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Abstract It is a significant task to predict the solar activity for space weather and solar physics. All kinds
of approaches have been used to forecast solar activities, and they have been applied to many areas such
as the solar dynamo of simulation and space mission planning. In this paper, we employ the long-short-
term memory (LSTM) and neural network autoregression (NNAR) deep learning methods to predict the
upcoming 25th solar cycle using the sunspot area (SSA) data during the period of May 1874 to December
2020. Our results show that the 25th solar cycle will be 55% stronger than Solar Cycle 24 with a maximum
sunspot area of 3115±401 and the cycle reaching its peak in October 2022 by using the LSTM method. It
also shows that deep learning algorithms perform better than the other commonly used methods and have
high application value.
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1 INTRODUCTION

Solar activity is closely related to human activities and
many other phenomena on Earth. With the 11-year
solar cycle rises and falls, such as space climate, space
navigation and high-frequency radio communications will
be affected by such changes (Pala & Atici 2019). When
the solar activity is strong, the ultraviolet and X-ray
radiation from the Sun will be enhanced, which will have
a serious impact on the solar-terrestrial space and the
upper atmosphere of the Earth. Furthermore, the intense
solar activity may also lead to serious solar storms, which
can bring about enormous damage to satellites around the
Earth (Pulkkinen 2007). Serious solar storms can even
bring great problems to our daily life because of the impact
on the communication system or power grid. Therefore,
predicting solar activity is of great significance not only
for social technologies, but also for the understanding of
the mechanism of solar activity.

The sunspot area (SSA) is a good indicator of
magnetic activities of the Sun in long time series, which
can be applied to predict the sunspot cycle like the same as
the sunspot number (SSN) (Hathaway 2015). So far, it is
one of the longest observed activity index, which has more
physical significance than the SSN. Besides, compared

with SSN, the SSA has appended information about the
position of the characteristic disk. Hence, SSA records
play an important role in our understanding of the long-
term behavior of solar magnetic activity and variability
(Mandal et al. 2020).

Traditionally, there are three main prediction methods
(Petrovay 2020). Many authors have used these methods
to predict the upcoming solar cycle. The first method
is the precursor method, which forecasts the maximum
amplitude of the next solar activity based on the
measured values of solar activity or magnetic field at
a specific period. For example,Dabas & Sharma(2010)
used geomagnetic precursors to predict Solar Cycle 24.
Muñoz-Jaramillo et al.(2013) improved the solar cycle
prediction on the basis of the polar magnetic fields by using
the dipolar and quadrupolar moments. The second method
is model-based prediction, which not only analyzes the
observed data, but also uses various physically dynamo
models to forecast solar activity (Petrovay 2020). For
instance,Choudhuri et al.(2007) input the solar polar
magnetic field data into the solar dynamo model to
simulate the last few solar cycles, and they forecasted that
the 24th solar cycle will be about 35% weaker than cycle
23. Jiang & Cao(2018) applied a surface flux transport
(SFT) model to calculate the correlation of some important
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Fig. 1 Monthly distribution of the the sunspot number (SSN) (top panel) and sunspot area (SSA) data (bottom panel)
from the Royal Observatory, Greenwich (RGO) USAF/NOAA during the period of May 1874 –December 2020.

properties of solar cycles to forecast the general trends of
the next cycle.Upton & Hathaway(2018) predicted the
solar cycle 25 based on the Advective Flux Transport
(AFT) model. The last one is the extrapolation method,
contrary to the precursor method, it only uses sunspot
numbers or other solar activity indices time series data,
but it generally depends on more than one former point
to determine trends that can be applied to infer future
data: such asBrajša et al. (2009) applied the ARMA
model in R language to predict the trend of annual
value sunspot number series.Rigozo et al.(2011) used
the extrapolation of spectral components to evaluate the
intensity of solar cycle 25.Noble & Wheatland(2012)
used a Bayesian method for forecasting solar cycles, and
Sarp & Kılçık (2018) predicted Solar Cycle 25 using a
nonlinear approach.

