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Abstract Spectrum denoising is an important procedure for large-scale spectroscopical surveys. This work
proposes a novel stellar spectrum denoising method based ondeep Bayesian modeling. The construction
of our model includes a prior distribution for each stellar subclass, a spectrum generator and a flow-based
noise model. Our method takes into account the noise correlation structure, and it is not susceptible to
strong sky emission lines and cosmic rays. Moreover, it is able to naturally handle spectra with missing
flux values without ad-hoc imputation. The proposed method is evaluated on real stellar spectra from the
Sloan Digital Sky Survey (SDSS) with a comprehensive list ofcommon stellar subclasses and compared
to the standard denoising auto-encoder. Our denoising method demonstrates a superior performance to the
standard denoising auto-encoder, in respect of denoising quality and missing flux imputation. It may be
potentially helpful in improving the accuracy of the classification and physical parameter measurement of
stars when applying our method during data preprocessing.
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1 INTRODUCTION

With the rapid improvement of astronomical observation
technology, modern large-scale sky surveys, such as the
Sloan Digital Sky Survey (SDSS;Ahumada et al. 2020)
and the Large Sky Area Multi-Object Fiber Spectroscopic
Telescope (LAMOST or Guo Shou Jing Telescope;
Cui et al. 2012), provide an unprecedented amount of
astronomical data and enable us to explore our universe.
The immense volume of astronomical data not only offers
new opportunities but also brings challenges.

A fundamental data processing task is spectrum
denoising when handling spectra. To clean astronomical
spectra, a wavelet is a standard tool. The wavelet
shrinkage method applies the wavelet transform to noisy
observations, shrinks wavelet coefficients by some soft-
thresholding or hard-thresholding rules, and takes the
inverse wavelet transform to estimate the signal (Donoho
1993; Donoho & Johnstone 1994, 1995). Machado et al.
(2013) developed a wavelet-based method for galaxy
spectra and estimated their redshifts. An auto-encoder
(Hinton et al. 2006; Vincent et al. 2010) is another popular
denoising method in machine learning. Its success relies
on allowing only limited information to pass through a

bottleneck for spectrum reconstruction. Through minimiz-
ing the loss objective function, the encoder learns a feed-
forward latent representation of its input, and the decoder
reconstructs the signal from the latent space.

Despite the success of these algorithms, there are still
several unresolved issues. A standard wavelet method and
auto-encoder require a complete spectrum as the input.
However, some spectral observations have missing flux
values due to bad equipment conditions. Existing methods
adopt an ad-hoc approach and directly impute the missing
observations by some values (e.g. zero). In addition, the
spectrum sometimes has a distorted shape and has a
wavelength-connection problem, because the full spectrum
is combined from the blue and red channels. For some
spectra, the two parts are misaligned. Lastly, the flux values
sometimes get contaminated by strong night-sky emission
lines or cosmic rays in each individual exposure. They
induce bias to the existing denoising algorithms.

This work proposes a novel model to address the above
problems. Based on deep Bayesian modeling, this paper
puts forward a stellar spectrum denoising method, which
not only denoises spectra but also recovers the defective
spectra. Section2 presents the description of used data.
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Fig. 1 The left subfigure illustrates a distorted mapping where thedensity estimation is affected. The right subfigure
illustrates a locally isometric mapping where the local distance is preserved. Our generatorG implements this isometry
property to avoid distortion in the latent space.

Section3 introduces our proposed model. The application
and experimental results of our model are indicated in
Section 4. We summarize and conclude our paper in
Section5.

2 DATA

The Sloan Digital Sky Survey (SDSS;Ahumada et al.
2020) has been the most successful sky survey project in
the history, which now provides images, optical spectra,
infrared spectra, IFU spectra, stellar library spectra, and
catalog data. Current data release is Data Release 16
(DR16). This work is conducted based on the stellar
spectral observations from SDSS DR16. In this study, we
select a comprehensive list of common stellar subclasses
for model training and evaluation: O-type, B-type, A-type,
F-type, G-type, K-type, M-type, cataclysmic variables
(CVs), carbon class and WD class (including CalciumWD,
CarbonWD, WD, WDcooler and WDhotter).

