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Abstract In this work, we present a cogent and physically well-behaved solution for neutron stars
envisaged with a core layer having quark matter satisfying the MIT-bag equation of state (EoS), meso
layer with Bose-Einstein condensate (BEC) matter satisfying modified BEC EoS and an envelope having
neutron fluid and Coulomb liquids satisfying quadratic EoS.All the required physical and geometrical
parameters like gravitational potentials, pressures, radial velocity, anisotropy, adiabatic index, mass
function, compactification factor, and gravitational and surface redshift functions show a feasible trend
and are continuous with smooth variation throughout the interior and across the regions of the star.
Further, causality condition, energy conditions, static stability criterion (using Tolman-Oppenheimer-
Volkoff equation) and Herrera cracking stability criterion are met throughout the star. The approach seems
to be resulting in more realistic and accurate modeling of stellar objects, particularly realized by us for
X-ray binary stars 4U 1608–52 (M = 1.7M⊙, R = 9.5 km) and SAX J1808.4–3658 (M = 1.2M⊙,
R = 7.2 km). Furthermore, we have ascertained that the continuity of the stability factor in all three
regions of the stars demand a smaller core. As the core regionof the star increases, the stability factor
becomes discontinuous at all the interfaces inside the star.
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1 INTRODUCTION

Neutron stars are stellar residues left after supernova
explosions. Due to the unavailability of an Earth based
laboratory, the comprehensive description of neutron stars
may be useful to grasp the nature of four fundamental
forces, i.e., gravitational, electromagnetic, weak and strong
force under extreme conditions. Despite having an ultra-
dense matter distribution and gravity, stellar objects still
exist with a staggering amount of composite structure.

The atmospheres of these objects starting from the
surface and beyond are composed mostly of hydrogen
and helium. The outer crust, with a thickness of a
few hundred meters, contains atomic nuclei and free
electrons, while the inner crust, a very dense solid layer,
is made of free neutrons and electrons as well as heavier
atomic nuclei. The next layer is an outer core, having
a neutron-rich quantum liquid. Finally, at the innermost
part the strong force, responsible for the fundamental
interaction between quarks in nucleons, paves the way
to the inner core, a mysterious but ultra-dense type of

matter in the discernible cosmos (Mann 2020; Potekhin
2010; Heiselberg 2001; Heiselberg & Hjorth-Jensen 2000;
Lattimer & Prakash 2004; Baym & Pethick. 1979).

One of the groundbreaking earlier works on interior
structures of neutron stars is credited toGinzberg(1971).
Many researchers have hypothesized the possibility of dif-
ferent matter compositions inside neutron stars comprising
several layers including the inner and outer cores, inner and
outer crusts, mantle, ocean, envelope and atmosphere. The
core may contain quark matter, quark-gluon plasma (QGP)
besides witnessing the phenomena of hyperonization, pion
and/or kaon condensation. A plasma envelope may be
made up predominantly of neutron fluid, atoms and/or
Coulomb liquids (Ruderman 1968; Ginzburg 1969; Migdal
1960; Glendenning 1992; Alford 2001; Bedaque et al.
2002; Pisalski & Wilczek 1984).

The possibility of a quark core is due to the stability
of quark phase over hadronic phase at the interior of a
compact star (Witten 1984; Farhi & Jaffe 1984). Authors
(Cheng et al. 1998; Ketter et al. 1995; Phukon 2000) have
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suggested that strange stars have a low density nuclear
crust with a thin electron layer between crust and core.
Colpi et al. (1986) predicted that the quark-diquark core
is wrapped by a low density nucleon envelope. The
idea of a deconfined quark core inside a low density
mixed phase envelope was presented byDrago & Lavagno
(2001). Chavanis & Harko(2012) examined a tentative
insight that due to their superfluid properties some compact
stars may comprise a substantial amount of their matter in
the form of a Bose-Einstein condensate (BEC). However,
the prospect of the existence of some BECs in neutron
stars was mooted byGlendenning(2000). The role of
BEC in kaons/anti-kaons in compact objects was studied in
Banik & Bandyopadhyay(2003) and Banik et al.(2004).
Kapusta (2004) emphasized that neutrino superfluidity
may also contribute to BEC in the study of complex
structure of compact objects (see alsoAbuki 2007).

Multi-layer structures of neutron or strange stars
have invigorated various researches to inquire into
core-envelope or two layer modeling in the setting of
general relativity. In this model, the core and envelope are
assumed to be individually satisfying distinct equations
of state (EoSs) and/or gravitational metric potential(s).
At last, the interfaces are matched applying the Dormois-
Israel condition to ascertain the continuity of all the
physical parameters. The first core-envelope model was
proposed byBondi (1964) with an EoS p = ρ/3.
Afterwards, many authors (Das & Narlikar 1975;
Vaidya & Tikekar 1982; Sharma & Mukherjee 2001,
2002; Usmani 2011; Rahaman et al. 2012a,b; Chan et al.
2011; Durgapal & Gehlot 1969, 1971; Paul & Tikekar
2005; Tikekar & Thomas 2005; Thomas et al. 2005;
Tikekar & Jotania 2009; Takisa & Maharaj 2016;
Hansraj et al. 2016; Singh et al. 2020a,b) studied core-
envelope solutions for the Einstein field equations by
assuming different EoSs. It is a painstaking task to
consider realistic EoSs for poly-layered stellar objects.
The generally used EoSs for core – envelope models
of a neutron star include linear EoS with MIT bag
model (Sharma & Maharaj 2007; Takisa & Maharaj
2013a; Thirukkanesh & Ragel 2013; Takisa et al.
2014b; Maurya et al. 2019; Esculpi & Alom 2010;
Bhar et al. 2015); quadratic EoS (Feroze & Siddiqui 2011;
Maharaj & Takisa 2012; Takisa et al. 2014a; Bhar et al.
2016, 2017; Sunzu & Thomas 2018; Govender et al.
2017, 2019; Gedela et al. 2019); polytropic EoS
(Ngubelanga & Maharaj 2017; Noureen et al. 2019;
Takisa & Maharaj 2013b); Van der Waals EoS
(Thirukkanesh et al. 2014) and Chaplygin’s EoS
(Bhar et al. 2018; Benaoum 2002; Rahaman et al. 2010).