In the last few years, deep learning methods have
developed rapidly and used extensively in various fields
due to their powerful capabilities and flexibility. Therefore,
deep learning methods are also applied to forecast time
series except some classical methods. The advantage
of deep learning methods is that they do not need to
make any assumptions about any distribution information,
and they have the ability to quickly simulate complex
problems (Benson et al. 2020). A large number of studies
have shown that deep learning algorithms have better
performance than some classical algorithms in dealing
with time series prediction, mainly because they have
a stronger ability to deal with nonlinear problems. For
example,Ajabshirizadeh et al.(2011) applied the Feed
Forward Neural Network (FFNN) to predict the Solar
Cycle 24. Pesnell (2012) used neural networks trained

on sunspot numbers to predict a solar cycle.Attia et al.
(2013) employed the neural fuzzy approach to evaluate
the geo-magnetic activity of the 25th solar cycle. Lately,
Benson et al.(2020) combined the WaveNet and LSTM
neural networks to forecast the 25th solar cycle.

In this paper, we make use of a monthly SSA time
series during the period of May 1874 to December 2020
to make an estimation of SSA for Solar Cycle 25 with
the help of deep learning algorithms. The structure of
this paper is as follows: Section2 introduces datasets and
methods; the experimental analysis is shown in Section3;
Section4 is a summary of this paper.

2 DATASETS AND METHODS

2.1 Datasets

In this work, we use the monthly SSA data from the Royal
Observatory, Greenwich (RGO) USAF/NOAA during
the period of May 1874 to December 2020. This time
series is publicly available on the website (http://
solarcyclescience.com/activeregions.
html). The dataset is composed of a period of 146
years which includes 1760 months. According to the
data features, there are some cyclic patterns, that is, the
observed values rise and fall in a certain period. Figure1
shows the monthly distribution of the SSN (top panel)
and SSA data (bottom panel) from the Royal Observatory,
Greenwich (RGO) USAF/NOAA during the period of
May 1874 –December 2020.

 http://solarcyclescience.com/activeregions.html
 http://solarcyclescience.com/activeregions.html
 http://solarcyclescience.com/activeregions.html
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Table 1 The Cross-validation Scheme of SSA Datasets

Piece number
of dataset Piece length

Rolling-piece
length

Training
length

Validaition
length

Testing
length

Skip-span
length

4 1200 186
80[year]×

12=960 960/8=120
10[year]×

12=120
15.5[year]×

12=186

9 840 115
50[year]×

12=600 600/5=120
10[year]×

12=120
9.6[year]×

12=115

2.2 Methods

2.2.1 Long-Short-Term Memory (LSTM) Method

The Long-Short-Term Memory (LSTM) method is firstly
proposed byHochreiter & Schmidhuber(1997), which
belongs to one of the Recurrent Neural Networks (RNNs),
overcoming the vanishing gradient problem exhibited of
RRNs. The special structural design allows it to avoid
long-term dependency problems, remember information
longer than RNNs, and present good capability for time
series forecasting (Goodfellow et al. 2016). The key to
LSTM is the cell state, which is used to store the current
LSTM state information and transfer it to the next LSTM
at the next moment. In addition, LSTM mainly consists of
three different gate structures, which are the input, output
and forget gate. These three gates are used to control the
LSTM retention and transfer of information, ultimately
reflected in the cell state and output signals. Firstly, the
input gate determines which information needs to be added
to the cell state to generate a new state. Then, the forget
gate decides what information we discard from the cell
state. Finally, the output gate determines the output value.

2.2.2 Neural Network Auto-Regressive (NNAR) method

The NNAR model is a non-linear parametric prediction
model. There are mainly two steps in predicting by
this model. The first step is to determine the order
of autoregression. The order of auto-regression is the
number of previous values on which the current value of
a time series depends. Then, in a second step, training
neural network by using training set which considers
the order of autoregression. The order of auto-regression
then decides the input node’s number, and the inputs of
neural network model is the former, lagged observation
values. The neural network model’s output value is the
predicted value. Because of the lack of a theoretical basis
for selection, the hidden node’s number is usually decided
by trial and experiment. To avoid the problem of over
fitting, the number of iterations should be selected properly
(Sena & Nagwani 2016).

