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Abstract The pairwise velocity generating functionG has a deep connection with both the pairwise velocity
probability distribution function and modeling of redshift space distortion (RSD). Its implementation into
RSD modeling is often faciliated by expansion into a series of pairwise velocity moments〈vn12〉. Motivated
by the logrithmic transformation of the cosmic density field, we investigate an alternative expansion into
series of pairwise velocity cumulants〈vn12〉c . We numerically evaluate the convergence rate of the two
expansions, with three30723 particle simulations of the CosmicGrowth N-body simulation series. (1)
We find that the cumulant expansion performs significantly better, for all the halo samples and redshifts
investigated. (2) For modeling RSD atk‖ < 0.1h Mpc−1, including only then = 1, 2 cumulants is
sufficient. (3) But for modeling RSD atk‖ = 0.2h Mpc−1, we need and only need then = 1, 2, 3, 4

cumulants. These results provide specific requirements on RSD modeling in terms ofm-th order statistics
of the large-scale structure.
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1 INTRODUCTION

One of the most important issues in cosmology is
to interpret the cosmic acceleration (Riess et al. 1998;
Perlmutter et al. 1999). Both dark energy and modified
gravitational theories can produce the same expansion
history. Yet, they predict the different growth histories of
the structure. Therefore, in observation, one can distin-
guish them by testing the structure growth ratef(z)σ8(z)

through redshift-space distortion (RSD) (Peebles 1980;
Kaiser 1987; Scoccimarro 2004). The observed position of
the galaxy in redshift space will be distorted by its peculiar
velocity along the line of sight due to the Doppler shift.
This RSD effect turns the isotropic distributed pattern of
galaxies in real space into the anisotropic one in redshift
space. Since peculiar velocity directly reflects the structure
growth, by modeling the mapping from real space to
redshift space, the peculiar velocity information can be
extracted and used to constrain the cosmology.

Over the past decades, RSD has been proved to
be a very powerful cosmological probe and adopted
in many observational projects, such as 2dFGS

(Peacock et al. 2001; Hawkins et al. 2003), SDSS
(Tegmark et al. 2006; Reid et al. 2012; Samushia et al.
2012; Tojeiro et al. 2012; Chuang et al. 2013), VVDS
(Guzzo et al. 2008), WiggleZ (Blake et al. 2011), 6dFGS
(Beutler et al. 2012; Johnson et al. 2014), GAMA
(Simpson et al. 2016), VIPERS (de la Torre et al.
2013; Pezzotta et al. 2017; Mohammad et al. 2018),
FastSound (Okumura et al. 2016), BOSS (White et al.
2015; Howlett et al. 2015; Li et al. 2016; Alam et al. 2017)
and eBOSS (Tamone et al. 2020; Bautista et al. 2021). In
the near future, the ongoing and upcoming dark energy
surveys like DESI, PFS, Euclid, SKA, WFIRST (e.g.,
DESI Collaboration et al. 2016; Amendola et al. 2018;
Abdalla et al. 2015; Spergel et al. 2015) will have the
ability to constrain the structure growth rate at∼ 1% or
even higher accuracy level. However, this target precision
presents a severe challenge to the RSD modeling.

The difficulties of accurate RSD modeling come from
three key ingredients. (1) One is the mapping between
real space and redshift space (Peebles 1980; Scoccimarro
2004). The mapping is nonlinear. For example, the redshift
space 2-pt correlation function is determined by not only
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the two-point correlation function in real space, but all the
n-th order correlation functions. It is also nonlocal, that
real space clustering at other scales can have significant
contribution to a given scale in redshift space. (2) One
is the nonlinear evolution of the matter/halo density
and velocity field, a long-standing challenge in modern
cosmology. (3) The third is the nonlinear (and nonlocal)
galaxy-halo-matter relation in not only the position space,
but the whole phase space (Desjacques et al. 2018a;
Huterer & Shafer 2018; Chen et al. 2018; Zhang 2018).
RSD models usually treat the redshift space correlation
function or power spectrum as a expansion to a series
of the density and velocity field statistics in real
space. For example, the distribution function approach
(Seljak & McDonald 2011) expresses the redshift space
density in terms of series of summation of velocity
moments, then obtain the redshift space power spectrum
from the correlators between the Fourier components of
these moments.Okumura et al.(2012a,b) investigate the
contribution of each correlator in N-body simulations and
give a conclusion that the accurate reconstruction of the
redshift space power spectrum tok ≃ 0.2h Mpc−1 at z =

0 andk ≃ 0.3hMpc−1 atz = 2 require 6th order moment
statistics to be taken into account. The Fourier streaming
model (Vlah & White 2019) expands the redshift space
power spectrum with cumulant theorem.Chen et al.(2020)
compare the moment expansion approach and the Fourier
streaming model in N-body simulation halo samples.
They conclude that the expansions have good agreement
with the power spectrum at the percent level when third
order velocity statistics are taken into account except
those close to the line of sight direction, while the forth
order will break this agreement fork > 0.2h Mpc−1.
Generally, existing models treat the large-scale velocity
with perturbation theory then add the small-scale Finger-
of-God effect induced by the random motion in the small
scale, or assume a certain type of velocity distribution.
These approaches will mix all the non-linear effects
together and make it difficult to quantify the influence of
each individually.