Our proposed model will have several components:
one prior distribution for each stellar subclass, a spectrum
generator and a NoiseFlow observation model. See
Section 3 for more details. For the training dataset of
the spectrum generator, the top 200 spectra are selected
among each stellar subclass sorted by ther-band signal-to-
noise ratio (SNR). Each selected spectrum is normalized
to have unit absolute flux summation, and is interpolated
to a fixed uniform grid with the length of 2048 over the
wavelength ranging from 4000̊A to 9000Å. Meanwhile,
the training dataset of the NoiseFlow observation model
is prepared as follows. We extract the multiple-exposure
data from the spectra with their SNR ranging from 20
to 30. For every exposure, we connect the red and blue
parts of the spectrum, and apply the same interpolation
and normalization as processing the training data. Then

we subtract this composite spectrum from the average of
multiple composite spectra. One subtracted spectrum from
an exposure data becomes a training spectrum.

Test datasets also get prepared for model performance
evaluation. We select an additional set of spectra withr-
band SNR greater than 60. One test dataset consists of up
to 300 spectra for each stellar subclass. We also select an
additional group of spectra whoser-band SNR is between
10 to 20 to extract new noise from their multiple-exposure
data. The final test dataset is constructed by randomly
adding these realistic noises to the spectra with high SNR.
The goal for the denoising model is to reconstruct the
original clean spectra with high SNR.

3 THE DENOISING MODEL

3.1 Deep Bayesian Modeling

We now develop our proposed model for stellar spectrum
denoising based on the basic Bayesian model (1)–(2).
Suppose the signal spectrum of a star iss ∈ R

D. It is a
D-dimensional unobserved vector, and we want to recover
it from noisy observations. Modern astronomical surveys
take multiple exposures to get several noisy observations
y1, · · · ,yn ∈ R

D of the clean signal spectrums. We
express the observations in a signal-plus-noise model,

yi = s + ǫi, for i = 1, · · · , n ,

whereǫi is aD-dimensional noise vector. The noise could
have complex correlation structure across pixels. Most of
the time, only a single average spectrum is used, we can
directly setn = 1 in the above. However, our method
is more powerful and can exploit multiple-exposure data
where only the red or blue part of the spectrum is recorded
in each exposure. Our denoising framework is inspired by
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Fig. 2 The neural network architecture of our observation model. The blue pixel only depends on the immediately
preceding fiveyellow pixels of the input spectrum. This proposed architecture is more parsimonious in parameterization
and focuses on extracting local correlation structure of the noise.

Fig. 3 The masked likelihood for a partially observed spectrum. Theyellow pixels represent the observed pixel values and
thegrey pixels correspond to the missing ones. The likelihood of a pixel is accounted if and only if thed-th pixel and its
immediateK preceding pixels are observed. Our observation model can naturally deal with spectra with missing values.

Fig. 4 The modeling workflow of our method. The core Bayesian model in theyellow box consists of three parts: one
spectrum generator, one Gaussian KDE for each stellar subclass and one NoiseFlow model. Spectra with various levels of
SNR are supplied for the training of different model components. With iterative optimization, it outputs the corresponding
latent variables and the denoised spectra.

the following fundamental but powerful Bayesian model

y1, · · · ,yn|s ∼p(y|s), (1)

s ∼p(s). (2)

In the above,p(s) is a prior density encoding the likelihood
of the signal s; p(y|s) is the probability density of
the observedyi given the signal vectors. Based on
some state-of-the-art deep density estimation methods (see
Sect.3.2), we will construct an expressive priorp(s) and
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Fig. 5 The three dimensional space for the latent variablez outputted by the encoder. The horizontal axis in the left
subfigure isz1 and the vertical axis isz2. The horizontal axis in the right subfigure isz2 and the vertical axis isz3. It
is evident that observations from the same stellar subclassform a cluster in the latent space. Thered circles indicate the
outlier spectra. This learned latent space informs the latent variable structure for most stellar observations.

an observation modelp(y|s) by neural networks. Given
the trained model and the observationsy1, · · · ,yn, the
true signal vectors can be inferred from the posterior
distributionp(s|y1, · · · ,yn).

Several additional adjustments of the model are
necessary. It is not straightforward to model a clean
spectrums ∈ R

D in a high dimensional spaceRD. To
effectively construct a model for the signal spectrum, we
exploit that, for a collection of astronomical spectra, the
signal vectorss of various stars typically reside over a low
dimensional manifold. This intrinsically low-dimensional
structure can be effectively employed for spectrum data
analysis. For example,Lawlor et al. (2016) used a local
non-linear dimension reduction technique to discover the
manifold structure. The low dimensional nature of the
data implies that all clean spectra can be represented by
a variable in a low dimensional space. Denote this low-
dimensional variable byz ∈ R

L, and we can construct a
mappingG such that the signals = G(z) is the mapped
value ofz. Based on this mapping, the prior over the signal
s can be directly expressed as a prior over the latent space
p(z). More specifically, we will take the stellar classC
into account and construct the priorp(s|C) conditional
on each stellar subclass. The final hierarchical model is
summarized as below.

y1, · · · ,yn| s ∼p(y|s), (3)

s =G(z), (4)

z|C ∼p(z|C), (5)

C ∼p(C). (6)

In this model, the class label variableC has a uniform prior
distribution over all stellar subclasses. The construction
and training of the latent priorsp(z|C) and the generator
function G will be addressed in Section3.3. The
observation modelp(y|s) will be discussed in Section3.4.
The final model training and denoising workflow will be
summarized in Section3.5.