2.3 Evaluation Index

The root mean square error (RMSE) is generally applied
to examine the error of the real and predicted values,
which makes an excellent general purpose error metric
for numerical prediction (Adhikari & Agrawal 2013). It is
defined as

RMSE =

√

√

√

√

1

N

N
∑

i=1

(yi − ŷi)
2 (1)

where N is the observation numbers,yi is the real
value and ŷi is the predicted value. Compared to the
similar Mean Absolute Error (MAE), RMSE amplifies and
severely punishes large errors.

3 EXPERIMENTAL ANALYSIS

3.1 Data Preprocessing

To analyze the model errors and explore the influence
of sample size on the prediction results, we chose
the cross validation (CV) approach to improve the
prediction accuracy. Using this approach, we analyzed
1760 observational data by using the resampling method
of rolling origin prediction. Table1 displays the 4-piece
and 9-piece CV evaluation schemes of the SSA dataset,
including a total of 1760 months of observation data.

From Table1, we can easily see that every part of
the sunspot area dataset is set up as 9-piece-based, and
is divided into two parts as training and testing. Apart
from that, one eighth or fifth of the dataset is arranged for
training, which is reserved to the validation process in the
9-slice-based model and 4-slice-based model, respectively.
After these processes, every part of the dataset is made
up of the training, validation, and testing set. Their
functions are to train the LSTM model, set the model
hyperparameters and check the real model performance,
respectively. Figure2 shows the sampling size of the
training and test set for each slice.

Combining Table1 and Figure2, we can see that every
slice length of the nine separate pieces of data is 1200
records. Therefore, the first slice01 is composed of data
from May 1874 to May 1944. According to the rolling-
slice lengths, the second slice02 includes the data during
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Fig. 2 Sunspot area (SSA) dataset divided into nine parts, as training and testing.

Table 2 The LSTM Model Performance of Different Slice
Numbers on SSA Data Set

Slice number of data set Length of Slice RMSE value

2 1344 315.94
3 1272 300.22
4 1200 288.61
5 1128 297.38
6 1056 306.35
7 984 312.16
8 912 317.63
9 840 328.67

the period of May 1883 - May 1953. That is, the next piece
begins 108 records earlier than the former one. The length
of the skip span for the 9-piece-based model and the 4-
piece-based schemes is 115 and 186 records, respectively.

3.2 LSTM Model Parameters

More often than not, all models need to be trained on a
complete dataset to make accurate predictions on the basis
of historical observations. However, it is difficult to judge
the performance of the model. The reason is that there is
no actual situation to verify the prediction. Thus, it needs
to divide the dataset into training and validation parts, and

select the model with the best validation performance to be
trained on the whole data to make our prediction.

As mentioned above, we split the sunspot area dataset
to get a better performance. As shown in the Table2,
we divided the data set into eight different slice numbers.
According to the RSME value, we find that the RMSE
value decreases initially and increases afterwards as the
increase of slice number, and reached the minimum at the
4-slice plan. Therefore, the 4-slice plan revealed greater
predictive performance. We selected it as the proper data
set, and correspondingly, the proper length of it is 1200.

After these operations, we selected the 4-slice type
data set to make the following experiment. Table3 shows
the sunspot area dataset which is segmented into four slices
in the second line, the number of training, test is 960, 240,
respectively. The batch-size of them is all set to 10. Hence,
the number of training and test iterations is 96 and 24,
respectively. To get more accurate estimation, the gradient
descent algorithm is usually applied to optimize the deep
learning model by constantly updating weights through the
training dataset. Thus, the number of epochs is set to 100.
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Table 3 The Training and Test Parameters of the LSTM Model

Model cross-validation
strategy

Training/test
numbers

Batch size
Trainng /test

iteration numbers
Epoch numbers

4 piece-based model 960/240 10 96/24 100
9 piece-based model 600/240 10 60/24 100
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Fig. 3 The loss-epoch graphs of training and validation for 4-piece (left) and 9-piece (right) schemes, respectively.