In this paper, we take a step back from these works
and restrict our study to the first ingredient. The question
that we aim to ask is that, to accurately describe the
real space-redshift space mapping, what LSS statistics
must be included. As known in the literature (Scoccimarro
2004), the mapping is fully determined by the pairwise
velocity generating functionG, this question then reduces
to (1) what expansion shall we adopt to describeG, and
(2) which order of pairwise velocity moments shall we
include in the expansion.

In our previous work (Zhou et al. 2021), we directly
evaluated the generating functionG at redshift z =

Table 1 Three sets of halo mass bins for J6610. The mass
unit is in 1012M⊙/h. 〈M〉 is the mean halo mass.Nh is
the total halo number in the corresponding halo mass bin.

Set ID Mass Range 〈M〉 Nh/10
4

A1(z = 0.0) > 10 37.70 8.66
z = 0.5 > 10 30.03 6.70
z = 1.0 > 10 23.77 4.30
z = 1.5 > 10 20.39 2.53

A2(z = 0.0) 1–10 2.67 69.23
z = 0.5 1–10 2.61 66.88
z = 1.0 1–10 2.51 59.86
z = 1.5 1–10 2.41 50.49

A3(z = 0.0) 0.1–1 0.27 506.14
z = 0.5 0.1–1 0.27 523.57
z = 1.0 0.1–1 0.26 527.22
z = 1.5 0.1–1 0.26 508.97

0 in the dark matter field. We also proposed a new
RSD statisticsP s(k‖, r⊥) which is more convenient to
evaluate in the context ofG. In this work, we present the
more comprehensive investigations to generating function,
including the halo mass and redshift dependence. We
push the redshift toz = 1.5 which is close to the
interest of DESI, PFS, Euclid and SKA. Most importantly,
we quantify the contribution from individual moments
to G and evaluate its impact to the hybrid statistics
P s(k‖, r⊥). Furthermore, we also investigate the influence
of Gaussian and exponential as the pairwise velocity PDF
to the reconstruction of generating functionG. Zhang et al.
(2013) provides a method to decompose the peculiar
velocity in different components with different features,
which can help us to better understanding the peculiar
velocity field and RSD modeling. We also use the similar
method in this work, to investigate the contributions and
behaviors ofG for the different components.

We organize this paper as follows. In Section2, we
provide a brief review of RSD modeling and its relation
with the pairwise velocity moment generating function.
Then we derive two independent approaches to measure
the moment generating function in simulation. Section3
introduces the simulation and halo catalogs that we adopt
for numerically evaluation of the related quantities. The
main results are presented in Section4. Finally, Section5
summarizes our major findings.

2 PAIRWISE VELOCITY GENERATING
FUNCTION AND RSD MODELING

Comoving peculiar velocityv of a galaxy adds a Doppler
redshift on top of the cosmological redshift,zobs = z +

v‖/c. Herev‖ = v · x̂ is the velocity component along the
line of sight x̂. Therefore the observed positions of the
galaxy in the redshift space is changed with respect to its
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Fig. 1 The pairwise velocity generating functionG at z = 0, for the halo set A2(1012M⊙/h < M < 1013M⊙/h).
Data points (with errorbars) are directly measured from the3 simulation realizations and the errorbars are r.m.s of
the 9 independent measurements (3 simulation realization× three directions). Top/bottom panels correspond to the
real/imaginary part ofG respectively. Left/right panels correspond to the resultsof moment/cumulant expansions. The
dash lines cut off at the leading order terms (〈v1,212 〉,〈v1,212 〉c), while the solid lines include the next-to-leading order
terms (〈v1,2,3,412 〉,〈v1,2,3,412 〉c). The major finding is that the cumulant expansion works significantly better than the moment
expansion. The leading order approximation is excellent atk ≤ 0.1h Mpc−1. Including〈v3,412 〉, the cumulant expansion
is excellent atk < 0.2h Mpc−1 for all (r‖, r⊥) configurations. Furthermore, forr‖ & 20 Mpc h−1, it is excellent to
k ∼ 0.4h Mpc−1. Bottom panels (ImG) does not show the configurations withr‖ = 0, for which ImG=0 due to the
v| ↔ −v| symmetry.

real space positionx,

s = x+
v · x̂
H(z)

x̂ = x+
v‖

H(z)
x̂ . (1)

Here H(z) is the Hubble parameter at redshiftz. For
brevity we will neglectH in the denominator, sov
hereafter should be interpreted asv/H . The redshift space
galaxy number density is then,

ns(s) = n̄(1 + δs(s))

=
∑

α

δ3D
(

s−
[

xα + v‖,αx̂α

])

. (2)

The sum is over all galaxies (α = 1, 2 · · · ) considered.
The Fourier transform of the overdensityδs is then

n̄
[

δs(k) + (2π)3δ3D(k)
]

=
∑

α

exp
(

ik ·
[

xα + v‖,αx̂α

])

. (3)

2.1 Power Spectrum Based Models

The redshift space power spectrumP s(k) is defined
through

〈δs(k)δs(k′

)〉 = (2π)3δ3D(k+ k
′

)P s(k) . (4)

We then obtain

n̄2V
(

P s(k) + (2π)3δ3D(k)
)