Given our trained model in Equations (3)–(6), the
posterior distribution of the latent variablez and the class
labelC is proportional to the joint distribution

p(z, C|y1, · · · ,yn) ∝
n
∏

j=1

p(yj |G(z)) × p(z|C)× p(C).

Monte Carlo Markov chain (MCMC) methods can be
applied to draw samples from the posterior distribution.
However, the MCMC technique is known to be computa-
tionally expensive and not scalable to large datasets. For
large-scale modern astronomical surveys, we can adopt
the faster maximum-a-posterior (MAP) estimation. In this
way, the latent variablesz and the class labelC are found
by

ẑ, Ĉ = argmax
z,C

{

n
∑

j=1

log p(yj |G(z)) + log p(z|C)

+ log p(C)

}

.

(7)

With the computed MAP estimation̂z, the cleaned and
denoised spectra are given byŝ = G(ẑ).
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Fig. 6 The three panels correspond to the cases where the missing flux values occur at the left end, middle and right
end of each spectrum, respectively. The horizontal axis represents the width of the missing range. The vertical axis is
the reconstruction loss of our model. The reconstruction loss increases with the growing number of missing pixels. The
model performance is not sensitive to the location of the missing pixels, but missing at the left end (blue end) incurs
slightly higher loss as the blue end is feature-rich for mostspectra.

3.2 Background on Deep Density Estimation

This subsection reviews some works on deep density
estimation. These works serve as the basis for building
our deep Bayesian denoising model. Supposex ∈ R

D

represent aD-dimensional observation, for which we
want to estimate its distribution. In the deep learning
literature, most density estimation methods are based on
the intuition that we can transform a simple base density
πz(z) into a more complex onep(x) via an invertible
differentiable transformx = f(z). The functionf is
parameterized by a neural network to achieve flexible and
adaptive transformation. By the basic formula of density
transformation, it holds that

p(x) = πz(f
−1(x))

∣

∣

∣

∣

det

(

∂f−1

∂x

)∣

∣

∣

∣

. (8)

Several methods have been proposed for deep density
estimation. The approach of normalizing flows (Dinh et al.
2014) choosesf as a sequence of composite functions,
i.e., f = f1 ◦ f2 ◦ · · · ◦ fK . In this way,p(x) can be
regarded as an invertible and differentiable transformation
f of a base densityπz(z). The base density can be
simple multivariate Gaussian distribution. The relationship
between the observation datax and latent variablez can be
represented asx

f1
←→ h1

f2
←→ h2 · · ·

fK
←→ z via a stack

of hidden variables. Under the invertible (or bijective)
assumption off , z can be calculated asz = f−1(x) given
x. Based on Equation (8), the log probability density can
be directly computed as

log p(x) = log πz(z) + log

∣

∣

∣

∣

det

(

dz

dx

)∣

∣

∣

∣

= log πz(z) +

K
∑

i=1

log

∣

∣

∣

∣

det

(

dhi

dhi−1

)∣

∣

∣

∣

,

(9)

where the scalar valuelog |det(dhi/dhi−1)| is the
logarithm of the absolute value of the determinant of
the Jacobian matrix(dhi/dhi−1), also called the log-
determinant. The series of transformations are required

to be easily invertible and the log-determinant should be
easy to compute.Rezende & Mohamed(2016) devised
planar and radial flow as basic blocks forf . NICE
(Dinh et al. 2014) adapts additive coupling layers to
form a normalizing flow, and its successor Real NVP
(Dinh et al. 2017) extends the transformation by stacking
affine coupling layers. They all have a tractable triangular
Jacobian matrix for the bijective mapping.

Autoregressive flow is another popular and tractable
approach to density estimation. It factorizes the joint
density as a product of conditional densitiesp(x) =
∏

d p(xd|x1:d−1) via the chain rule of probability
(Uria et al. 2016). This factorization makes the Jacobian
tractable as the Jacobian becomes a triangular matrix. The
inverse autoregressive flow (IAF,Kingma et al. 2017) and
the masked autoregressive flow (MAF,Papamakarios et al.
2018) take this approach. Under this approach, the
prediction of current value depends on all of its past values,
which is referred to as the autoregressive property. They
use independent standard Gaussian distributions as the
base density. The mean and variance ofxd are functions of
the preceding observation vectorx1:d−1 or the preceding
random numbers. They both use MADE (Germain et al.
2015) as their basic building blocks for the function
mapping.