3.3 Analysis Results

3.3.1 Results from deep learning methods

As noted above, the sunspot area dataset is split into two
different types: 4-piece and 9-piece datasets. Therefore,
these two different types of datasets in the LSTM model
performed differently. First of all, LSTM model is used
to train and test the last part of the 4-piece dataset and 9-
piece dataset, respectively. Figure3 shows the training and
validation loss-epoch graphics for 4-slice (left) and 9-slice
(right) plans, respectively. It is clear that the loss of the
4-slice plan is smaller than the 9-slice plan. Besides, the
curves show that the model stopped the training process
at about 20 iterations and remains constant for both plans.
Meanwhile, it is easy to find that the training performance
of the two schemes is better than verification performance.

Figures4 and 5 show the training and test predict
graphs of the last slices of the 4-slice and 9-slice dataset,
respectively. It can be seen that the train predicted value,
the train and test value are in good agreement, when the
train and test value does not change much. However, the
train predicting value is not as accurate when the train and
test value change greatly, such as near the peak amplitude
of the solar cycle. We can also see that the test predicting
result has a very high fitting precision with the train and
test dataset in both two types. Comparing Figures4 and5,
it is clear that the estimation results using the last part of
the 4-slice are better than the 9-slice by LSTM model.

In addition, the RMSE is the standard deviation of the
residuals or prediction errors, which offers a measure of
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Fig. 4 The predicting graphs for training and test of the last
part of the 4-piece SSA dataset using the LSTM method
(train and test: blue, train predict: green, test predict: red).

the distance between prediction and real data. Therefore,
almost all experiments will choose it to estimate the
performance of every model. From Table4, it is not hard
to find that the RMSE test values of the last slices of the
4-slice and 9-slice types of the sunspot area data were very
similar to each other, but the 4-slice type revealed greater
predictive performance. The RMSE test values for both of
them were 288.61 and 328.67, respectively.

Through the above analysis, the prediction results of
Solar Cycles 23 and 24 showed that the LSTM model can
not only predict the trend of solar cycle but also accurately
predict the strength of it for both types of dataset. After a
comprehensive consideration, we select the 4-slice sunspot
area dataset based on the LSTM model to predict the
25th Solar Cycle. After training, verification, and testing
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Fig. 5 The predicting graphs for training and test of the last
part of the 9-piece SSA dataset using the LSTM method
(train and test: blue, train predict: green, test predict: red).
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Fig. 6 The 25th solar cycle predict using the LSTM
method (actual: blue, prediction: red).

operation, the predicted results for the next ten years
(2020−2030) are displayed in Figure6. In other words, we
applied the LSTM model to predict the time period of 2020
to 2030 for the SSA dataset which includes 1760 months
of observation data during the period of 1874 to 2020, with
a time span of 146 years.

In the LSTM modeling, the selection of hyper
parameters, such as the number of hidden units, input
lags and hidden layers, is very important for model
performance and data segmentation. In this paper, we
use two stacked LSTM layers with 256 hidden units
each. To select an appropriate hyperparameter, we have
tested different numbers of hidden units. The result shows
that approximately 256 hidden units can achieve good
performance for the LSTM model. Adding more hidden
units may increase the value of the RMSE, it is useless
to enhance the performance of the model. The first LSTM
layer was used to input data and return 3D shapes and the
second LSTM layer was used to return the 2D data shapes.
At the same time, we adopted the Adam optimization
algorithm to optimize network parameters and minimize
the training error (Kingma & Ba 2014). It is a step-descent
algorithm with an adaptive learning rate. In an epoch,
each batch is calculated once, and the network parameters
are updated several times. When one epoch is over, the

Table 4 The Performance of Different Methods on SSA
Datasets

Method RMSE value

LSTM 4-piece method 288.61
LSTM 9-piece method 328.67
NNAR 4-piece method 360.65
NNAR 9-piece method 398.38
ARIMA method 549·35

validation set will evaluate the updated network. In this
model, the training batch size is 10 with a learning rate
of 10−4 and a decay rate of10−6 for 96 iterations.