=
〈

∑

αβ

eik‖vαβeik·r
′

αβ

〉

.
(5)

Here we have adopted a fixed line of sight.vαβ ≡ v‖,α −
v‖,β. r

′ ≡ xα−xβ. In the continuum limit, the above result
reduces to the more familiar form,

P s(k) =
∫

(〈

(1 + δ1) (1 + δ2) e
ik‖v12

〉

r′
− 1

)

eik·r
′

d3r′ ,
(6)

in which δi ≡ δ(xi)(i = 1, 2), r′ ≡ x1 − x2, v12 ≡
v‖(x1)− v‖(x2). 〈· · · 〉 denotes the ensemble average. The
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Fig. 2 Similar to Fig.1 but for redshiftz ≈ 1.

subscript means the ensemble average is taken at a fixed
pair separationr′.

The above results are widely known in the literature
(e.g.,Scoccimarro 2004). Several models of RSD are based
upon Equation (6), or Equation (5) or its equivalent forms
(e.g., Scoccimarro 2004; Matsubara 2008; Taruya et al.
2010; Seljak & McDonald 2011; Okumura et al. 2012a;
Zhang et al. 2013; Zheng et al. 2013; Zheng & Song 2016;
Song et al. 2018; Zheng et al. 2019).

2.2 Correlation Function Based Models

The redshift space correlation function is also modelled
with the streaming model (Peebles 1980),

1 + ξ
s(r = (r‖, r⊥)) =

∫

(

1 + ξ(r′ = (r′‖, r⊥))
)

p(v12 | r′ = (r′‖, r⊥))dr
′
‖ ,

(7)

where r⊥ is the component of the separation in the
perpendicular direction to the line of sight.p(v12|r) is the
pairwise velocity PDF at separationr.

Equation (7) is exact. Nevertheless,p(v12) is poorly
understood in theory and approximations of it are
inevitable in practice. The Gaussian steaming model
(Reid & White 2011) takes the assumptionp(v12) dis-
tributes as the Gaussian function with a non zero mean
〈v12〉 and dispersionσ12. A further problem is that,
it is difficult to find a suitable parametric form for
p(v12) (Fisher 1995; Sheth 1996; Juszkiewicz et al. 1998;
Scoccimarro 2004; Tinker 2007; Bianchi et al. 2015, 2016;
Kuruvilla & Porciani 2018; Cuesta-Lazaro et al. 2020).

2.3 Pairwise Velocity Generating Function and RSD
Modeling

The above two statistics can be unified by the pairwise
velocity generating function (Scoccimarro 2004),

G(k‖, r) =
〈(1 + δ1)(1 + δ2)e

ik‖v12〉
1 + ξ(r)

, (8)

whereξ(r) = 〈δ1δ2〉 is the two-point correlation function
in real space. One can verify thatG is the generating
function of the pairwise velocity,

〈vm12〉 ≡
〈(1 + δ1)(1 + δ2)v

m
12〉

1 + ξ(r)

=
∂mG

∂(ik‖)m

∣

∣

∣

∣

k‖=0

,m ≥ 1 .
(9)

For the discrete distribution, the generating function should
be defined by and evaluated through

G(k‖, r) ≡
〈∑αβ exp(ik‖vαβ)〉rαβ=r

〈∑αβ〉rαβ=r

. (10)

Here the ensemble average is over pairs with separation
rαβ = r. When r → ∞ where we can neglect spatial
correlations in the density and velocity fields,

G(k‖, r → ∞) ≡ G∞ =
〈

eik‖vα
〉2

. (11)

This quantity is positive, and describes the Finger-of-God
effect (e.g.Zhang et al. 2013; Zheng et al. 2013).

The pairwise velocity generating function plays an
important role in RSD modelling.
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– First, it determines the redshift power spectrum in
Fourier space,

P s(k) =
∫

[(

1 + ξ(r
′

)
)

G(k‖, r
′

)− 1
]

eik·r
′

d3r
′

.
(12)

– Second, it determines the pairwise velocity PDF and
therefore the RSD modelling in configuration space.

p(v12 | r) =
∫

G(k‖, r)e
ik‖v12

dk‖

2π
. (13)

– The above relations are well known in the liter-
ature (e.g.,Scoccimarro 2004; Taruya et al. 2010;
Desjacques et al. 2018b), but have not fully incorpo-
rated in RSD modelling. Furthermore, we can define a
hybrid statisticsP s(k‖, r⊥). By multiplying both sides
of Equation (12) by

∫

exp(−ik⊥ ·r⊥)d2k⊥/(2π)
2, we

obtain

P s(k‖, r⊥) =
∫

[

(1 + ξ(r))G(k‖, r)− 1
]

eik‖r‖dr‖ .
(14)

This is neither the correlation function nor the power
spectrum. But this hybrid statistics has some attractive
features. (1) SinceG(k‖ = 0) = 1, P s(k‖ =

0, r⊥) =
∫∞

−∞
ξ(r‖, r⊥)dr‖ = wp(r⊥). Namely,

the k‖ = 0 mode equals the projected correlation
functionwp

1, therefore, it is unaffected by RSD, which
is only constrained tok‖ 6= 0 modes. This is an
advantage thatP s(k) also share. Butξs does not have
this advantage, sinceξs(r‖, r⊥) of all configurations
are affected by RSD. (2) Within the context of RSD
modelling with the generating functionG, this is
the most straightforward to numerically implement,
since only one integral overr‖ is needed. (3) In the
measurement, it is also straightforward to convert from
the measurement of correlation function, which has
better handling over survey masks and varying line of
sight.