3.3 The Generator and Latent Prior

We first detail our spectrum generatorG and the prior
densityp(z|C) for the latent variable. The generator is
obtained from the auto-encoder framework, but with an
additional local isometry constraint. In the standard auto-
encoder framework, an encoderE maps an observation
y to the latentz = E(y), and then mapsz ∈ R

L

back to the original high-dimensional spaceRD by the
generator (decoder)G. The training target is to minimize
the reconstruction loss

min
G,E

Ey‖y − G(E(y))‖
2.
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Fig. 7 The five rows show examples of stellar spectra denoised by theconvolutional denoising auto-encoder and our
method for the stellar subclasses O, B, A, F, G, respectively. The left column shows the true spectrum and its synthetic
counterpart with noise. Thepurple curve is the clean spectrum that both denoising algorithms try to recover, and the
grey curve is the spectrum added with noise. The spectra denoised by both algorithms are compared in the right column.
The denoised spectrum from our model (yellow curve) is much closer to the purple clean spectrum than the standard
auto-encoder result (blue curve).

The standard convolutional auto-encoder architecture can
be specified forE and G. However, the generatorG
obtained hereby could create distortion in the latent space
R

L, affecting density estimation. The left subfigure of
Figure1 shows an example of distorted mapping, where
some low-density points (on the bottom right) are mapped

to a high-density region (on the top right). To avoid the
issue, we construct alocally isometric mapping such thatG
preserves the distance between samples in the latent space
R

L. In other words, it holds that

‖G(z)− G(z′)‖ ≈ ‖z− z′‖ ,
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Fig. 8 The five rows show examples of stellar spectra denoised by theconvolutional denoising auto-encoder and our
method for the stellar subclasses K, M, CV, Carbon, WD, respectively. The left column shows the true spectrum and its
synthetic counterpart with noise. Thepurple curve is the clean spectrum that both denoising algorithms try to recover,
and thegrey curve is the spectrum added with noise. The spectra denoised by both algorithms are compared in the right
column. The denoised spectrum from our model (yellow curve) is much closer to the purple clean spectrum than the
standard auto-encoder result (blue curve).

wherez, z′ ∈ R
L is a pair of latent variables satisfying

‖z − z′‖ ≤ δ for someδ. The local isometry property
is illustrated in the right subfigure of Figure1, where
the distance between the red and blue points is preserved
under the mappingG. The isometry property allows us
to obtain the spectrum densityp(s) by directly accessing

the low dimensionalz. It approximately holds that
p(s) = p(G(z)) = p(z). This helps us to approach the
density estimation and effectively avoid the computation

of det ∂f−1

∂x
for a complex transformation functionf in

Equation (8).



169–8 X. Kang et al.: A Novel Stellar Spectrum Denoising Method based on Deep Bayesian Modeling

Fig. 9 The loss comparison for the convolutional auto-encoder andour method for the ten stellar subclasses. The
horizontal axis is the reconstruction loss for the convolutional denoising auto-encoder, and the vertical axis is the
reconstruction loss for our method. Eachyellow point in a subfigure corresponds to one synthetic noisy spectrum. The
blue line indicates where the two methods have equal performance. Most points in each subfigure fall below theblue
line, indicating that our method has smaller reconstruction loss. The title of each subfigure also reports the proportion of
spectra for which our method has smaller reconstruction loss. Our method demonstrates improved performance.

With the additional local isometry constraint, the
objective function to train the generator becomes

min
G,E

Ey,δ

{

[

‖G(z)−G(z+δ)‖−δ
]2
+‖y−G(E(y))‖2

}

.

(10)

In the above, the latent value isz = E(y). The
perturbationδ is a random variable, drawn from a uniform
distribution over the sphere of radiusδ in R

L. Similar loss
functions had been employed in the works (Geng et al.
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Fig. 10 Model performance under varying levels of signal-to-noiseratio (DERSNR). The left panel shows how the
reconstruction loss (vertical axis) depends on the DERSNR of the input synthetic spectrum (horizontal axis). The right
panel shows how the DERSNR of the denoised spectrum (vertical axis) varies with theDER SNR of the input synthetic
spectrum (horizontal axis). The reconstruction loss does not increase very quickly as DERSNR decreases in the left
panel, while the DERSNR of the denoised spectra is stable in the right panel.