Takisa et al.(2019) studied a core-envelope model
with the core layer having a quark matter distribution and

Core-like

Intermediate 
layer (crust)-like

Envelope-like

Fig. 1 Three layered relativistic model of X-ray binary star
4U 1608–52.

envelope consisting of matter distribution endowed with
linear and quadratic EoSs, respectively.Pant et al.(2019)
andGedela et al.(2019) also studied core-envelope stellar
models of various stars and successfully verified continuity
of most of the physical parameters except stability factor,
transverse pressure and velocity at the junction of the core
and envelope.

Motivated by various two layer models,Pant et al.
(2020) proposed a three layered relativistic hybrid star
model in the setting of general relativity. In order to make
the model, an intermediate layer was sandwiched between
the core and envelope which paved the way to understand
neutron star modeling in a more realistic and accurate way.
In Pant et al.(2020), the authors also verified continuity
of some of the physical parameters at the junctions of all
the three interfaces. Due to the discontinuous nature of
stability factor, transverse pressure and velocity at each
of the interfaces, these conditions were not studied by
Pant et al.(2020). In this paper, we construct a more
realistic and accurate model of stellar objects, particularly
X-ray binary stars 4U 1608–52 (M = 1.7M⊙, R =

9.5 km) and SAX J1808.4–3658 (M = 1.2M⊙, R =

7.2 km). In addition, we have realized that continuity of the
stability factor in all three regions of the star SAX J1808.4–
3658 demands a smaller core. As the core region of the star
increases, the stability factor becomes discontinuous at all
the interfaces inside of the star. Following the article of
Pant et al.(2020), we slightly modify the nomenclature of
three regions with three distinct EoSs of a three layered
hybrid star model as follows (see Fig.1):

(i) Quark core-like inner region with MIT-bag EoS;
(ii) Crust like intermediate region with modified BEC

EoS;
(iii) Envelope-like region with quadratic EoS.

Corresponding to the above defined three regions of
this hybrid star model, three interfaces, namely, core-
intermediate layer interface, intermediate layer-envelope
interface and envelope-boundary interface are considered
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and using Dormois-Israel conditions all three interfaces
are required to match for continuity of all the physical
parameters. Our proposed model affirms that all the
physical and geometrical parameters have viable trend
and values. Further, these parameters are continuous with
smooth variations throughout the star’s interior resulting
in a more realistic and accurate modeling of stellar
objects. We propose relativistic three layer models of
X-ray binary star 4U 1608–52 and SAX J1808.4–3658
(Gangopadhya et al. 2013) and discuss their behaviors
through graphical representations and in the form of tables.

2 EINSTEIN FIELD EQUATIONS IN THREE
LAYERED MODEL

We consider the most general form of a static spatially
spherically symmetric line element for the interior space-
time as

ds2 = eνdt2 − eλdr2 − r2(dθ2 + sin2 θdφ2), (1)

whereν andλ are some unknown functions of the radial
coordinater to be determined.

We assume an anisotropic matter distribution inside
the fluid sphere and the energy-momentum tensor is
considered as

T i
j = [(pt + ρ)vivj − ptg

i
j + (pr − pt)χ

iχj ], (2)

where ρ, pr and pt are energy density, radial pressure
appraised in the direction of the space-like vector
and transverse pressure in the orthogonal direction to
pr, respectively. In co-moving coordinates,vi is the
normalized 4-velocity andχj is the unit space-like vector
in the radial direction.

Utilizing energy momentum tensor (2), the Einstein
field equations (with the unitsG = c = 1) can be written
as

8πρ =

(

1− e−λ
)

r2
+

λ̇e−λ

r
, (3)

8πpr =
ν̇e−λ

r
−
(

1− e−λ
)

r2
, (4)

8πpt =
e−λ

4

(

2ν̈ + ν̇2 − ν̇λ̇+
2ν̇

r
− 2λ̇

r

)

, (5)

where “·” denotes derivative with respect to the radial
coordinater.

Recently, Herrera (2020) observed the fact that
physical processes obtained in the study of stellar
evolution always tend to produce pressure anisotropy,
even if the system is initially assumed to be isotropic.
The initial isotropic configuration may lead to local

anisotropic pressure due to shear flow, dissipative fluxes
and inhomogeneities in energy-density during dissipative
downfall. However, the magnitude of the attained pressure
anisotropy would rely on the specific characteristics of
the system. In fact, in any equilibrium configuration
which is the final stage of a dynamic regime, the
acquired anisotropy during this dynamic process does not
disappear in the final equilibrium state, and therefore the
resulting configuration, even if initially having isotropic
pressure, should in principle exhibit pressure anisotropy.
The measure of anisotropy(∆) of the fluid sphere can be
calculated as

∆ = 8π(pt − pr). (6)

Considering the transformationsx = r2, z(x) = e−λ(r)

and y(x) = eν(r), the field Equations (3)–(6) take the
forms

8πρ =
1− z

x
− 2z′, (7)

8πpr = 2z
y′

y
− 1− z

x
, (8)

8πpt = z
[

(
2y′′

y
− y′

2

y2
)x+

2y′

y

]

+ z′(1 + x
y′

y
), (9)

8π∆ = z(
2y′′

y
− y′

2

y2
)x+ z′(1 + x

y′

y
) +

1− z

x
, (10)

where (′) and (′′) represent first and second derivatives
with respect tox respectively.