2.4 Moment and Cumulant Expansion of the
Generating Function

One intrinsic advantage is thatG can be naturally Taylor
expanded with physically meaningful Taylor coefficients.
This can be implemented either with the moment
expansion or with the cumulant expansion.

1 The projected correlation functionwp(r⊥) is often redefined as
wp(r⊥)/r⊥ to make it dimensionless.

2.4.1 Moment expansion

The moment expansion directly expandsG into its Taylor
expansion series,

G(k‖, r) = 1−
∑

m≥1

(−1)m−1 〈v2m12 〉
(2m)!

k2m‖

+i
∑

m≥1

(−1)m−1 〈v2m−1
12 〉

(2m− 1)!
k2m−1
‖

= 1 + i〈v12〉k‖ −
1

2
〈v212〉k2‖ −

1

6
i〈v312〉k3‖

+
1

24
〈v412〉k4‖ + · · · . (15)

The convergence rate of Equation (15) is decided by
the coefficients of pairwise velocity moments. Through
numerical simulations, we can robustly quantify the impact
of individual terms and determine the moments that must
be included to reach the desired accuracy in RSD.

2.4.2 Cumulant expansion

Equation (15) is not the only way of expandingG in
velocity moments. Instead we can Taylor expandlnG in
a power series ofk‖. The expansion coefficients turn out
to be the pairwise velocity cumulants〈vm12〉c. Scoccimarro
(2004) already pointed outlnG as the cumulant generating
function, but did not specify the cumulant expansion
coefficient as〈vm12〉c. Therefore we provide a proof here.
Furthermore, we find that such a relation is connected
to the widely adopted logarithmic transformation of the
cosmic density field.

Defining an auxiliary field

y ≡ ln(1 + δ)− 〈ln(1 + δ)〉 , (16)

and settingλ = ik‖, we have

G(λ | r) ≡
〈(1 + δ1)(1 + δ2) exp(λv12)〉

〈(1 + δ1)(1 + δ2)〉

=
〈exp [(y1 + y2) + λv12]〉

〈(1 + δ1)(1 + δ2)〉

=
1

1 + ξ(r)
exp





∑

n≥2

〈((y1 + y2) + λv12)
n〉c

n!





= exp





∑

m≥1

cm(r)

m!
λ
m



 . (17)

Here,

cm ≡ m!
∑

n≥2,n≥m

Cn−m
n

n!

〈

(y1 + y2)
n−m

vm12

〉

c

1 + ξ(r)
. (18)
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Fig. 6 Similar to Fig.5, but for the two different halo catalogs A1 and A3 at fixedkz = 0.2.

Furthermore, we find

c1 = 〈v12〉 ≡ 〈v12〉c , (19)

c2 = 〈(v12 − c1)
2〉 ≡ 〈v212〉c, (20)

c3 = 〈(v12 − c1)
3〉 ≡ 〈v312〉c, (21)

c4 = 〈(v12 − c1)
4〉 − 3〈(v12 − c1)

2〉 ≡ 〈v412〉c , · · · (22)

Namely the cumulant expansion coefficientcm is
the pairwise velocity cumulant〈vm12〉c. Then we obtain
the cumulant expansion of pairwise velocity generating

function,

lnG(k‖, r) =−
∑

m≥1

(−1)m−1 〈v2m12 〉c
(2m)!

k2m‖

+ i
∑

m≥1

(−1)m−1 〈v2m−1
12 〉c

(2m− 1)!
k2m−1
‖ .

(23)

Namely lnG is the cumulant generating function of
pairwise velocity, versusG as the moment generating
function of pairwise velocity. We may have expected this
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correspondence from the moment/cumulant generating
function of the density field.

We may expect that the above expansion converges
faster than the expansion with Equation (15). The reason
is that the density field is close to lognormal and the
velocity field is close to Gaussian. Under such a condition,
only the k‖ and k2‖ terms exist in Equation (23). This
results in a Gaussian pairwise velocity PDF, and corre-
sponds to the Gaussian streaming model of correlation
function. Numerical evaluation later indeed shows that the
expansion of Equation (23) indeed converges faster than
that of Equation (15). Nevertheless, we findk3,4‖ terms

are non-negligible atk >∼ 0.2h Mpc−1, implying further
improvement over the Gaussian streaming approximation.

2.5 Peculiar Velocity Decomposition

As mentioned above, moment generating function de-
termines the pairwise velocity PDF, and vice versa.
There are lots of models based on the pairwise velocity
PDF assuming some specific forms of pairwise velocity
PDF, such as Gaussian distribution (Reid & White 2011),
exponential distribution (Sheth 1996) and so on. Here we
investigate the influence of both Gaussian and exponential
approximations towards generating function. For brevity,
here we only provide one-point statistics of velocity PDF,
instead of the more complicated two-point statistics of
pairwise velocity PDF. The statistics from simulation
prefer a mixture of Gaussian and exponential pairwise
velocity PDF. At a sufficiently large scale with low speed,
it is close to Gaussian distribution,

pG(v) =
1

√

2πσ2
G

exp(−v2/2σ2
G) , (24)

yet at a small scale with severe random motions, it turns to
exponential distribution,

pE(v) =
1

√

2σ2
E

exp(−
√
2|v|/σE ) . (25)

Here σG,E is the pairwise velocity dispersion for
Gaussian/Exponential components, andσ2

G + σ2
E = σ2.