Fig. 11 An illustrative example. In the left panel, the DERSNR of the synthetic noisy spectrum (grey curve) is 2.79 and
the DERSNR of the true spectrum (purple curve) is 60.96. In the right panel, the reconstruction loss between the true
spectrum (purple curve) and the predicted spectrum from our model (yellow curve) is 1.0× 10−3.

2020; Atzmon et al. 2020) to train the auto-encoder to
learn the manifold structure.

After training E ,G based on Equation (10), we can
compute the latent variablesz for all training samples.
Then, based on this collection of latent variables, a kernel
density estimator (KDE) is deployed overz for the training
samples of each stellar subclassC. This helps us to obtain
p(z|C) for each subclassC.

3.4 The NoiseFlow Observation Model

This subsection constructs the observation modelp(y|s)
for yn given the true signals = G(z). Recall that we have
used the additive noise modelǫn = yn − s. Our goal is
equivalent to construct a noise density modelp(ǫn) and set
p(yn|s) = p(ǫn). The density model is built upon the idea
of Papamakarios et al.(2018) such that the observation
model has an auto-regressive structure. Compared with
their model, our model only depends on a local group
of pixels within an observation, is more parsimonious
in parameterization, and focuses on extracting the local
correlation structure of the noise.

Suppose the noise vector is written asǫn =

(ǫn1, ǫn2, · · · , ǫnK). For d = K + 1, · · · , D, the noise

valueǫnd for the d-th pixel depends on its immediateK
preceding pixels via

p(ǫnd|ǫn,(d−K):(d−1)) = N (ǫnd|µnd, (expαnd)
2) , (11)

where µnd = fµ(ǫn,(d−K):(d−1)), αnd =

fα(ǫn,(d−K):(d−1)), and fµ and fα are two functions
expressed by neural networks. The architecture offµ and
fα will be specified later. The two functionsfµ and fα
determine the mean and the standard deviation for the
noiseǫnd at thed-th pixel. In particular, we have

ǫnd = ξnd exp(αnd) + µnd , (12)

where ξnd ∼ N (0, 1) follows the standard Gaussian
distribution. Equivalently, the random variable can be
expressed by the following inverse expression

ξnd = (ǫnd − µnd) exp(−αnd) . (13)

The above specifies the local dependence structure for
d = K + 1, · · · , D. For the firstK pixels, there are
not enough preceding pixels for us to determine the
conditional likelihood (11). Instead, for the firstK pixels,
the noiseǫnd is imposed to follow a univariate Gaussian
distribution with a fixed meanµd and a fixed standard
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Fig. 12 An illustrative example. In the left panel, the DERSNR of the synthetic noisy spectrum (grey curve) is 2.13 and
the DERSNR of the true spectrum (purple curve) is 31.32. In the right panel, the reconstruction loss between the true
spectrum (purple curve) and the predicted spectrum from our model (yellow curve) is 1.3× 10−3.

deviation σd = exp(−αd). In summary, our model
parameters to be trained include: the scalar valuesµd, αd

for d = 1, · · · ,K; and two neural network functionsfµ
andfα.

As µnd andαnd depend onǫn,(d−K):(d−1) by design,
the Jacobian in density transformation Equation (8) is an
upper triangular matrix. As a result, the absolute value of
the determinant can be easily computed as

log
∣

∣

∣
det

∂f−1

∂ǫ

∣

∣

∣
= −

D
∑

d=K+1

αnd . (14)

It follows that the log density of the observation model
becomes

logp(yn|s) = p(ǫn)

=

K
∑

d=1

log p(ǫnd) +

D
∑

d=K+1

log p(ǫnd|ǫn,(d−K):(d−1))

=

K
∑

d=1

[

− (1/2) exp(−2αd)(ǫnd − µd)
2 − αd

]

+

D
∑

d=K+1

[

− (1/2) exp(−2αd)(ǫnd − µnd)
2

− αnd

]

+ const .

(15)
The last equality holds up to some irrelevant constant
const.

For our observation model, we develop a neural
network architecture for local noise feature extraction, as
shown in Figure2. In the first layer, local features are
extracted by a one-dimensional convolution layer. This
convolution layer has one input channel andC output
channels, kernel sizeK, one stride and zero padding. Its
outputh is of dimensionN × C × (D − K + 1), where
N is the mini-batch sample size. In accordance of the
aggressive structure, we drop one redundant column (the
first column) in the third dimension of the hidden stateh1,
such that its dimension becomesN × C × (D − K). We
then take a transpose to exchange the second dimension

with the third dimension. The resultingh is of dimension
N × (D − K) × C. In this way, for thed-th pixel (d =

K +1, · · · , D), we get aC-dimensional feature vector for
it.