In order to make a three layered model for relativistic
stellar objects, it is mandatory to classify space-time into
three layers comprised of the core layer (0 ≤ r ≤ Rc),
intermediate layer (Rc ≤ r ≤ Ri) and envelope layer
(Ri ≤ r ≤ Re). We now consider the following three line
elements corresponding to the above defined three layers
as

ds2|c = eνc(r)dt2−eλc(r)dr2−r2(dθ2+sin2 θdφ2), (11)

ds2|i = eνi(r)dt2−eλi(r)dr2−r2(dθ2+sin2 θdφ2), (12)

ds2|e = eνe(r)dt2−eλe(r)dr2−r2(dθ2+sin2 θdφ2). (13)

3 FORMULATION OF
CORE-INTERMEDIATE-ENVELOPE-LIKE
LAYERS

Henceforth, letters in lower scriptc, i and e correspond
to the core, meso or intermediate layer and envelope,
respectively of a relativistic star model.
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3.1 Core-like Layer Having Quark Matter Satisfying
MIT-bag EoS

For the core layer (0 ≤ r ≤ Rc), we select the samegrr as
in Gedela et al.(2019) for eλ satisfying the MIT-bag EoS

z = e−λc = 1 +
sx

(tx + 1)2
, (14)

prc = aρ− b, (15)

wheres, t, a and b are constants. Using Equations (7),
(8), (10), (14) and (15), we get

y′(x)

y(x)
+

(

s(a(3− tx) + tx+ 1)

tx+ 1

+
4πb(tx+ 1)2

sx+ (tx + 1)2

)

= 0.

(16)

On integration (16), we obtain

y = eνc

= C1d2e

(

√

sd1 tanh−1(d0)

t2
√

s+4t
−4πbx

)

, (17)

where C1 is an integration constant. Applying the
transformationx = r2 and (14) and (17), the physical
variables (7)-(10) become

ρc =
s
(

r2t− 3
)

8π (r2t+ 1)
3 , (18)

prc =
as
(

r2t− 3
)

8π (r2t+ 1)
3 − b, (19)

ptc =
d3 + r2s (d4s+ d5)− 16πbd6

(

r2t+ 1
)3

32π (r2t+ 1)4
(

r2s+ (r2t+ 1)2
) , (20)

∆c = ptc − prc , (21)

where

d0 =
s+ 2t(tx+ 1)√

s
√
s+ 4t

,

d1 =
(

(a+ 1)t2 + 4πb(s+ 2t)
)

,

d2 = (tx+ 1)2a
(

sx+ (tx+ 1)2
)

2πbs

t2
−a

,

d3 = 64π2b2r2
(

r2t+ 1
)6 − 12as,

d4 =9a2 + ((a− 4)a− 1)r4t2

+ 2(a(14− 3a) + 1)r2t+ 3,

d5 = 4at
(

r2t
(

r2t
(

6− r2t
)

+ 12
)

+ 2
)

,

d6 = r2
(

as
(

r2t− 3
)

+2t
(

r2
(

t
(

r2t+ 3
)

+ s
)

+ 3
))

+ 2.

With the help of the transformationx = r2, the
physical parameters massmc(r), compactification factor
(uc(r)), gravitational redshift (zgc(r)) and surface redshift

(zsc(r)) for the core layer (0 ≤ r ≤ Rc) can be obtained
from the following expressions:

mc(r) = 4π

∫

r2ρcdr = − r3s

2 (r2t+ 1)
2 , (22)

uc(r) =
mc(r)

r
= − r2s

2 (r2t+ 1)2
, (23)

zgc(r) = e−νc/2 − 1, (24)

zsc(r) =
1

√

1− 2uc(r)
− 1. (25)

3.2 Intermediate Layer having BEC Matter Satisfying
Modified BEC EoS

For intermediate layer (Rc ≤ r ≤ Re), we select the same
metric potentialgrr as assumed in the core layer satisfying
a modified BEC EoS (the classical BEC EoS has the form
p ∝ ρ2)

z = e−λi = 1 +
sx

(tx+ 1)2
, (26)

pri = dρ2 − f, (27)

wheres, t, d andf are constants. Utilizing Equations (7),
(8), (10), (26) and (27), we obtain

y′(x)

y(x)
+

s+ 8π(tx+ 1)2

2 (sx+ (tx+ 1)2)

=
ds2(tx− 3)2

16π(tx+ 1)4 (sx+ (tx+ 1)2)
. (28)

On integrating (28), we get

yi = eνi = C2 exp

(

d7 tanh
−1(d0) + d6
16π

)

, (29)

whereC2 is an integration constant.
With the help of Equations (26) and (29) and the

transformationx = r2, the field Equations (7)-(10) can
be written as

ρi =
s
(

r2t− 3
)

8π (r2t+ 1)3
, (30)

pri =
ds2

(

r2t− 3
)2

64π2 (r2t+ 1)
6 − f, (31)

pti =
−128π2d10f

(

r2t+ 1
)6

+ (d8 − d9) s
2
(

r2t− 3
)