The corresponding Fourier transformations are

G = exp(−σ2
Gk

2/2) , E =
1

σ2
Ek

2/2 + 1
. (26)

Assuming the Gaussian part and exponential part are
independent with each other, the generating function could
be written as

G ≈ G(σG)E(σE ). (27)

Under these assumptions, the imaginary part of generating
function, Im(G), vanishes. Gaussian/exponential distribu-
tions determine the upper/lower limits of Re(G).

Furthermore,Zhang et al.(2013) provide a method to
decompose the peculiar velocity field into three parts,vδ,
vB , andvS . vδ is the over-density field correlated part. It
dominates at the linear scale wherek ≪ kNL (NL is short
for “non-linear” scale), then vanishes due to the nonlinear
evolution at a small scale. Differing fromvδ, the stochastic
componentvS and rotational componentvB only reveal
and dominant at the nonlinear scale.Zheng et al.(2013)
verified these theories in N-body simulation. In this paper,
we decompose the peculiar velocity into only density
correlated (the deterministic) part, and the rest stochastic
part (vS+vB in Zhang et al. 2013). We denoted them with
superscriptsL andS respectively,v(x) = v

L(x)+v
S(x).

In Fourier space,

v
L(k) = −i

H(z)δ(k)W (k)

k2
k . (28)

Here, the window function,

W (k) =
Pδθ(k)

Pδδ(k)
. (29)

in which, θ = −∇ · v is the divergence of the peculiar
velocity. Then the generating function can be expressed in

G =
〈(1 + δ1)(1 + δ2) exp (ik‖v)〉

1 + ξ(r)

=
〈(1 + δ1)(1 + δ2) exp (ik‖v

L) exp (ik‖v
S)〉

1 + ξ(r)
. (30)

If the density field is log-normal, assumeL and S

components are independent with each other, we have

lnG = lnGL + lnGS . (31)

GL is expected to be approximately Gaussian, and the
stochastic partGS should be close to exponential. We
can evaluate the convergence of both Equation (27) and
Equation (31) in simulation.

3 SIMULATION

We numerically evaluate the generating functionG at
various k‖ and (r‖, r⊥), and the two expansion series
(Eqs. (15) & (23)), in a subset of the CosmicGrowth
simulations (Jing 2019). The three simulations are run with
a particle-particle-particle-mesh (P3M) code (Jing et al.
2007), boxsizeLbox = 600Mpc h−1, and particle number
NP = 30723. They adopt the identicalΛCDM cosmology,
with Ωb = 0.0445, Ωc = 0.2235, ΩΛ = 0.732, h = 0.71,
ns = 0.968 and σ8 = 0.83. It has three realizations,
denoted as J6610, J6611 and J6612 here. The halo catalogs
are first identified by a Friends-of-Friends (FoF) algorithm,
with the linking lengthb = 0.2 times the mean inter-
particle separation. Then all unbound particles have been
removed from the catalogs. We select three different halo
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Fig. 8 Test for Eq. (27). The upper edge of the shaded region is Gaussian distribution limit (σ2
G = σ2, σ2

E = 0), the lower
edge is exponential distribution limit(σ2

E = σ2, σ2
G = 0).

mass bins, labeled as A1, A2 and A3, at four redshift
snapshots,z ≃ 0, 0.5, 1.0, 1.5. The mass range, mean
mass, and total number of each halo set for J6610 are listed
in Table1. Specifications of J6611 and J6612 are similar.

We use the NGP method with6003 grid points
to construct the needed fields. The grid size is
Lgrid = 1Mpc h−1. For each grid, we measureαi =
∑

γ cos(k‖v‖,γ), βi =
∑

γ sin(k‖v‖,γ) and pni =
∑

γ v
n
‖,γ , n = 0, 1, 2, 3, . . . . Notice thatp0i =

∑

γ = (1 +

δi). The summation
∑

γ is over all particles nearest to the
ith grid point. The real and imaginary part of the generating

function are evaluated separately by the following relation

G(k‖, r) =
〈β1β2 + α1α2〉r

〈p0
1
p0
2
〉r

+ i
〈α1β2 − β1α2〉r

〈p0
1
p0
2
〉r

. (32)

The pairwise velocity moments is given by

〈vm12〉 =
〈
∑m

n=0 C
m−n
m (−1)npn1p

m−n
2 〉r

〈p01p02〉r
. (33)

One thing to notice is that the r.h.s. of Equations (32)
and (33) means that we can utilize FFT to speed up
the computation. For eachk‖, eight FFTs are needed
to evaluateG of all r pairs, and ≥ 3 FFTs for
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〈vm12〉. Nevertheless, since we only investigate a dozenr

specifications, we instead measure the above quantities
by directly counting the pairs with fixed separationr‖
andr⊥ values. We can choose the Cartesianx, y, z axes
of the simulation box as the line of sight, so for each
simulation we have three independent measurements. With
three independent simulation realizations, we have nine
independent measurements and we can then estimate the
errorbars of the measured properties.