After that,h is used as the input of the followingL−1

linear hidden layers with RELU, to sequentially reduce the
dimension of hidden variables fromN × (D − K) × C

to N × (D − K) × C′ for someC′ < C. In the sequel,
there are two separate linear hidden layers mapping from
N × (D − K) × C′ to N × (D − K) × 1, one is forµ
and the other is forα, and we transposeµ andα back
to N × 1 × (D − K). At this moment, vectorµ andα
contain the mean and standard deviation information for
ǫnd with d = K + 1, · · · , D. As for the firstK pixels,
their scalar mean and standard deviation values (µd, αd for
d = 1, · · · ,K) get included via the final masked linear
layers.

Moreover, the observation model developed hereby
can naturally handle a spectrum with missing flux values
due to bad pixels. We can create a mask vectormn such
that mnd = 1 if all of yn,d−K , · · · , yn,d−1, yn,d are
observed, andmnd = 0 otherwise. The observation log-
likelihood foryn becomes

log p(yn|s) =
K
∑

d=1

mnd log p(ǫnd)

+

D
∑

d=K+1

mnd log p(ǫnd|ǫn,(d−K):(d−1)) .

(16)
In other words, the likelihood of thed-th pixel is taken into
account if and only if thed-th pixel and its immediateK
preceding pixels are observed, which is shown in Figure3.
The masked likelihood allows us to deal with partially
observed spectrum without resorting to ad-hoc missing
value imputation.
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Fig. 13 The five rows show examples of synthetic stellar spectra withmissing values and the denoising results for the
stellar subclasses O, B, A, F, G, respectively. The left column shows the true spectrum and its synthetic counterpart with
noise and missing values. Thepurple curve is the clean spectrum that both denoising algorithms try to recover, and the
grey curve is the spectrum added with noise and missing values. The spectra denoised by both algorithms are compared
in the right column. The denoised spectrum from our model (yellow curve) is much closer to the purple clean spectrum
than the standard auto-encoder result (blue curve).

3.5 Modeling Workflow

The main workflow of our model is summarized in
Figure4. In order to train and apply our proposed model,
basically four main steps are involved:

1. Train an encoderE and a locally isometric generator
G based on a collection of high-SNR optical stellar
spectra.

2. Use Gaussian kernel density estimation (Gaussian
KDE) to estimate the prior distribution of the latent
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Fig. 14 The five rows show examples of synthetic stellar spectra withmissing values and the denoising results for
the stellar subclasses K, M, CV, Carbon, WD, respectively. The left column shows the true spectrum and its synthetic
counterpart with noise and missing values. Thepurple curve is the clean spectrum that both denoising algorithms try to
recover, and thegrey curve is the spectrum added with noise and missing values. The spectra denoised by both algorithms
are compared in the right column. The denoised spectrum fromour model (yellow curve) is much closer to the purple
clean spectrum than the standard auto-encoder result (blue curve).

variablez for each stellar subclass obtained from the
encoder trained in the first step.

3. Train a NoiseFlow observation model with the
observational noise extracted from low-SNR optical
stellar spectra.

4. For each test spectrum, use the Gaussian KDE, the
NoiseFlow model and the generatorG trained in the
first three steps to obtain its corresponding latent
variable and its clean and complete spectrum with
iterative optimization of Equation (7).



X. Kang et al.: A Novel Stellar Spectrum Denoising Method based on Deep Bayesian Modeling 169–13

4 RESULTS

This section compares our method with the convolutional
denoising auto-encoder based on two test datasets. In
particular, two tasks are created for the purpose of
spectrum denoising and missing flux imputation. The
experiment is conducted based on the stellar spectral
observations introduced in Section2.

The proposed model is trained over the training dataset
of Section2. Recall that each training spectrum has been
interpolated over a grid with a size ofD = 2048, and we
will set the latent space dimension asL = 3. This training
dataset is supplied to Equation (10) to train the generator
G and the encoderE with a stochastic gradient algorithm.
The encoder learns a latent representationz ∈ R

3 for
each training spectrum. Figure5 shows the scatterplot of
the latent variables for the training dataset. The points are
colored according to the stellar subclasses. It is evident that
observations from the same stellar subclass form a cluster.
The latent space can also help us to detect outlier spectra,
such as those inside the red circles indicated in Figure5.
This learned latent space informs us of the latent variable
z structure for most stellar observations. Therefore, we can
use a Gaussian kernel density estimation for each of the ten
stellar subclasses to getp(z|C).

