t+ 1), Colpi, M., Shapiro, S. L., & Wasserman, |. 1986, Phys. Rett.Le
o 2 2 2 - 2 - 2 2 2 6 57, 2485
¢3 = ar’s (r t 3) 6dm=yr (r t+ 1) ’ Das, P. K., & Narlikar, J. V. 1975, Monthly Notices Roy. Astro
b4 =215 4+ r*t(Bs + 5 + 6t) Soc., 171, 87
+r?(=3Bs + s+ 6t) +2. Drago, A., & Lavagno, A. 2001, Phys. Lett. B, 511, 229
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