In order to obtain the deterministic and stochastic
components of halo peculiar velocity field, first we
measurevL(k) from Equation (28). When obtaining the
quantities in Equation (28), 5123 number of grid points
are adopted to construct the necessary fields. Then we
do inverse FFT to obtainvL in configuration space.
Chen et al.(2018) has verified that the large scale velocity
bias between halo and dark matter is unity in the N-
body simulation, andZhang(2018) provides the possible
explanation. Thus here we can treat the deterministic
velocity component of halos as the underlying dark
matter’s, vL

h = v
L. Finally, we obtain the stochastic

component byvS
h = vh − v

L.

4 NUMERICAL RESULTS AND IMPLICATIONS

The generating functionG ≡ G(k‖, r‖, r⊥) depends on
k‖, r‖, r⊥ as well as redshift and halo mass. We are not able
to show the results of all possible combinations. Instead,
we will mainly show the result of mass bin A2. To the
same order of moment/cumulant expansion, the accuracy is
slightly better for A1, which is less affected by small scale
nonlinearities due to larger smoothing associated with the
halo mass/size. But since A1 has at least a factor of10

smaller halo numbers, the measurements are more noisier.
In contrast, the accuracy for A3 is slightly worse than A2,
while the measurement noise is smaller. Therefore in the
main text we only show A2 as the intermediate case. For

the redshifts, we mainly show the case ofz = 0 and when
necessary, the case ofz = 1. For the wavenumberk, the
primary target isk = 0.2hMpc−1, matching the capability
of stage IV projects. But since stage V projects have the
capability to reachk ∼ 0.5h Mpc−1, we will also show
the results ofk > 0.2hMpc−1 in the main text.

4.1 〈v3,412 〉 Terms must be Included

Figure 1 showsG as a function ofk‖, at z = 0 and
for (r‖, r⊥) = (10, 0), (0, 10), (50, 0),&(0, 50) (unit in
Mpc h−1). We compare the leading order expansion to
the simulatedG. As a reminder, the leading order moment
expansion isG ≃ 1 + i〈v12〉k‖ − 〈v212〉k2‖/2. The leading
order cumulant expansion isG ≃ exp(1 + i〈v12〉k‖ −
〈v212〉ck2‖/2). All the coefficients (〈vn12〉 and 〈vn12〉c)
are measured from the same simulation. The moment
expansion becomes inaccurate atk‖ = 0.1h Mpc−1,
especially for the imaginary part ofG. The cumulant
expansion remains accurate atk‖ = 0.1h Mpc−1. Since
the cumulant expansion up to leading order is equivalent
to a Gaussianp(v12|r‖, r⊥), this explains the validity
of Gaussian streaming model (Reid & White 2011) at a
sufficiently large scale. However, atk‖ ∼ 0.2h Mpc−1,
the leading order approximation results in significant error
in the imaginary part ofG.

Therefore to improve the approximation accuracy at
the targetk‖ = 0.2h Mpc−1, we must include the
next-to-leading order terms in the expansion. Then the
moment expansion becomesG ≃ 1 + i[〈v12〉k‖ −
〈v312〉k3‖/6]− [〈v212〉k2‖/2 − 〈v412〉k4‖/24]. Nonetheless, the

moment expansion still fails atk‖ ∼ 0.2h Mpc−1,
especially for the imaginary part.

Including the next-to-leading order terms, the cu-
mulant expansion becomesG ≃ exp(i[〈v12〉k‖ −
〈v312〉ck3‖/6]−[〈v212〉ck2‖/2−〈v412〉ck4‖/24]). This expansion

is accurate atk‖ = 0.2h Mpc−1. It remains accurate even
until k‖ ∼ 0.4hMpc−1, unlessr⊥ → 0.

The situation is similar at other redshifts (e.g.,z = 1,
Fig. 2). Therefore the first major result of this paper is that,
to accurately describeG at k‖ ∼ 0.2h Mpc−1, we have
to include not only〈v1,212 〉, but also〈v3,412 〉 into the model.
SinceG completely determines RSD, this also implies that
we must include〈v3,412 〉 into the modeling of RSD. This
will be challenging, since〈v3,412 〉 themselves involve LSS
correlations up to 6th order (δ2v4).

We further check the origin of the above finding.
The ratio of thek3‖ term to k‖ term is R3/1k

2
‖/6 for

the moment expansion, andR3/1,ck
2
‖/6 for the cumulant

expansion. Here,R3/1 ≡ 〈v312〉/〈v12〉 and R3/1,c ≡
〈v312〉c/〈v12〉. Figure3 showsR3/1 andR3/1,c for the case
of r⊥ = 0, which is among the most difficult to model



J. D. Chen et al.: Generating Function and Its Implications on Redshift Space Distortion Modeling 176–11

0.0 0.1 0.2 0.3 0.4
k ∥ [h Mpc−1]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

−
R
e(

ln
G

)

z= 0.00, hA2

[r ∥ , r⟂ ] = [10, 0]
[r ∥ , r⟂ ] = [0, 10]
[r ∥ , r⟂ ] = [50, 0]
[r ∥ , r⟂ ] = [0, 50]

