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Abstract The pairwise velocity generating functichhas a deep connection with both the pairwise velocity
probability distribution function and modeling of reddtgpace distortion (RSD). Its implementation into
RSD modeling is often faciliated by expansion into a serfgsarwise velocity moment&?, ). Motivated

by the logrithmic transformation of the cosmic density fiede investigate an alternative expansion into
series of pairwise velocity cumulants?,). . We numerically evaluate the convergence rate of the two
expansions, with thred0723 particle simulations of the CosmicGrowth N-body simulatiseries. (1)
We find that the cumulant expansion performs significantlyebefor all the halo samples and redshifts
investigated. (2) For modeling RSD & < 0.1h Mpc~!, including only then = 1,2 cumulants is
sufficient. (3) But for modeling RSD at; = 0.2h Mpc~!, we need and only need the = 1,2,3,4
cumulants. These results provide specific requirementsSib iRodeling in terms ofin-th order statistics

of the large-scale structure.
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1 INTRODUCTION (Peacocketal. 2001 Hawkinsetal. 2008 SDSS
(Tegmark et al. 2006 Reid etal. 2012 Samushia et al.
One of the most important issues in cosmology is2012 Tojeiro etal. 2012 Chuang etal. 2093 VVDS
to interpret the cosmic acceleratioRiéss etal. 1998 (Guzzo etal. 2008 WiggleZ Blake et al. 201}, 6dFGS
Perimutter et al. 1999 Both dark energy and modified (Beutleretal. 2012 Johnsonetal. 2034 GAMA
gravitational theories can produce the same expansiof®impsonetal. 2006 VIPERS (e la Torre etal.
history. Yet, they predict the different growth historiels 0 2013 Pezzottaetal. 2017 Mohammad etal. 2038
the structure. Therefore, in observation, one can distinFastSound Qkumuraetal. 2006 BOSS White et al.
guish them by testing the structure growth réite)os(z) 2015 Howlett et al. 2015Li et al. 2016 Alam et al. 201y
through redshift-space distortion (RSDPgebles 1980 and eBOSSTamone et al. 202Bautista et al. 2021 In
Kaiser 1987 Scoccimarro 2004 The observed position of the near future, the ongoing and upcoming dark energy
the galaxy in redshift space will be distorted by its peaulia surveys like DESI, PFS, Euclid, SKA, WFIRST (e.g.,
velocity along the line of sight due to the Doppler shift. DESI Collaboration et al. 2016Amendola etal. 2018
This RSD effect turns the isotropic distributed pattern ofAbdalla et al. 2015 Spergel et al. 20)5will have the
galaxies in real space into the anisotropic one in redshifability to constrain the structure growth rate~at1% or
space. Since peculiar velocity directly reflects the stmect  even higher accuracy level. However, this target precision
growth, by modeling the mapping from real space topresents a severe challenge to the RSD modeling.
redshift space, the peculiar velocity information can be

’ The difficulties of accurate RSD modeling come from
extracted and used to constrain the cosmology.

three key ingredients. (1) One is the mapping between
Over the past decades, RSD has been proved teeal space and redshift spadeegbles 19805coccimarro

be a very powerful cosmological probe and adopted®004. The mapping is nonlinear. For example, the redshift

in many observational projects, such as 2dFGSpace 2-pt correlation function is determined by not only
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the two-point correlation function in real space, but adl th Table 1 Three sets of halo mass bins for J6610. The mass
n-th order correlation functions. It is also nonlocal, thatunit is in 10'2M,/h. (M) is the mean halo mas#V;, is

real space clustering at other scales can have significatite total halo number in the corresponding halo mass bin.
contribution to a given scale in redshift space. (2) One

. . . . Set ID Mass Range (M)  N,/10%
is the nonlinear evolution of the matter/halo density ALz = 00) - 10 3770 8.60
and velocity field, a long-standing challenge in modern =05 310 30,03 6.70
cosmology. (3) The third is the nonlinear (and nonlocal) z=1.0 > 10 23.77 4.30
galaxy-halo-matter relation in not only the position space 12:( L5 00) j 11(()) 22‘23 ;5;’3
. z = U. — . .
but the whole phase spacédsjacquesetal. 2018a =05 1-10 261 66.83
Huterer & Shafer 201,8Chen et al. 201;8Zhang 2018 z=1.0 1-10 251 59.86
RSD models usually treat the redshift space correlation z=15 1-10 241 5049
function or power spectrum as a expansion to a series A3(z = 0.0) 0.1-1 027 506.14
) L o 2=0.5 0.1-1 027  523.57
of the density and velocity field statistics in real 2—10 0.1-1 026  527.22
space. For example, the distribution function approach z=1.5 0.1-1 0.26  508.97

(Seljak & McDonald 201} expresses the redshift space

density in terms of series of summation of velocity .

moments, then obtain the redshift space power spectrurQl in the -dgrk matter f'eld'_ We_ also proposeq a new
from the correlators between the Fourier components O?SD Stat_'s“CSPé(kll’”) Wh'Ch.'S more convenient to
these momentOkumura et al(2012ab) investigate the evaluate in the cor.1te>ft at. I-n th_'s work, we prgsent th?
contribution of each correlator in N-body simulations andmore comprehensive investigations to generating function

give a conclusion that the accurate reconstruction of thH‘CIUd'ng the halo mass and redshift dependence. We

redshift space power spectrumiae~ 0.2k Mpc ™' atz = PUSh the redshift to: = .1'5 which is cIo;e to the