2048π3 (r2t+ 1)
10
(

r2s+ (r2t+ 1)
2
)

+
d11

2048π3 (r2t+ 1)
10
(

r2s+ (r2t+ 1)
2
) ,

(32)

∆i = pti − pri , (33)
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where

d6 =

(

3dt2(3s+ 8t) + 64π2fs
)

log
(

sx+ (tx+ 1)2
)

2t2

+
d
(

s(3tx(9tx+ 22) + 55) + 48t(tx+ 1)2
)

3(tx+ 1)3

− 3d(3s+ 8t) log(tx+ 1)− 64π2fx ,

d7 =
64π2fs(s+ 2t)

t2
√

s(s+ 4t)

− t2
(

9ds2 + 42dst+ 32dt2 − 16πs
)

t2
√

s(s+ 4t)
,

d8 = d2r2s2
(

r2t− 3
)3 − 64π2r2

(

r2t+ 1
)7

,

d9 =32πd
(

r2t+ 1
)3 (

3 + r2t
(

−12 + 3r6t3

+3r4t(s− 4t)− r2(17s+ 30t)
))

,

d10 = dr2s2
(

r2t− 3
)2

+ 16π
(

r2t+ 1
)3

(

r2t
(

r2
(

t
(

r2t+ 3
)

+ s
)

+ 3
)

+ 1
)

,

d11 = 4096π4f2r2
(

r2t+ 1
)12

.

The transformationx = r2 provides the expressions
of the physical parametersmi(r), ui(r), zgi(r) andzsi(r)
for intermediate layer (Rc < r ≤ Ri) as

mi(r) = 4π

∫

r2ρidr = − r3s

2 (r2t+ 1)
2 , (34)

ui(r) =
mi(r)

r
− r2s

2 (r2t+ 1)2
, (35)

zgi(r) = e−νi/2 − 1 , (36)

zsi(r) =
1

√

1− 2ui(r)
− 1 . (37)

3.3 Envelope-like Layer having Neutron Fluid or
Coulomb Liquids and Quadratic EoS

For the envelope layer (Ri ≤ r ≤ Re), we consider the
samegrr as above satisfying a quadratic EoS

z = e−λe = 1 +
sx

(tx + 1)2
, (38)

pre = αρ2 + βρ− γ , (39)

wheres, t, α, β andγ are constants. Using Equations (7),
(8), (10), (38) and (39), we obtain

y′(x)

y(x)
+

s+ 8πγ(tx+ 1)2

2 (sx+ (tx+ 1)2)

=
s(tx− 3)

(

αs(tx − 3) + 8πβ(tx+ 1)3
)

16π(tx+ 1)4 (sx+ (tx+ 1)2)
.

(40)

On integrating (40), we get

ye = C3 exp





d12 tanh−1(d0)√
st2

√
s+4t

+ d13 + d14

16π



, (41)

whereC3 is an integration constant.
In view of Equations (38) and (41) and employing

the transformationx = r2, the field Equations (7)–(10)
become

ρe =
s
(

r2t− 3
)

8π (r2t+ 1)
3 , (42)

pre =
s
(

r2t− 3
)

(

αs
(

r2t− 3
)

+ 8πβ
(

r2t+ 1
)3
)

64π2 (r2t+ 1)
6

− γ ,
(43)

pte =
d15 + 64π2s

(

r2t+ 1
)6 (

d19r
2s+ d18

)

+ d20

2048π3 (r2t+ 1)10
(

r2s+ (r2t+ 1)2
) ,

(44)

∆e = pte − pre , (45)

where

d12 = t2
(

16π(β + 1)s− α
(

9s2 + 42st+ 32t2
))

+ 64π2γs(s+ 2t) ,

d13 =
α
(

s(3tx(9tx+ 22) + 55) + 48t(tx+ 1)2
)

3(tx+ 1)3

− 64π2γx ,

d14 = (log(tx+ 1))(32πβ−9αs−24αt)+

(

log
(

sx+ (tx+ 1)2
))

(64π2γs+t2(−32πβ+9αs+24αt))
2t2 ,

d15 =16παd16s
2
(

r2t− 3
) (

r2t+ 1
)3

− 1024π3γd17
(

r2t+ 1
)9

+ α2r2s4
(

r2t− 3
)4

,

d16 = − 6r8t4 + r6t2((β − 6)s+ 24t)

+ 2r4t((17− 3β)s+ 30t)

+ 3r2(3βs+ 8t)− 6 ,

d17 =2r6t3 + r4t((β + 2)s+ 6t)

+ r2(6t− 3βs) + 2 ,

d18 = −4β
(

r2t+ 1
)2 (

r2t
(

r2t− 8
)

+ 3
)

,

d19 = − 18αγ + 9β2 + r4t2(−2αγ + (β − 4)β − 1)

+ 2r2t(6αγ + β(14 − 3β) + 1) + 3 ,

d20 = 4096π4γ2r2
(

r2t+ 1
)12

.

The parametersme(r), ue(r), zge(r) and zse(r) for
the envelope layer (Ri < r ≤ Re) whenx = r2 are as
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follows

me(r) = 4π

∫

r2ρedr = − r3s

2 (r2t+ 1)
2 , (46)

ue(r) =
me(r)

r
= − r2s

2 (r2t+ 1)2
, (47)

ze(r) = e−νe/2 − 1 , (48)

zse(r) =
1

√

1− 2ue(r)
− 1 . (49)

4 MATCHING AT THE JUNCTIONS OF LAYERS
AND BOUNDARY

For well-behaved solutions, all the three interfaces, i.e,
core-intermediate (C-I), intermediate-envelope (I-E) and
envelop-boundary (E-B) interfaces, are required to match
for continuity of the physical parameters considering
Dormois-Israel conditions.