0.0 0.1 0.2 0.3 0.4
k ∥ [h Mpc−1]

−0.4

−0.3

−0.2

−0.1

0.0

Im
(ln

G
)

Fig. 10 Test for Eq. (31). Notice the vertical axis here is no longer aboutG but lnG. Thesolid lines with data points are
lnGL + lnGS , whereGL andGS is measured from simulation using the velocity decomposition method. Thedashed
lines arelnG directly measured from the simulation.

for the generating function and RSD.R3/1 and R3/1,c

have typical values∼ 10-100(Mpc h−1)2. Therefore for
k‖ >∼ 0.1hMpc−1, thek3‖ term will become non-negligible
comparing to thek‖ term. This problem does not alleviate
toward large separation, as we expect. In contrast,R3/1

increases and the problem becomes worse at large pair
separation. In fact, atr‖ ∼ 100Mpc h−1, the moment
expansion to third order even fails to correctly predict the
sign of ImG for k ≥ 0.25hMpc−1.

The ratio of thek4‖ term tok2‖ term isR4/2k
2
‖/12 for

the moment expansion, andR4/2,ck
2
‖/12 for the cumulant

expansion. Here,R4/2 ≡ 〈v412〉/〈v212〉 and R4/2,c ≡
〈v412〉c/〈v212〉. The numerical results are also shown in
Figure3. The worst inaccuracy of expanding to 4th order
occurs whereR4/2 (R4/2,c) is the largest. This happens at
r‖ ∼ 5Mpc h−1 and the typical value is∼ 50(Mpc h−1)2.
Notice that maxR4/2 < maxR3/1. Together with the extra
factor1/2 in the Taylor expansion, the relative correction
is significantly smaller in the real part ofG than that in the
imaginary part.

4.2 Cumulant Expansion is Better

Figure 4 shows the errors by neglectingkn>4
‖ terms in

the moment/cumulant expansion, in ther⊥-r‖ plane, for
k‖ = 0.2h Mpc−1. For the whole range of interest
(r⊥ < 100Mpc h−1, r‖ < 100Mpc h−1), the cumulant
expansion is better than the moment expansion. The errors
are largest atr⊥ <∼ 5Mpc h−1 andr‖ ∼ 5-10Mpc h−1.
Nonetheless,|∆G| <∼ 0.01.

Figure5 shows the errors atk‖ = 0.3, 0.4h Mpc−1

for the cumulant expansion. The errors increase withk‖, as
expected. Also as the case ofk‖ = 0.2hMpc−1, the largest
error occurs atr⊥ <∼ 5Mpc h−1 andr‖ ∼ 5-10Mpc h−1

and max|∆G| ∼ 0.1 for k‖ = 0.4h Mpc−1. Nonetheless,
if we only use the region atr⊥ = 20Mpc h−1, the error
in G is reduced to∼ 0.01, even fork = 0.4h Mpc−1.

Figure 6 shows the errors atk‖ = 0.2h Mpc−1, but
for halo set A1 and A3. The cumulant expansion is also
excellent.

Therefore the major results of this paper are

G ≃ exp

[

−
〈v2

12
〉ck

2

‖

2
+ i〈v12〉k‖

]

for all r, but k ≤ 0.1hMpc
−1 ,

≃ exp

[

−
〈v2

12
〉ck

2

‖

2
+

〈v4

12
〉ck

4

‖

24
+ i

(

〈v12〉k‖ −
〈v3

12
〉ck

3

‖

6

)]

for all r, but k ≤ 0.2hMpc
−1 ,

or for r⊥ > 20h Mpc
−1

& k ≤ 0.4hMpc
−1 . (34)

4.3 Induced Errors in the RSD Modelling

Analysis above shows that it is necessary to include at least
3rd and 4th order pairwise velocity moments/cumulants in
the modeling of generating function atk >∼ 0.2h Mpc−1.
Inaccuracies in the generating function modeling will
propagate into inaccuracies in the RSD power spectrum
P s(k‖, k⊥), correlation functionξs(r‖, r⊥) and the hybrid
statisticsP s(k‖, r⊥). For brevity we only investigate its
impact onP s(k‖, r⊥).

If the error ∆G has no imaginary part, and is
independent ofr‖, it leads to ∆P s = P s(k‖ =

0, r⊥)∆G = wp(r⊥)∆G. Since the absolute value of
∆G in the cumulant expansion is in general< 0.01 for
k < 0.2h Mpc−1, the resulting error inP s is <∼ 1%.
But the real situation is more complicated than that, since
∆G is neither real nor independent ofr‖. For this we have
to numerically integrate over Equation (14) to obtain the
resulting error inP s. This integral involves the oscillating
integrand and is numerically challenging to reach better
than1% in P s, making the accurate quantification of∆P s

difficult. For this reason, in the current paper we only show
the error in the integrand, induced by∆G.
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Fig. 11 The moment generating function for the stochastic component.