0 andk ~ 0.3h Mpc~! atz = 2 require 6th order moment interest of DESI, PFS, Euclid and SKA. Most importantly,

statistics to be taken into account. The Fourier streamin’® quantify the con_tnbgtmn from |nd|V|dua! mom_en.ts

model (/lah & White 2019 expands the redshift space 0 G and evaluate its impact t_o the_ hybrid _staﬂshcs
power spectrum with cumulant theoreBhen et al(2020 P*(ky,r.). Furthermore, we also investigate the influence

compare the moment expansion approach and the Fourigf Gaussian and _exponentlal as the pairwise velocity PDF
to the reconstruction of generating functiGhZhang et al.

streaming model in N-body simulation halo samples. ; i
They conclude that the expansions have good agreeme(‘?t013 provides a method to decompose the peculiar

with the power spectrum at the percent level when third’eIOCity in different components with different features,

order velocity statistics are taken into account excepf/Nich can help us to better understanding the peculiar

those close to the line of sight direction, while the forth Velocity field and RSD modeling. We also use the similar

order will break this agreement far > 0.2h Mpc! method in this work, to investigate the contributions and

Generally, existing models treat the large-scale velocity€aviors of for the different components.

with perturbation theory then add the small-scale Finger- We organize this paper as follows. In Sectnwe
of-God effect induced by the random motion in the smallProvide a brief review of RSD modeling and its relation
scale, or assume a certain type of velocity distributionWith the pairwise velocity moment generating function.
These approaches will mix all the non-linear effectsThen we derive two independent approaches to measure

together and make it difficult to quantify the influence of the moment generating function in simulation. Sectin

each individually. introduces the simulation and halo catalogs that we adopt
In this paper, we take a step back from these workéor .numencally evaluation qf the rglatgd quantltlfas. The

) o . . main results are presented in Sectibriinally, Sectiorb
and restrict our study to the first ingredient. The quesuonsummarizes our maior findinas
that we aim to ask is that, to accurately describe the ! gs:

real space-redshift space mapping, what LSS statistics

must be mcluded-. As. known in the I|-teratu$c(ocumgrrq 2 PAIRWISE VELOCITY GENERATING

2009, the mapping is fully determined by the pairwise FUNCTION AND RSD MODELING

velocity generating functioty, this question then reduces

to (1) what expansion shall we adopt to describeand  comoying peculiar velocity of a galaxy adds a Doppler

(2) WhIC.h order of pairwise velocity moments shall we oqshift on top of the cosmological redshift? = = +

include in the expansion. v /c. Herev| = v - i is the velocity component along the
In our previous work Zhou et al. 202}, we directly  line of sightz. Therefore the observed positienof the

evaluated the generating functicd at redshiftz =  galaxy in the redshift space is changed with respect to its
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Fig.1 The pairwise velocity generating functigi at = = 0, for the halo set AA102My/h < M < 10 Mg /h).
Data points (with errorbars) are directly measured from 3t@mulation realizations and the errorbars are r.m.s of
the 9 independent measurements gjmulation realizationx three directions). Top/bottom panels correspond to the
real/imaginary part oy respectively. Left/right panels correspond to the resofitsioment/cumulant expansions. The
dash lines cut off at the leading order termsu(s’),(v13’).), while the solid lines include the next-to-leading order
terms (v;5%"), (v157%%).). The major finding is that the cumulant expansion worksiicamtly better than the moment
expansion. The leading order approximation is excelleit &t0.1h Mpc~'. Including (v33'), the cumulant expansion

is excellent att < 0.2k Mpc™* for all (r.r1) configurations. Furthermore, fey > 20 Mpc h™, it is excellent to

k ~ 0.4h Mpc~'. Bottom panels (Ir&") does not show the configurations with = 0, for which ImG=0 due to the

v| <> —v; symmetry.

real space positior, 2.1 Power Spectrum Based Models
Vi v The redshift space power spectruf®(k) is defined
S =X+ H(z)SC:X+ ml‘ (1) through
(0°(k)0° (k) = (2m)*dsp(k + K )P*(k) . (4)

Here H(z) is the Hubble parameter at redshift For
brevity we will neglect  in the denominator, sor  We then obtain

hereafter should be mtgrpretedxq&H. The redshift space A2V (P*(K) + (27)%03p (K)) =
galaxy number density is then,

<Z eik|vageik‘r;ﬂ> ) (5)
n®(s) = n(l+6%(s)) B
. 2
= 2531) (S - [Xa + UH,aIaD . ) Here we have adopted a fixed line of sights = v o —

v)|,8- r =x, —xg. In the continuum limit, the above result

) ) ) reduces to the more familiar form,
The sum is over all galaxies,(= 1,2 - - -) considered.