4.1 Continuity of C-I layer junction

The core layer metric (11) should be matched smoothly
with intermediate layer metric (12) at r = Rc, that is,

eλc(Rc) = eλi(Rc) , (50)

eνc(Rc) = eνi(Rc) , (51)

andρr must be continuous atr = Rc, i.e.,

prc(Rc) = pri(Rc) . (52)

It implies that

aρ(Rc)− b = νρ2(Rc)− δ .

4.2 Continuity of I-E Layer Junction

The intermediate layer metric (12) must be matched
smoothly with envelope layer metric (13) at r = Ri, that
is,

eλi(Ri) = eλe(Ri) , (53)

eνi(Ri) = eνe(Ri) , (54)

andρr must be continuous atr = Ri, that is,

pri(Ri) = pre(Ri) . (55)

It implies that

νρ2(Rc)− δ = αρ2(Ri) + βρ(Ri)− γ .

Fig. 2 Variation in metric potentials withr for the X-ray
binary star 4U 1608–52.

4.3 Continuity of E-B Interface

The envelope metric (13) must be connected smoothly over
the boundary with the Schwarzschild exterior solution

ds2|b =
(

1− 2M

r

)

dt2 −
(

1− 2M

r

)−1

dr2

−r2(dθ2 + sin2 θdφ2)

at the pressure free boundaryΣ (defined byr = Re).
Continuities ofeλ andeν across the boundary are known as
the first fundamental form of the Dormois-Israel junction
condition[ds2]Σ = 0, yielding

eλe(Re) =
(

1− 2M

Re

)−1

, (56)

eνe(Re) =
(

1− 2M

Re

)

. (57)

On the other hand,ρr should vanish at the surface of the
star (r = Re), i.e.,

pre(Re) = 0 . (58)

The above expression corresponds to the second funda-
mental form[Gµνx

ν ]Σ = 0, wherexν denotes unit vector
projected in the radial direction.

Using Equation (58), we have

αρ2(Re) + βρ(Re)− γ = 0 ,

whereRe is the radius of the star.
The nine interface conditions (50)–(58) along with the

sixteen constants, namelys, t, a, b, d, f , α, β, γ, C1, C2,
C3, Rc, Ri, Re andM , form an undetermined system of
equations. Solving the above system of equations, mass
M , core radiusRc, intermediate radiusRi and envelope
radiusRe of the star can be obtained from the following
expressions:

M = − R3
es

2 (R2
et+ 1) 2

, (59)
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Fig. 3 Variation of density withr for the X-ray binary star
4U 1608–52.

Fig. 4 Variation of radial and tangential pressures withr
for the X-ray binary star 4U 1608–52.

Fig. 5 Variation of pressure density ratios (pr/ρ, pt/ρ)
with r for the X-ray binary star 4U 1608–52.

b =

s

(

(R2
et−3)(αs(R2

et−3)+8πβ(R2
et+1)3)

(R2
et+1)6 + σ1 − σ2

)

64π2
,

(60)

f =
s
(

αs
(R2

et+1)4 + 8πβ
(R2

et+1)2 − 32πβ
(R2

et+1)3 + σ3 + σ4

)

64π2
,

(61)

γ =
sσ5

(

R2
et− 3

)

64π2 (R2
et+ 1) 6

, (62)

and the remaining constantsC3, C2 andC1 are evaluated
as

C3 =

(Re − 2M) τ1 exp

(

−
τ3 tanh−1(σe)
√

st2
√

s+4t
+τ2

48π

)

Re
, (63)

C2 = τ4C3

(

R2
i t+ 1

)

2β+ 3(d−α)(3s+8t)
16π

× exp



−
3τ5 tanh−1(σi)√

st2
√
s+4t

+ τ6

48π



,
(64)

C1 = τ7C2

(

R2
ct+ 1

)−2a− 3d(3s+8t)
16π

× exp



−
3τ9 tanh−1(σc)√

st2
√
s+4t

+ τ8

48π



,
(65)

where

σk =
2t
(

R2
kt+ 1

)

+ s
√
s
√
s+ 4t

for k = e, i, c,

σ1 =
8πa

(

R2
ct− 3

)

(R2
ct+ 1) 3

− ds
(

R2
ct− 3

)

2

(R2
ct+ 1) 6

+
ds
(

R2
i t− 3

)

2

(R2
i t+ 1) 6

,

σ2 =

(

R2
i t− 3

) (

αs
(

R2
i t− 3

)

+ 8πβ
(

R2
i t+ 1

)

3
)

(R2
i t+ 1) 6

,

σ3 =
2R2

i t(32πβ − 3ds+ 3αs)

(R2
i t+ 1) 6

+
16αs

(R2
et+ 1) 6

− 8πβR8
i t

4

(R2
i t+ 1) 6

,

σ4 =
24πβ +R4

i t
2(48πβ + ds− αs) + 9ds− 9αs

(R2
i t+ 1) 6

− 8αs

(R2
et+ 1) 5

,

σ5 =8πβ +R2
et
(

24πβ + 8πβR2
et
(

R2
et+ 3

)

+ αs
)

− 3αs ,

τ1 =
(

R2
es+

(

R2
et+ 1

)