For comparison, the convolutional auto-encoder gets
trained based on a larger dataset. The dataset contains
spectra both with high SNR and low SNR. Besides, for
a fair comparison, the convolution neural network shares
the same architecture (e.g., the same hidden layers and the
same transposed convolution layers) as our generatorG.

4.1 Spectrum Denoising

To test the model performance, we randomly select an
independent group of spectra with high SNR for each
stellar subclass, as described in Section2. These selected
spectra are regarded as the ground truth that the model
endeavors to predict. Then we extract another noisy dataset
from an independent group of stellar spectra with SNR
ranging from 10 to 20. The noise is randomly sampled
and added to the above clean test spectra. These constitute
our benchmark test dataset for method comparison. Each
stellar subclass is created with 300 test spectra.

Figure 7 and Figure8 exhibit some examples of
denoised spectra for ten stellar subclasses. We choose one
representative result from each of the ten stellar subclasses
to demonstrate the power of our method. The left column
shows the spectrum before and after noise contamination,
where the purple curve is the high-SNR spectrum and
the grey curve is the clean spectrum with added noise.
The noisy spectrum gets cleaned by the standard auto-
encoder and our proposed method. The denoised spectrum

is shown in the right column of Figure7 and Figure8. In
each subfigure of the right column, the purple spectrum
is the true spectrum that both denoising algorithms try to
recover. Though the clean purple spectrum is unknown
to the denoising algorithm, our proposed method shows
promising ability to recover it from the noisy observation.
The predicted spectrum from our model (yellow curve) is
much closer to the purple clean spectrum than the standard
auto-encoder result (blue curve). Our proposed method
also has the capacity to remove strong noisy emission
lines (see the second row of Fig.8) and keeps the signal
emission lines (see the third row of Fig.8).

Figure 9 shows the overall comparison between our
method and the convolutional denoising auto-encoder in
spectrum denoising for various stellar subclasses. Each
yellow point in a subfigure represents one synthetic noisy
stellar spectrum. The noisy spectrum gets cleaned and
compared with the true high-SNR spectrum, and the
reconstruction loss is computed. The reconstruction loss
is computed as follows. Suppose thats is the true signal
spectrum and̂s is the denoised spectrum by a model.
Then, the reconstruction loss is

∑D
d=1(sd − ŝd)

2/D. In
each subfigure, the horizontal axis is the reconstruction
loss for the convolutional denoising auto-encoder, and the
vertical axis is the reconstruction loss of our method.
The blue line indicates where the two methods have
equal performance. We can see that most points in each
subfigure fall below the blue line, indicating that our
method has smaller reconstruction loss. The title of each
subfigure reports the proportion of spectra for which our
method has smaller reconstruction loss. Within each stellar
subclass, our method produces higher-quality denoised
spectra for more than 80% of the testing samples. For
subclasses such as carbon class and WD class, our method
demonstrates improved performance for almost 100% of
the test samples.

We further consider how the signal-to-noise ratio
affects our model performance. For the synthetic spectra,
we measure their signal-to-noise ratio by the formula given
by Stoehr et al.(2008). The computed signal-to-noise ratio
is denoted as DERSNR. To decrease DERSNR of the
synthetic data to a specific level, we add additional
gaussian noise with various noise levels to each spectrum.
This procedure results in a new group of test dataset.
The left panel of Figure10 shows how the boxplot of
the reconstruction loss varies across distinct DERSNR
levels. The reconstruction loss does not increase very
quickly as DERSNR decreases. When the DERSNR
is below 3, the median reconstruction loss is still about
10−3. To illustrate how the spectrum looks like at this
level of reconstruction loss, we plot a few examples in
Figures11–12. The grey curve in the left panel of Figure11
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Fig. 15 The loss comparison for the two methods applied to the noisy spectra with missing values. Each panel corresponds
to one stellar subclasse. The horizontal axis is the reconstruction loss for the convolutional denoising auto-encoder, and the
vertical axis is the reconstruction loss for our method. Each yellow point in a subfigure corresponds to one synthetic noisy
spectrum with missing values. Theblue line indicates where the two methods have equal performance. Most points in each
subfigure fall below theblue line, indicating that our method has smaller reconstruction loss. The title of each subfigure
also reports the proportion of spectra for which our method has smaller reconstruction loss. Our method demonstrates
improved performance.
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is one synthetic spectrum with DERSNR equaling to
2.79. The reconstruction loss between the true spectrum
and the denoised spectrum in the right panel is about
1.0 × 10−3. Figure 12 shows one more example where
the DERSNR of the synthetic spectrum is2.12 and the
reconstruction loss is about1.3 × 10−3. The right panel
of Figure 10 compares the DERSNR before and after
denoising for the above dataset. For most spectra, their
DER SNR after denoising is above 100. From the right
panel of Figure10, we can also find that the DERSNR
of our model output is stable regardless of the DERSNR
of the input spectrum. This is because our model prior
component and the generator in Equations (4)–(6) are
fixed after model training. The denoised spectra, which are
generated by the prior and the generator, will always have
the same level of SNR of the training dataset.