The Fourier transform of the overdensityis then Pe(k) =

/ (<(1 + (51) (1 + (52) eik“U12>r/ o 1) eik‘r/d3r, , (6)

7 [6°(k) + (2m)*03p (k)] =

Zexp (ik~ [xa +v||,aia}) . (3) in which §; = §(x;)( = 1,2), v = x1 — X2, v12 =
o vj(x1) —v)(x2). (- - -) denotes the ensemble average. The
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Fig.2 Similar to Fig.1 but for redshiftz ~ 1.

subscript means the ensemble average is taken at a fix@d3 Pairwise Velocity Generating Function and RSD
pair separatiom’.
The above results are widely known in the literature

(e.g.,Scoccimarro 2004 Several models of RSD are base
upon Equation®), or Equation §) or its equivalent forms

(e.g., Scoccimarro 2004Matsubara 2008Taruya et al.
201Q Seljak & McDonald 2011 Okumuraetal. 2012a

Zhang et al. 201,3Zheng et al. 201;3heng & Song 2016

Song et al. 201,87heng et al. 20109

2.2 Correlation Function Based Models

Modeling

G(k}H,I‘) =

¢ The above two statistics can be unified by the pairwise
velocity generating functiorScoccimarro 2004

((1+61)(1 + 5g)erim2)

L+¢(r) ’
whereg(r) = (4192) is the two-point correlation function

(8)

in real space. One can verify thét is the generating
function of the pairwise velocity,

(1 +61)(1 + d2)v73)

The redshift space correlation function is also modelled

(v13)

with the streaming modePeebles 1980 1+¢&(r)
. €)
L+ €(r = (r),r0)) = - 2 mz1,
(7) O(iky) k=0

[ et = Ghr) plora |37 = (v | o | |
For the discrete distribution, the generating functionstio

wherer, is the component of the separation in thebe defined by and evaluated through
perpendicular direction to the line of sighiv;2|r) is the (s XP(ik|Vap))ros—r
pairwise velocity PDF at separation 5 s .

Equation 7) is exact. Neverthelesp(v,) is poorly ap/Tap=r
understood in theory and approximations of it areHere the ensemble average is over pairs with separation
inevitable in practice. The Gaussian steaming modeto.s = r. Whenr — oo where we can neglect spatial
(Reid & White 201) takes the assumptiop(vy) dis- ~ correlations in the density and velocity fields,
tributes as the Gaussian function with a non zero mean
(v12) and dispersionoi,. A further problem is that,
it is difficult to find a suitable parametric form for This quantity is positive, and describes the Finger-of-God
p(v12) (Fisher 1995Sheth 1996Juszkiewicz et al. 1998 effect (e.gZhang et al. 201,3Zheng et al. 2013
Scoccimarro 2004Tinker 2007 Bianchi et al. 20152016 The pairwise velocity generating function plays an
Kuruvilla & Porciani 2018 Cuesta-Lazaro et al. 20R0 important role in RSD modelling.

G(kH,I‘) = (10)

Gk, m — 00) = Goo = (e™17)? (11)
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Fig.3 R3/1 = (v3,)/(v12) andRy 2 = (vi,)/(vi,). These two determine the relative importance of the nexading
order terms in the moment expansion. For the cumulant eiqrarthie corresponding quantities aflg;; . and Ry 2,
respectively. These results explain the necessity of dictuthe next-to-leading terms in the generation functiemd(
RSD). They also explain why the cumulant expansion is b#tgr the moment expansion.
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Fig.4 Accuracies of the moment expansidef panels) and cumulant expansioni¢ht panels) of the pairwise velocity
generating functioris atk = 0.2h Mpc~!. Both expansions keep the next-to-leading order termsgehaimclude all

kﬁ’2’3’4terms. Top Ibottom) panels are the results of the real(imaginary) partt ot his comparison clearly shows that the

cumulant expansion works significantly better than the mutreepansion. It achieveAG| < 0.01 for all configurations
of r,r|. For brevity, we only show the comparison for the halo massAd at> = 0. Results of other mass bins and
redshifts are similar.
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— First, it determines the redshift power spectrum in
Fourier space,

P (k)

/[(1 +£(r')) Gky,x') — 1} Jiter’ o (12)

therefore the RSD modelling in configuration space.

ity w12 ORI
p(viz | r) = /G(kH,r)e I o (13)
The above relations are well known in the liter-
ature (e.g.,Scoccimarro 2004 Taruya etal. 2010
Desjacques et al. 2018kbut have not fully incorpo-
rated in RSD modelling. Furthermore, we can define
hybrid statistics”* (k| , 71 ). By multiplying both sides
of Equation (2) by [ exp(—ik -r,)d*k, /(27)?, we
obtain

P(ky,r1) =

/ [(1 + 5(7’)) G(k}H,I‘) - 1} eik”T” dT” . (14)

This is neither the correlation function nor the power

Second, it determines the pairwise velocity PDF and

plications on Redshift 8daistortion Modeling

2.4.1 Moment expansion

The moment expansion directly expar@snto its Taylor
expansion series,

k _ m—1 <U%5n> 2m
Glky,r) = 1= (1) @m) i
m>1
2m—1
. m—1 (V13 ) om-1
+i ) (-1) @m 1)
m>1
. 1 1.
= 1+ i(vi2)k) — §<v%2>kﬁ - 61<vf2>kﬁ
1
o (Vi + (15)

The convergence rate of Equatioh5| is decided by
the coefficients of pairwise velocity moments. Through

a

numerical simulations, we can robustly quantify the impact
of individual terms and determine the moments that must
be included to reach the desired accuracy in RSD.