2
)

β− 2πγs

t2
− 3α(3s+8t)

32π

×
(

R2
et+ 1

) 3α(3s+8t)
16π −2β ,

τ2 =
α
(

s
(

3R2
et
(

9R2
et+ 22

)

+ 55
)

+ 48t
(

R2
et+ 1

)

2
)

(R2
et+ 1) 3

− 192π2γR2
e ,

τ3 =3
(

t2
(

16π(β + 1)s− α
(

9s2 + 42st+ 32t2
)))

+ 192π2γs(s+ 2t) ,

τ4 =
(

R2
i (s+ 2t) +R4

i t
2 + 1

)−β− 3(d−α)(3s+8t)
32π − 2πfs

t2
+ 2πγs

t2 ,

τ5 = t2
(

(d− α)
(

−
(

9s2 + 42st+ 32t2
))

− 16πβs
)

+ 64π2fs(s+ 2t)− 64π2γs(s+ 2t) ,
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Fig. 6 Variation of mass withR.

Fig. 7 Variation of mass and compactification factor with
r for the X-ray binary star 4U 1608–52.

τ6 =3R2
i

(

t(d− α)
(

R2
i t(9s+ 16t) + 22s+ 32t

)

(R2
i t+ 1) 3

)

+ 192R2
iπ

2(γ − f) +
(d− α)(55s+ 48t)

(R2
i t+ 1) 3

,

τ7 =
(

R2
cs+

(

R2
ct+ 1

)

2
)

a+ 2πs(f−b)

t2
+ 3d(3s+8t)

32π ,

τ8 = 192π2R2
c(f − b)+

d
(

−3R2
ct
(

R2
ct(9s+ 16t) + 22s+ 32t

)

− 55s− 48t
)

(R2
ct+ 1) 3

,

τ9 = t2
(

16πas+ 9ds2 + 42dst+ 32dt2
)

+ 64π2bs(s+ 2t)− 64π2fs(s+ 2t) .

The constantss, t, a, b, d, f, α, β and γ are free
parameters.

5 INVESTIGATION OF WELL-BEHAVED
STELLAR MODEL

5.1 Geometrical Regularity

The metric potentialse−λ and eν of the star 4U 1608–
52 at the center of the corer = 0 are finite, positive,

Fig. 8 Variation of gravitational and surface redshifts
(zi(r), zs(r)) with r for the X-ray binary star 4U 1608–
52.

Fig. 9 Variation of anisotropy (∆(r)) with r for the X-ray
binary star 4U 1608–52.

non-singular andeλ|r=0 = 1. Further, bothe−λ and
eν are monotonically increasing and decreasing outward
respectively besides being continuous at all the three
interfaces (Fig.2).

5.2 Trends of Physical Parameters

5.2.1 Density and pressures

The matter densityρ and pressurespr and pt for all
the three layers of the X-ray binary star 4U 1608–
52 are positive and monotonically decreasing outward
(Figs.3 and4) besides being continuous at the respective
interfaces. The non-singularity and positiveness ofpr, pt
andρ at the center provide a regular solution, i.e.,

pr0 = pt0 = −3as

8π
− b > 0 , (66)

ρ0 = − 3s

8π
> 0 for s < 0 . (67)

Regularity of any physical solution is verified by the
Zeldovich criterion, i.e.,pr0

ρ0
≤ 1 (Zeldovich 1962)

pr0
ρ0

= a+
8πb

3s
< 1 . (68)
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On solving Equations (66), (67) and (68), we obtain
the following inequality

3(1− a)s

8π
< b <

−3as

8π
. (69)

pr/ρ andpt/ρ are positive and less than 1 throughout the
inside of the star and are continuous at the junctions (Fig.
5).

5.2.2 Mass-radius, compactification and redshift:

Mass (m(r)), compactification factor (u(r)) and gravita-
tional and surface redshifts (zg(r), zs(r)) for all the three
layers of the X-ray binary star 4U 1608–52 are continuous
at the interfaces. The increasing nature of the parameters
m(r) andu(r), andzs(r) and decreasing trend ofzg(r)
with radial coordinater are plotted in Figures7 and 8,
respectively. Also, from Figure7, it is clearly visible that
u(r) for the star 4U 1608–52 lies within the Buchdahl limit
(Buchdahl 1959) from the center to surface of the star.
From Figure6, one can observe that the maximum mass
2.46 Mθ is obtained for radius8.37 km, which is within
the proposed limit ofRhoades & Ruffini(1974).

5.2.3 Anisotropy

In Figure9, the radial pressure coincides with the tangen-
tial pressure at the core of the star, is continuous at all
the interfaces and increasing outward (Herrera & Santos
1997).

5.2.4 Causality condition

The radial and tangential sound speeds (v2r , v2t ) of
a compact star model satisfy the causality condition
throughout the interior of the star (0 < v2r , v2t < 1).
Figure 10 demonstrates thatv2r and v2t are decreasing
functions ofr throughout the interior of 4U 1608–52 but
the continuity of the graph at the interfaces is obtained for
v2r but not forv2t . For the star SAX J1808.4–3658, both
the sound speeds (v2r , v2t ) are monotonically decreasing
outward besides being continuous at all the respective
interfaces (Fig.11).