4.2 Spectrum Denoising with Missing Flux

Besides the above test dataset, another test dataset is
created to evaluate model performance for spectrum
denoising with missing flux values. To construct this
benchmark data, almost the same procedure of Section4.1
is taken. Realistic noise is added to the clean spectrum
with high SNR. In addition, we randomly remove the flux
values over an interval range of wavelength. The interval
of missing pixels is also randomly selected for each test
spectrum.

Based on the idea of masked likelihood Equation (16),
our trained model can be directly employed to denoise
spectrum with partially missing flux values. In other
words, our model does not require re-training to deal
with this kind of data. However, the standard denoising
convolutional auto-encoder requires re-training to adaptto
this dataset. Its original training data also get randomly
removed flux values over a random wavelength range.
The missing values are imputed by zeros, and the
denoising convolutional auto-encoder aims to reconstruct
the original full spectrum from the zero-imputed spectrum.
The full spectrum is employed for its loss computation and
parameter update.

Figure 6 shows the performance of our model
depending on different positions and widths of the missing
range. The three panels correspond to the cases where the
missing flux occurs at the left end (blue end), the middle
and the right end (red end) of the spectrum, respectively.
In each panel, the horizontal axis is the number of missing
pixels out of the totalD = 2048 pixels. The vertical axis
is the reconstruction loss. As expected, the reconstruction
loss increases with the growing number of missing pixels.
When the length of missing pixels is 800 (i.e., 40% of
the whole spectrum), the median reconstruction loss is

still below 10−3. Generally, the model performance is not
sensitive to the location of the missing pixels, but missing
at the left end (blue end) incurs slightly higher loss. This
is due to the fact that the blue end is feature-rich and
contains more information for spectrum reconstruction for
most spectra.

Figure13 and Figure14 plot a few examples for the
ten stellar subclasses. The left column shows the spectrum
before and after noise addition and flux value removal. The
purple spectrum is the original spectrum with high SNR.
The grey spectrum has noise added, but at the same time,
a random interval of flux values is removed. The missing
flux is plotted as an interval of zeros. The purple spectrum
is the ground truth spectrum that both algorithms try to
recover. The denoised and imputed spectrum is shown
in the right column. Our predicted spectrum is shown in
yellow, and the result of convolutional auto-encoder is
shown in blue. Our resulting spectra are much closer to the
true spectra in these cases. The overall result for this test
data is summarized in Figure15. The interpretation of the
figure is similar to that of Figure9. Although our model
has a moderate lead over the convolutional auto-encoder
in F-type and G-type classes, the performance difference
margins are wider in the other stellar subclasses.

5 SUMMARY AND CONCLUSIONS

In this paper, we propose a new efficient deep Bayesian
model for stellar spectral denoising, defective spectral
recovery and sky emission lines or cosmic rays removal.
Compared with the existing methods, our model makes a
greater usage of available data, exhibits a high robustness
and a superior performance in spectral denoising. In
summary, our approach has the following advantages:

1. The observation modelp(y|s) takes into account
the noise correlation structure. It is able to properly
handle the strong sky emissions, cosmic rays, and the
background noise of the observational instruments.

2. When some part of the observation is missing due
to unpredictable errors (e.g. pipeline handling error,
defective spectra), our model only computes the
likelihood of the observed pixels, without resorting to
ad-hoc missing value imputation.

3. Our prior modelp(s) encodes how a true signal should
look, making our model less susceptible to defective or
distorted observations (due to combining the blue and
red channels).

4. Our proposed model can also directly exploit multiple-
exposure data, making the posterior inference more
reliable than using only one single average data.

The proposed method can be considered as a novel
model for large-scale astronomical spectral surveys and
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will benefit subsequent astronomical research. In future
work, we will continue refining the proposed model and
investigating its proper applications in other astronomical
spectral analysis tasks. For example, our model will
be applied during stellar spectral data preprocessing
when performing stellar classification or estimating stellar
physical parameters (Teff, logg, [Fe/H]).
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