2.4.2 Cumulant expansion

Equation (5 is not the only way of expanding: in
velocity moments. Instead we can Taylor expand: in
a power series of;. The expansion coefficients turn out

L : T .
spectrum. But this hybrid statistics has some attractivd® be the pairwise velocity cumulantsys).. Scoccimarro

features. (1) Sincex(ky = 0) = 1, P°(ky

O,TL) = ffooo €(7‘H,7‘L)d7‘” ’LUp(TL). Namely,
the k; = 0 mode equals the projected correlation
functionw,?, therefore, itis unaffected by RSD, which
is only constrained tok; # 0 modes. This is an
advantage thaP® (k) also share. Bug® does not have
this advantage, sincg’(r, 1) of all configurations
are affected by RSD. (2) Within the context of RSD
modelling with the generating functiod, this is
the most straightforward to numerically implement
since only one integral over is needed. (3) In the

’

measurement, it is also straightforward to convert from
the measurement of correlation function, which has
better handling over survey masks and varying line of

sight.

2.4 Moment and Cumulant Expansion of the
Generating Function

One intrinsic advantage is that can be naturally Taylor
expanded with physically meaningful Taylor coefficients.

This can be implemented either with the moment

expansion or with the cumulant expansion.

1 The projected correlation functiow,(r, ) is often redefined as
wp(ry )/r. to make it dimensionless.

(2004 already pointed out GG as the cumulant generating
function, but did not specify the cumulant expansion
coefficient as(vi3).. Therefore we provide a proof here.
Furthermore, we find that such a relation is connected
to the widely adopted logarithmic transformation of the
cosmic density field.

Defining an auxiliary field

y=In(1+0)— (In(1+9)), (16)

and setting\ = ik, we have

(14 61)(1+ 8) exp(Avn))

GO Ir) = {4001+ 62))
~ {exp[(y1 +y2) + Aviz])
{((1+61)(1 4 d2))
_ 1 (((y1 + y2) + Av12)™)e
T I Y [2 nl }
— exp [Z C”;S) Am] . (17)
Here,
cn—m <(y1 +y2)" ™ v{’§>c
Ccm = m! Z py TF e . (18)

n>2,n>m
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Fig.5 Similar to Fig.4, but only for the cumulant expansion at two differépt= 0.3 and0.4.
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Fig.6 Similar to Fig.5, but for the two different halo catalogs A1 and A3 at fixed= 0.2.

Furthermore, we find function,
c1 = (vi2) = (vi2)e, (19) In G(k”,r) _ Z (71)m71 (75 kﬁm
s = (v = 1)) = (vha)e 20) = 2m)! 23)
es = (o2 —er)’) = (vha)e. (21) et e o
ca = ((viz = 1)) = 3((v12 — e1)”) = (viz)e - (22) +i2, (D 2m -1

m>1

Namely the cumulant expansion coefficienf, is Namely InG is the cumulant generating function of
the pairwise velocity cumulanfv]s).. Then we obtain pairwise velocity, versusy as the moment generating
the cumulant expansion of pairwise velocity generatingunction of pairwise velocity. We may have expected this
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correspondence from the moment/cumulant generating FurthermoreZhang et al(2013 provide a method to
function of the density field. decompose the peculiar velocity field into three parts,
We may expect that the above expansion convergess, andvg. v is the over-density field correlated part. It
faster than the expansion with Equatidrb), The reason dominates at the linear scale whére kx (N L is short
is that the density field is close to lognormal and thefor “non-linear” scale), then vanishes due to the nonlinear
velocity field is close to Gaussian. Under such a conditionevolution at a small scale. Differing fromy, the stochastic
only the k and kﬁ terms exist in Equation2@). This componentvg and rotational componentg only reveal
results in a Gaussian pairwise velocity PDF, and correand dominant at the nonlinear scakheng et al.(2013
sponds to the Gaussian streaming model of correlatiowerified these theories in N-body simulation. In this paper,
function. Numerical evaluation later indeed shows that theve decompose the peculiar velocity into only density
expansion of Equation2@) indeed converges faster than correlated (the deterministic) part, and the rest stoahast
that of Equation 15). Nevertheless, we find;ﬁ”4 terms part (vs+vp in Zhang et al. 2013 We denoted them with
are non-negligible at = 0.2h Mpc~', implying further ~ Superscriptd, ands respectivelyy(x) = v*(x)+v(x).
improvement over the Gaussian streaming approximatiorn Fourier space,

2.5 Peculiar Velocity Decomposition vi(k) = B (28)

As mentioned above, moment generating function deHere, the window function,
termines the pairwise velocity PDF, and vice versa.

.. . Pso (k)
There are lots of models based on the pairwise velocity W (k) = Pos ()
PDF assuming some specific forms of pairwise velocity 00
PDF, such as Gaussian distributid®ef(d & White 201},  in which,# = —V - v is the divergence of the peculiar
exponential distributiongheth 199%and so on. Here we velocity. Then the generating function can be expressed in