5.2.5 Adiabatic index

For a relativistic anisotropic sphere, stability depends on
the adiabatic indexΓr. Corresponding to three layers,Γrl

is defined as (Heintzmann & Hillebrandt 1975),

Γrl =
ρ+prl

prl

v2rl ,

for l = c, i and e. The trend of adiabatic index for all
the three layers of the binary star 4U 1608–52 is plotted
in Figure 12, where the adiabatic index is continuous

Fig. 10 Variation of radial and transverse sound speeds
with r for the X-ray binary star 4U 1608–52.

Fig. 11 Variation of radial and transverse sound speeds
with r for the star SAX J1808.4–3658.

Fig. 12 Variation of adiabatic index (Γ) with r for the X-
ray binary star 4U 1608–52.

at all the interfaces and satisfies the conditionΓrl >
4
3 . In the interior of stellar objects,Γr ≥ Γcritical =
4
3 + 19

42 (2UR). It is important to note that this relation
is only valid for nearly Newtonian stars with uniform
densities (Chandrasekhar 1964a,b; Moustakidis 2017).
Here, Γcritical depends linearly on the pressure-density
ratio at the center and can be evaluated as
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Table 1 Values of Free Parameters (s, t, a, b, d, f, α, β, γ in (km)−2) to Obtain Mass, Radi of Core, Inner and
Envelope Layers (Rc, Ri andRe in km) for the Binary Star 4U 1608–52.

s t a b d f α β γ

–0.48×10−2 1.1×10−3 0.47 2.05×10−4 417 7.03×10−5 245 0.18 1.17×10−4

Rc Ri Re M

1.47 4.9576 9.5 1.7M⊙

Table 2 Values of Free Parameters (s, t, a, b, d, f, α, β, γ in (km)−2) to Obtain Mass, Radi of Core, Inner and
Envelope Layers (Rc, Ri andRe in km) for the Star SAX J1808.4–3658.

s t a b d f α β γ

–0.78×10−2 2×10−3 0.38 2.7×10−4 205.6 9.26×10−5 205 0.001 9.31×10−5

Rc Ri Re M

0.399918 4.18522 7.2 1.2M⊙

Fig. 13 Variation of energy conditions withr for the X-ray
binary star 4U 1608–52.

pr0

ρ0
=

3a(R2
et+1)

2
UR−4πbR2

e

3(R2
et+1)2UR

,

where UR = M
Re

. In this modelΓr ≥ Γcritical =

1.4952380952 for 4U 1608–52 andΓr ≥ Γcritical =

1.48412698 for SAX J1808.4–3658.

5.2.6 Energy conditions

For a physically stable configuration, all the three layers
of the star should satisfy the three energy conditions
(Maurya et al. 2019): (i) Null energy conditionρ+ pr ≥ 0

(NEC) (ii) Weak energy conditionsρ + pr ≥ 0, ρ ≥ 0

(WECr) andρ + pt ≥ 0, ρ ≥ 0 (WECt) and (iii) Strong
energy conditionρ + pr + 2pt ≥ 0 (SEC). The variations
of energy conditions withr for the star 4U 1608–52 in all
the three layers are continuous at the interfaces and satisfy
realistic conditions as seen in Figure13.

5.2.7 Static stability criterion using modified TOV
equation

In the equilibrium state, the resulting gravitational (Fg),
hydrostatic (Fh) and anisotropic (Fa) forces should be
zero throughout the interior of the star and continuous at
the interfaces. The Tolman-Oppenheimer-Volkoff (TOV)

Fig. 14 Variation of balancing forces withr for the X-ray
binary star 4U 1608–52.

equation (Ponce de Leon 1987) for the respective three
layers(l = c, i, e) is given as

−ν′l(ρ+ prl)

2
− dprl

dr
+

2∆l(r)

r
= 0 . (70)

From Figure 14, we can ascertain that the TOV
condition is satisfied within the star 4U 1608–52 and all
the three forces are continuous at all the interfaces, thereby,
concluding that the system is in static equilibrium.

5.2.8 Herrera cracking stability criterion

For the values mentioned in Tables1 and 2, the Herrera
cracking condition, i.e.,−1 < v2t − v2r < 0 is attained
for both the compact stars 4U 1608–52 and SAX J1808.4–
3658. The continuity of the profile ofv2t − v2r is obtained
for the star SAX J1808.4–3658, but not for the binary star
4U 1608–52 due to the continuity and discontinuity of
the graphs ofvt at the interfaces of the star respectively
(Figs.15and16).

6 DISCUSSION AND CONCLUSION OF THREE
LAYERED HYBRID MODEL

In the present article, we have studied a three layered
anisotropic stellar model, where the core part is outfitted
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with the MIT bag EoS, inner part equipped with modified
BEC EoS and envelope part augmented with quadratic EoS
to interpret the interior structure of stellar objects.

The three layered model is viable in all aspects for
the X-ray binary (low-mass X-ray binary, LMXB) star 4U
1608–52 and the potentially strange star SAX J1808.4–
3658. We have analyzed the model entirely for the star
4U 1608–52 through graphical representations of suitable
parameter values (see Tables1 and2).

The geometrical and physical attributes likee−λ,
pr(r), pt(r), ρ(r), pr/ρ, pt/ρ, zg(r), zs(r), v2r andv2t and
all the energy conditions for the binary star 4U 1608–52
are non-negative at the center and satisfy the Zeldovich
condition throughout interior of the star 4U 1608–52.
Decreasing trends of these physical attributes from the
center to the surface of the star are displayed in Figures2,
4, 3, 5, 8, 10and13. Increasing trends of other physical and
geometrical attributes, i.e.,eν , m(r), u(r), ∆(r) andΓ(r)
from center to surface of the star are exhibited in Figures2,
7, 9 and12. Our three layer model fulfills all stable criteria
mentioned inPant et al.(2020) in all the three regions for
the star 4U 1608–52, i.e.,

(i) the adiabatic indexΓ(r) ≥ 4
3 , (Fig. 12) which

concludes that our model fulfills the Bondi adiabatic
condition (Bondi 1964).