SinceP s(k‖, r⊥) is real,

P s(k‖, r⊥) =

∫

Q(k‖, r‖, r⊥)dr‖ . (35)

Here the integrand

Q =
[

(1 + ξ(r))ReG(k‖, r‖, r⊥)− 1
]

cos(k‖r‖)

−(1 + ξ(r))ImG(k‖, r‖, r⊥) sin(k‖r‖) . (36)

Q in the simulation and the associated error∆Q by
the moment/cumulant expansion to 4th order are shown
in Figure 7. Since the largest error inG occurs at
r⊥ <∼ 10Mpc h−1, we only show the cases ofr⊥ =

10, 20Mpc h−1. At k‖ = 0.2h Mpc−1, |∆Q| < 0.01 and
for mostr‖ |∆Q| ≪ 0.01, for the cumulant expansion up
to the order of〈v412〉c. For comparison, we also show the
case of moment expansion, whose error is much larger.

4.4 Peculiar Velocity Decomposition

Figure 8 illustrates the results of Equation (27) for halo
sets A1 and A2 atz = 0. We first measure the velocity
dispersionσv. Then consider two extreme cases: Gaussian
limit, σG = σv and exponential limit,σE = σv. The upper
edge and lower edge of each shaded region correspond
to Gaussian and exponential limit respectively. The data
points with error bars are direct measurements from halo
catalogs. At the non-linear regime (blue and red colored
data in Fig.8), data points are close to the exponential
limit. Yet when move to the linear regime, as the green
colored data shows, due to the scale is sufficiently large
(r‖ = 50Mpc h−1) the results are close to the Gaussian
limit. The results suggest there is strong possibility that
the pairwise velocity PDF is a mixture of Gaussian and
exponential distributions. Atk ∼ 0.2h Mpc−1 scale,
it is no longer safe to take the Gaussian distribution
assumption. This conclusion matches with the above
moment/cumulant expansion approaches.

Figure 9 shows the dark matter power spectrum
evaluated from the N-body simulation for the total

velocity field, as well as the two components introduced
in Section 2.5 at redshiftz = 0. The behavior of
each component is consistent with the descriptions in
Section 2.5. Figure10 is the test for Equation (31). When
GL andGS are fully independent,lnGL + lnGS (solid
lines) should be strictly equal tolnG (dashed lines). The
slight deviations imply that there is a correlation between
the deterministic component and stochastic component,
especially at the smaller scales (red and blue colored data).

Figure11shows thelnGS as a function ofr‖ for halo
set A3 atz = 0 when fixr⊥ = 0. We demonstrate A3 here
because the random motion is more severe for the smaller
halos, and therefore the stochastic component should be
more significant than A1 and A2. The results suggest
the stochastic component is almost scale-independent.
The real part Re(lnGS) is decided by the〈vm12,S〉,m =

2, 4, 6, . . . . Since there is no cross-correlation between
two different points 1 and 2 for a stochastic field, the
scale dependent part in〈vm12,S〉 vanishes, only the auto-
correlation part resides. The non-zero value of Re(lnGS)

implies there is a Gaussian component in stochastic
velocity field. For the imaginary part, as expected, it is not
only scale-independent but also zero.

5 CONCLUSIONS AND DISCUSSIONS

In this work, we investigate the convergence of measuring
moment generating function in both moment and cumulant
expansion approaches and find: (1) Cumulant expansion
performs much better than the moment expansion for all
halos samples and redshifts investigated. (2) Atk <

0.1h Mpc−1 scale, including only the order ofn =

1, 2 cumulants is sufficient for modeling RSD. (3) At
k ∼ 0.2h Mpc−1 scale, the order ofn = 1, 2, 3, 4

cumulants must be considered. When considering the 3rd
and 4th order pairwise velocity moments and cumulants,
the cumulant expansion approach performs much better in
the hybrid statisticsP s(k‖, r⊥).
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Studies on the pairwise velocity PDF support a
mixture of Gaussian and exponential pairwise velocity
PDFs. The results also support the above conclusions
that the Gaussian streaming model only works atk <

0.1hMpc−1. RSD models based onp(v12) cannot take the
Gaussian as well as exponential distribution assumptions
at k ∼ 0.2h Mpc−1. Further investigation on the peculiar
velocity decomposition suggest a correlation between
deterministic and stochastic components at a small scale,
and a Gaussian mixture part in the stochastic component.

Comprehensive further investigations are required to
implicate these findings in improving the RSD modeling.
In this work, by reconstructingG, we aim to investigate
what is the requirement for the truncation of the peculiar
velocity statistics in order to accurately model RSD,
and the rationality and reliability to adopt Gaussian
or exponential distribution assumptions to the pairwise
velocity PDF. Nevertheless, since the full understanding
of the pairwise velocity PDF is still a long-standing
problem in RSD cosmology, precisely building the
association of the expansion coefficients for both moment
expansion〈vn12〉, and cumulant expansion〈vn12〉c, with
the cosmological parameters are very difficult. Moreover,
in order to apply our method in practice, a complete
calculation for the hybrid statisticsP s(k‖, r⊥) is required.
However, in this work, we mainly focus on the moment
generating functionG, so we just briefly compare the
errors of the integrand of Equation (14) for the two
different expansions. Equation (14) is an integral for an
oscillatory functionQ, the FFTLog method (Hamilton
2000) might be adopted when measuringP s(k‖, r⊥). We
will have more detailed studies on the pairwise velocity
PDF andP s(k‖, r⊥) in our future works.
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