(29)

investigate the influence of both Gaussian and exponential (14 61)(1 + 62) exp (ikyv))

approximations towards generating function. For brevity, = 1+£(r)

here we only provide one-point statistics of velocity PDF, (1 +61)(1 + 8) exp (ikyv™) exp (ikyv®))
instead of the more complicated two-point statistics of = 1+&(r) - (30)

pairwise velocity PDF. The statistics from simulation o )
prefer a mixture of Gaussian and exponential pairwise T the density field is log-normal, assume and 5
velocity PDF. At a sufficiently large scale with low speed, COmponents are independent with each other, we have

it is close to Gaussian distribution, mG=GE +1nGS. (31)
1 2 2
pg(v) = o2 exp(—v”/205) , (24) @t is expected to be approximately Gaussian, and the
V<796 stochastic parG® should be close to exponential. We
yet at a small scale with severe random motions, it turns t§an evaluate the convergence of both Equatir) énd
exponential distribution, Equation 81) in simulation.
1
pe(v) = N exp(—V2[v|/og) . (25) 3 SIMULATION
O¢

Here og e is the pairwise velocity dispersion for We numerically evaluate the generating functiohat

Gaussian/Exponential components, arfd+ 0% = o2 various k and (ry,7.), and the two expansion series
The corresponding Fourier transformations are (Egs. @5 & (23)), in a subset of the CosmicGrowth
1 simulations Jing 2019. The three simulations are run with

5 (26)  a particle-particle-particle-mestP{M) code (ing et al.
ogk?/2+1 2007, boxsizeLy,.x = 600Mpc k!, and particle number
Assuming the Gaussian part and exponential part ar&/p = 30723. They adopt the identical CDM cosmology,
independent with each other, the generating function couldiith 2, = 0.0445, Q. = 0.2235, QA = 0.732, h = 0.71,

be written as ns = 0.968 andog = 0.83. It has three realizations,

- denoted as J6610, J6611 and J6612 here. The halo catalogs
G~ Glog)E(oe). 27 are first identified by a Friends-of-Friends (FoF) algorithm

Under these assumptions, the imaginary part of generatingith the linking lengthb = 0.2 times the mean inter-
function, Im(&), vanishes. Gaussian/exponential distribu-particle separation. Then all unbound particles have been
tions determine the upper/lower limits of K&\ removed from the catalogs. We select three different halo

G =exp(—0gk®/2) & =



J. D. Chen et al.: Generating Function and Its Implications on Redshift 8daistortion Modeling 176-9

>
>
7

1 }ky, r.1=10.20, 10] Hky,r.1=[0.20, 10]

AT AT

AQ(G)

>
J

Hky, ri1=[0.20, 20] 4k, r.1=[0.20, 20]
2=0.00,hA2 A |z=1.02, hA2
N

-

0.02

AQ(G)

0.00 s =1"\T > =1
- Morient \/
—0.02 Cumulant \J v T \ \I 1
100 10! 102 10! 102
ry [Mpc h—1] ry [Mpc h—1]

Fig. 7 Upper: the integral kernef)(G) for halo set A2 at = 0 (I.h.s) andz = 1 (r.h.s.). Lower: residuals for the two
different approaches.
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Fig. 8 Test for Eq. 27). The upper edge of the shaded region is Gaussian diswiblitit (¢ = o2, 0 = 0), the lower
edge is exponential distribution limitf = o2, 02 = 0).

mass bins, labeled as Al, A2 and A3, at four redshiffunction are evaluated separately by the following refatio
shapshotsy ~ 0,0.5,1.0,1.5. The mass range, mean (B1 B + 1 02)x N {01 fs — Pras)e

mass, and total number of each halo set for J6610 are listed G(kj,r) = sy o 0, (32)
in Tablel. Specifications of J6611 and J6612 are similar. e 1
The pairwise velocity moments is given by
We use the NGP method witli00® grid points m Yo O (1) s ),
to construct the needed fields. The grid size is (v13) = 2n= C L) pips x| (33)

5 : (PP9)«
Lgria = 1Mpc h™". For each grid, we measurg, =
> cos(kyvy L), Bi = > sin(kjy,) and pj = One thing to notice is that the r.h.s. of EquatioBg)(
> vf',,n=0,1,2,3,.... Notice thatp! = >.,=(1+ and @3 means that we can utilize FFT to speed up
d;). The summatior} __ is over all particles nearest to the the computation. For each), eight FFTs are needed
ith grid point. The real and imaginary part of the generatingo evaluate G of all r pairs, and> 3 FFTs for
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the redshifts, we mainly show the casezof 0 and when
necessary, the case of= 1. For the wavenumbek, the
primary targetis: = 0.2h Mpc ™!, matching the capability

10*

108

= of stage IV projects. But since stage V projects have the
w o capability to reach: ~ 0.5h Mpc™*, we will also show
g 10
2 : the results ok > 0.2k Mpc ™! in the main text.
Yy WE 7 — A2 3
b Y ; 4.1 (v3') Terms must be Included
/ 3
/ == A 1
10-1 . - Figure 1 showsG' as a function ofk, at = = 0 and
1072 1071 10° Lo
k [h Mpc-1] for (ry,7.) = (10,0),(0,10),(50,0),&(0,50) (unit in

Mpc h~1). We compare the leading order expansion to

Fig. 9 The dark matter power spectrum for the peculiar vethe simulated>. As a reminder, the leading order moment

locity, deterministic component and stochastic componerfXPansion is7 ~ 1 + i(vi2)ky — (vf,)kj/2. The leading
atz = 0. A% = k3P(k)/(27?). order cumulant expansion & ~ exp(1 + i(vi2)k) —