(ii) the difference in sound speedsv2t − v2r lies in the
interval(−1, 0) (see Fig.15), which demonstrates that the
hybrid model is potentially stable. However, the tangential
sound speedv2t and the stability factorv2t − v2r are not
continuous (removable discontinuity) at the interfaces of
star 4U 1608–52.

(iii) the model represents a stable, static equilibrium
configuration in all the three regions by satisfying the
generalized TOV-equation (Fig.14).

Further, we have ascertained that the parameters,
namely, eλ(r), eν(r), pr(r), pt(r), ρ(r), pr/ρ, pt/ρ,
∆(r), m(r), u(r), zg(r), zs(r), energy conditions,Γ(r),
v2r(r) and TOV equation of forces are continuous and
well behaved from the center to the surface of the star
SAX J1808.4–3658. InGlendenning(2000), it has been
observed that energy jumps are perfectly consistent with
stable stars which is a common consequence of first-order
phase transitions. Due to low mass of SAX J1808.4–3658,
the graphical representations ofv2t and the stability factor
v2t − v2r may lead to continuity at the interfaces (Figs.11
and16).

The magnitudes of the physical attributesΓ(r), ρ(r),
pr(r) and zg(r) at the center, interfaces and boundary
for the stars 4U 1608–52 and SAX J1808.4–3658 are
expressed in Tables3 and 4 for the parameter values
displayed in Tables1 and 2. From the tables, we notice
that the values of the physical quantitiesΓ(r), ρ(r) and

Fig. 15 Variation of stability factor withr for the X-ray
binary star 4U 1608–52.

Fig. 16 Variation of stability factor withr for the star SAX
J1808.4–3658.

zg(r) at the center and core-intermediate interface increase
with higher mass of the stars whereas radial pressure at
the center and core-intermediate interface decreases with
higher mass of the stars. At the boundary, with increase
in the mass of the stars, the parameters like density
and surface redshift also increase andzg(r) and zs(r)

coincide at the boundary of the star whereas parameters
like adiabatic index and radial pressure decrease. It may
be observed that continuity of the stability factor in all
the three regions of the star demands a smaller core. As
the core region of the stars increases, the stability factor
becomes discontinuous at all interfaces of the regions.

7 GENERATING FUNCTIONS OF THREE
LAYERS

The primitive generating functions related to the geometry
of space-time (ζ(r)) and matter distribution (Π(r)) for
spherically symmetric anisotropic systems are described as
(Herrera et al. 2008)

eν(r) = e

[

∫

(2ζ(r)− 2
r
)dr
]

,

Π(r) = 8π(pr − pt) .
(71)
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Table 3 Variations inΓ(r), ρ(r), pr(r) and zg(r) of the Star 4U 1608–52 andG = 0.667 × 10−10m3 kg−1 s−2,
M⊙ = 2× 1030 kg andC = 3× 108ms−1.

Center Core-inner layer junction Inner layer-envelope junction Surface

Γ(r) 4.5686 4.6718 5.6439 ∞

ρ(r) (g cm−3
× 1014) 2.8878 2.8833 2.8366 2.7

pr(r) (dyne cm−2
× 1035) 3.192 3.0893 1.4612 0

zg(r) 0.4385 0.4335 0.383 0.2117

Table 4 Variations inΓ(r), ρ(r), pr(r) andzg(r) of the Star SAX J1808.4 – 3658 andG = 0.667× 10−10m3 kg−1 s−2,
M⊙ = 2× 1030 kg andC = 3× 108ms−1.

Center Core-inner layer junction Inner layer-envelope junction Surface

Γ(r) 4.5085 4.5223 6.0406 ∞

ρ(r) (g cm−3
× 1014) 2.876 2.875 2.816 2.7

pr(r) (dyne cm−2
× 1035) 4.204 4.185 2.42 0

zg(r) 0.3903 0.3898 0.3312 0.2247

The two generating functionsζ(r) andΠ(r) of our model
in each layer for the X-ray binary star 4U 1608-52 are
obtained as

ζc =
r2
(

r2t
(

(a+ 1)s+ 2t
(

r2t+ 3
))

+Φ1

)

+ 2

2r (r2t+ 1) (r2 (t (r2t+ 2) + s) + 1)
,

ζi =
8π
(

r2t+ 1
)4 (

r2
(

2t
(

r2t+ 2
)

+ s
)

+ 2
)

+ ϕ2

16πr (r2t+ 1)4 (r2 (t (r2t+ 2) + s) + 1)
,

ζe =
8πφ4

(

r2t+ 1
)3

+Φ3

16πr (r2t+ 1)4 (r2 (t (r2t+ 2) + s) + 1)
,

and

Πl(r) = 8π(prl − ptl) for l = c, i ande,

φ1 = −3as− 8πb
(

r2t+ 1
)3

+ s+ 6t ,

φ2 = dr2s2
(

r2t− 3
)2 − 64π2fr2

(

r2t+ 1
)6

,

φ3 = αr2s2
(

r2t− 3
)2 − 64π2γr2

(

r2t+ 1
)6

,

φ4 =2r6t3 + r4t(βs+ s+ 6t)

+ r2(−3βs+ s+ 6t) + 2 .
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