(viy)ckif/2). All the coefficients (vi,) and (vfy).)
(v73). Nevertheless, since we only investigate a dozen are measured from the same simulation. The moment
specifications, we instead measure the above quantiti@xpansion becomes inaccurate fgt = 0.1h Mpec ™1,
by directly counting the pairs with fixed separatiop ~ especially for the imaginary part off. The cumulant
andr values. We can choose the Cartesiary, z axes ~ expansion remains accurateigt = 0.1h Mpc~!. Since
of the simulation box as the line of sight, so for eachthe cumulant expansion up to leading order is equivalent
simulation we have three independent measurements. With a Gaussiarp(via|r,7L), this explains the validity
three independent simulation realizations, we have ninef Gaussian streaming modeR¢id & White 201) at a
independent measurements and we can then estimate thefficiently large scale. However, &f ~ 0.2h Mpc !,
errorbars of the measured properties. the leading order approximation results in significanterro

In order to obtain the deterministic and stochasticin the imaginary part ofs.
components of halo peculiar velocity field, first we Therefore to improve the approximation accuracy at
measurev’ (k) from Equation 28). When obtaining the the targetk; = 0.2h Mpc™!, we must include the
quantities in Equation2g), 5123 number of grid points next-to-leading order terms in the expansion. Then the
are adopted to construct the necessary fields. Then waoment expansion become&s =~ 1 + i[(via)k; —
do inverse FFT to obtainv* in configuration space. (viy)kj}/6] — [(vs)kif/2 — (viy)kj/24]. Nonetheless, the
Chen et al(201§ has verified that the large scale velocity moment expansion still fails ak) ~ 0.2h Mpc !
bias between halo and dark matter is unity in the N-especially for the imaginary part.
body simulation, an&hang (2018 provides the possible ncluding the next-to-leading order terms, the cu-
explapatlon. Thus here we can treat the detgrmlnlstl%u|ant expansion become§' =~ exp(i[(vi2)k —
velocity component of halos as the underlying dark(vﬁ%kﬁ/ﬁ]f[<v%2>ckﬁ/2—<vj‘2>ckﬁ/24]).Thisexpansion
matter’s, v, . v Fma!y, we obtain the stochastic jq accyrate ak; = 0.2h Mpc™ . It remains accurate even
componentbyy = vi — v~ until ky ~ 0.4h Mpc ™", unlessr; — 0.
The situation is similar at other redshifts (e.g+ 1,

Fig. 2). Therefore the first major result of this paper is that,
to accurately describ€&' atk ~ 0.2h Mpc~!, we have

4 NUMERICAL RESULTS AND IMPLICATIONS

The generating functiod’ = G(kj,r,.) depends on _ 1 4.
ky, 7,71 as well as redshiftand halo mass. We are not abl& include not only(v;3"), but also{v;y') into the model.

to show the results of all possible combinations. Instead>iNceG completely determines RSD, this also implies that
we will mainly show the result of mass bin A2. To the W€ must include(vyy') into the modeling of RSD. This
same order of moment/cumulant expansion, the accuracy ¢l be challenging, sincguys ) themselves involve LSS
slightly better for A1, which is less affected by small scaleCrrelations up to 6th orded{v*).

nonlinearities due to larger smoothing associated with the ~We further check the origin of the above finding.
halo mass/size. But since Al has at least a factortof The ratio of thekjl term to ky term is Ry, k{f/6 for
smaller halo numbers, the measurements are more noisiéhe moment expansion, arés, .k{ /6 for the cumulant

In contrast, the accuracy for A3 is slightly worse than A2,expansion. HereR;;, = (vl,)/(vi2) and Ry/q,. =
while the measurement noise is smaller. Therefore in thév?,)./(v12). Figure3 showsR;,; andR;); . for the case
main text we only show A2 as the intermediate case. Foof r; = 0, which is among the most difficult to model
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Fig. 10 Test for Eq. 81). Notice the vertical axis here is no longer ab&ubutIn G. Thesolid lineswith data points are
InG* + In G®, whereG* andG*® is measured from simulation using the velocity decompmsithethod. Thelashed
linesareln G directly measured from the simulation.

for the generating function and RSIR;,, and R3/, .  Figure 6 shows the errors ak; = 0.2h Mpc™!, but
have typical values- 10-100(Mpc h~1)2. Therefore for  for halo set A1 and A3. The cumulant expansion is also
k=2 0.1h Mpc ™1, thekﬁ term will become non-negligible excellent. _ _
comparing to the:; term. This problem does not alleviate ~ Therefore the major results of this paper are
toward large separation, as we expect. In contrAgf;
increases and the problem becomes worse at large pair «
separation. In fact, at; ~ 100Mpc h~', the moment
expansion to third order even fails to correctly predict the
sign of ImG for k > 0.25h Mpc ™!,

The ratio of thek:ﬁ term tokzﬁ term isR4/2kﬁ/12 for
the moment expansion, adﬂl/%kﬁ/m for the cumulant
expansion. HereRy» = (viy)/(viy) and Ry, =
(v15)e/(v3,). The numerical results are also shown in
Figure3. The worst inaccuracy of expanding to 4th order
occurs wherey» (R4 .c) is the largest. This happens at 4.3 |nduced Errors in the RSD Modelling
7 ~ 5Mpc ™! and the typical value is- 50(Mpc h™ 1),
Notice that ma®,, < maxRs,;. Together with the extra Analysis above shows that it is necessary to include at least
factor1/2 in the Taylor expansion, the relative correction 3rd and 4th order pairwise velocity moments/cumulants in
is significantly smaller in the real part 6f than thatin the the modeling of generating function &tz 0.2h Mpec 1.

R

v2,) o k?
exp {_% + i<U12>kH:|

forallr,but £ < 0.1h Mpc71 s

<v?2>ck2 <'”‘112>Ck4 . <”?2>ck3
[ ()

12

forallr,but k < 0.2h Mpc™*,

orforr; > 20hMpc ' & k < 0.4h Mpc™* . (34)

imaginary part. Inaccuracies in the generating function modeling will
propagate into inaccuracies in the RSD power spectrum
4.2 Cumulant Expansion is Better P*(kyj, k1), correlation functiorg®(r), . ) and the hybrid

statistics P* (k,r1 ). For brevity we only investigate its

Figure 4 shows the errors by neglectiri«;fl>4 terms in  impact onP* (k. ).
the moment/cumulant expansion, in the-r plane, for If the error AG has no imaginary part, and is
ky = 02h Mpc~!. For the whole range of interest independent ofr|, it leads to AP* = Pk =
(r1 < 100Mpc h~1, 7 < 100Mpc h~1), the cumulant 0,7, )AG = w,(r,)AG. Since the absolute value of
expansion is better than the moment expansion. The erroysG in the cumulant expansion is in general 0.01 for
are largest at; < 5Mpc A~ andr ~ 5-10Mpc h™'. k< 0.2h Mpc~ ', the resulting error inP* is < 1%.
Nonetheles§AG| < 0.01. But the real situation is more complicated than that, since

Figure5 shows the errors dt = 0.3,0.4h Mpc™'  AG is neither real nor independentnf. For this we have
for the cumulant expansion. The errors increase wjtlas  to numerically integrate over Equatiof4) to obtain the
expected. Also as the caseigf= 0.2h Mpc ™, thelargest  resulting error inP*. This integral involves the oscillating
error occurs at; < 5Mpe h~! andr ~ 5-10Mpc h=!  integrand and is numerically challenging to reach better
and maxAG| ~ 0.1 for ky = 0.4h Mpc~*. Nonetheless, than1% in P*, making the accurate quantification&f*
if we only use the region at; = 20Mpc h~!, the error difficult. For this reason, in the current paper we only show
in G is reduced to~ 0.01, even fork = 0.4h Mpc~'.  the error in the integrand, induced G



176-12 J. D. Chen et al.: Generating Function and Its Implications on Redshift $daistortion Modeling

T T T 0.05 T T
0.14F , _0.00, r. =0, hA3 g -O- k| =0.04 ky =0.20
0.12 i 0.04 F ky=0.10 =O- k;=0.25 ]

k) =0.15 =0= k| =0.30
~ 0.10 D—O-OOCDOCDOOQOCDO(: L 4
3 = 0.03
9 0.08} 1 Q
% O—O-OOCDOCOOQQ_-,M S 002} i
QI: 0.06 B E
0.04 - - 001 I -
0.02F 1 0.00 FO—A-BAAR AR AR
0.00 [O—0~-0-000-0000-000-00C0-0]
1 1 Il —0.01 1 1
100 10! 102 10° 10! 102
ry [Mpc h~1] ry [Mpc h~1]

Fig. 11 The moment generating function for the stochastic componen

SinceP*(k,r.) is real, velocity field, as well as the two components introduced
in Section 2.5 at redshift = 0. The behavior of
Pk o) = /Q(’ﬂpﬂpﬂ)dru - (35)  each component is consistent with the descriptions in

Section 2.5. Figurd0is the test for Equatior3(). When
GY andG* are fully independentn G* + InG*° (solid
Q = [(1+&(r)ReG(ky, ), 1) — 1] cos(kyry) lines) should be strictly equal tm G (dashed lines). The
— (1 + &(r)ImG (ky, 7y, v 1) sin(kyry) . (36) slight deviations imply that there is a correlation between
. . . . the deterministic component and stochastic component,
@ in the simulation and the associated errhr) by Al h " | | |
the moment/cumulant expansion to 4th order are showﬁSpecla y atthe smaller scales (red and blue colored data)
. S .
in Figure 7. Since the largest error il occurs at Figure11shows thdnG as a function of for halo
r. < 10Mpc h-1, we only show the cases of, — set A3 atz = 0 when fixr, = 0. We demonstrate A3 here
16 QEM . hFil Atl;: — 0.2h Mpe, |AQ| < 0 Ofand because the random motion is more severe for the smaller
for, mostI;« |AQ| < |(|) 01 for thepcunywulant expénsion up halos, and therefore the stochastic component should be
I P more significant than A1 and A2. The results suggest

to the order of(v{,).. For comparison, we also show the . . .
case of moment expansion, whose error is much larger. the stochastic compoqent IS. almost scale-independent.
The real part Rén G's) is decided by thev(s o), m =

2,4,6,.... Since there is no cross-correlation between

two different points 1 and 2 for a stochastic field, the

Figure 8 illustrates the results of Equatio@?) for halo ~ scale dependent part ifvf; o) vanishes, only the auto-

sets Al and A2 at = 0. We first measure the velocity correlation part resides. The non-zero value ofIR€/s)

dispersions,. Then consider two extreme cases: Gaussiafmplies there is a Gaussian component in stochastic

limit, og = o, and exponential limitye = o,,. The upper velocity field. For the imaginary part, as expected, it is not

edge and lower edge of each shaded region correspoily scale-independent but also zero.

to Gaussian and exponential limit respectively. The data

points with error bars are direct measurements from halg coNCLUSIONS AND DISCUSSIONS

catalogs. At the non-linear regime (blue and red colored

data in Fig.8), data points are close to the exponentialln this work, we investigate the convergence of measuring

limit. Yet when move to the linear regime, as the greermoment generating function in both moment and cumulant

colored data shows, due to the scale is sufficiently largexpansion approaches and find: (1) Cumulant expansion

(r) = 50Mpc h~1) the results are close to the Gaussianperforms much better than the moment expansion for all

limit. The results suggest there is strong possibility thathalos samples and redshifts investigated. (2) kAt<

the pairwise velocity PDF is a mixture of Gaussian and).1h Mpc™' scale, including only the order of =

exponential distributions. Ak ~ 0.2h Mpc™* scale, 1,2 cumulants is sufficient for modeling RSD. (3) At

it is no longer safe to take the Gaussian distributionk ~ 0.2h Mpc™' scale, the order ofh = 1,2,3,4

assumption. This conclusion matches with the aboveumulants must be considered. When considering the 3rd

moment/cumulant expansion approaches. and 4th order pairwise velocity moments and cumulants,
Figure 9 shows the dark matter power spectrumthe cumulant expansion approach performs much better in

evaluated from the N-body simulation for the total the hybrid statistics>® (&, 7. ).

Here the integrand

4.4 Peculiar Velocity Decomposition
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Studies on the pairwise velocity PDF support aBlake, C., Brough, S., Colless, M., et al. 2011, MNRAS, 415,
mixture of Gaussian and exponential pairwise velocity 2876
PDFs. The results also support the above conclusion€hen, J., Zhang, P., Zheng, Y., Yu, Y., & Jing, Y. 2018, Ap1,,86
that the Gaussian streaming model only workskak 58
0.1h Mpc™*. RSD models based grfv;) cannottake the  Chen, S.-F., Vlah, Z., & White, M. 2020, J. Cosmol. Astropart
Gaussian as well as exponential distribution assumptions Phys., 2020, 062
atk ~ 0.2h Mpc~'. Further investigation on the peculiar Chuang, C.-H., Prada, F., Cuesta, A. J., et al. 2013, MNRAS,
velocity decomposition suggest a correlation between 433, 3559
deterministic and stochastic components at a small scalé€uesta-Lazaro, C., Li, B., Eggemeier, A,, et al. 2020, MNRAS
and a Gaussian mixture part in the stochastic component. 498, 1175

Comprehensive further investigations are required tofe la Torre, S., Guzzo, L., Peacock, J. A., et al. 2013, A&A,55
implicate these findings in improving the RSD modeling. A54
In this work, by reconstructings, we aim to investigate DESI Collaboration, Aghamousa, A., Aguilar, J., et al. 2016
what is the requirement for the truncation of the peculiar arXiv e-prints, arXiv:1611.00036
velocity statistics in order to accurately model RSD, Desjacques, V., Jeong, D., & Schmidt, F. 2018a, Phys. R8,, 7
and the rationality and reliability to adopt Gaussian 1
or exponential distribution assumptions to the pairwiseDesjacques, V., Jeong, D., & Schmidt, F. 2018b, J. Cosmol.
velocity PDF. Nevertheless, since the full understanding Astropart. Phys., 2018, 035
of the pairwise velocity PDF is still a long-standing Fisher, K. B. 1995, ApJ, 448, 494
problem in RSD C05m0|Ogy, preCisely bUIIdlng the Guzzo, L., Pierleoni, M., Meneux, B., et al. 2008, Naturel 45
association of the expansion coefficients for both moment °41
expansion(v,), and cumulant expansiofw},),, with ~ Hamilton, A.J.S. 2000, MNRAS, 312, 257
the cosmological parameters are very difficult. Moreover,HaWk'nS’ E., Maddox, S., Cole, S etal. 2093’ MNRAS, 346, 78
. . . Howlett, C., Ross, A. J., Samushia, L., Percival, W. J., & ktan
in order to apply our method in practice, a complete
calculation for the hybrid statisticB* (k, . ) is required. Hu'\t/léri(:l% MzRgrzf:fngAf 2018, Reports on Progress in
However, in this work, we mainly focus on the moment T LT '
generating function, so we just briefly compare the .Phy5|cs, 81, 01690_1 : . :

. . Jing, Y. 2019, Science China Physics, Mechanics, and

errors of the integrand of Equatiorl4) for the two
different expansions. Equatiori4) is an integral for an .Astronomy, 62, 19511

. . . Jing, Y. P, Suto, Y., & Mo, H. J. 2007, ApJ, 657, 664
oscnlato_ry function@, the FFTLog m_ethod Hamilton Johnson. A.. Blake, C.. Koda, J.. et al. 2014, MNRAS, 4446392
2009 might be adopted when measurify(k,7.). We 5, viewicz. R., Fisher, K. B., & Szapudi, 1. 1998, ApJL, 504
will have more detailed studies on the pairwise velocity L1

PDF andp* (ky, 1) in our future works. Kaiser, N. 1987, MNRAS, 227, 1
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