The same strategy for the sunspot area dataset partition
was also applied to the Neural Network Auto-Regressive
(NNAR) method. Figure7 and Figure8 show the training
and test predicted graphs of the last slices of the 4-slice and
9-slice plan using the NNAR method, respectively. We can
easily see that the 4-slice plan test prediction has a higher
fitting precision than the 9-slice plan. Moreover, the value
of the RMSE is quite different for them. The RMSE test
value for the 4-slice plan are lower, as shown in Table4.
Hence, we select the 4-slice plan to predict the next ten
years (2020−2030) trend and strength of the sunspot area,
as shown in Figure9.

3.3.2 Comparing with the classical method

The Auto-Regressive Integrated Moving Average
(ARIMA) model is a classical statistical method for
time series prediction, which has dominated many areas
of time series predicting (Box et al. 2013). In this paper,
we used an ARIMA (p,d,q) model to predict the the
upcoming Solar Cycle 25. To test the reliability of the
ARIMA model, we also checked before the 22th cycle
using data cycles. Through multiple experiments and
analysis, we found that the ARIMA (2,0,5) is the optimal
model for predicting the trend and strength of sunspot
area with five MA terms and two AR terms. The results
for predicting Solar Cycles 23 and 24 are presented in
Figure10. However, we find that the test predicting result
has a slight deviation with the train and test dataset.
Meanwhile, one can notice that the result for predicting
the next ten years (2020−2030) trends and strength of the
sunspot area is also different from the two previous deep
learning methods, as shown in Figure11.

In a similar study, Siami-Namini & Siami Namin
(2018) used different datasets to measure the LSTM
and ARIMA model’s performance. By comparing the
RMSE values of ARIMA and LSTM, they concluded
that the performance of LSTM model is better than
ARIMA. Actually, we approve of their view that the
LSTM model has outperformed these classical methods for
time series forecasting problems. Moreover,Maleki et al.
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Fig. 7 The predicting graphs for training and test of the last
part of the 4-piece SSA dataset using the NNAR method
(train and test: blue, test predict: red).

Table 5 Predicting Result of the 25th Solar Cycle of
Different Algorithms

Model/method
name Date of the peak occur

Maximum
amplitude

LSTM method 2022.10 3115±401
NNAR method 2023.03 3078±421
ARIMA model 2021.09 1241±616

(2018) suggested that the performance of NNAR model
is much better than ARIMA. From these studies, it is
easy to conclude that the performance of LSTM model is
best in relation to the NNAR and ARIMA model. In this
paper, Table4 is the RMSE values of these algorithm test
procedures, which also proves this conclusion.

Based on the above analysis, we can conclude that
deep learning algorithms perform better than the other
commonly used classical methods. Table5 summarizes
the predicting of the 25th solar cycle trend and strength
of the three algorithms we used in this study. From Table
5, predicting for the sunspot area dataset suggests that the
maximum amplitude of the 25th solar cycle by the LSTM
model is 3115±401 with the peak occurring in October
2022. Compared with the 24th solar cycle, the result shows
that the 25th solar cycle will be stronger.

3.4 Comparison with Earlier Works

Many researchers have predicted the upcoming Solar
Cycle 25 using all kinds of methods and data, their
results were also notably different. The reason may be
the extremely complex variability of solar activity itself.
Table 6 lists early prediction results of Solar Cycle 25.
For example,Covas et al.(2019) predicted that the 25th
solar cycle would be the weakest cycle on record by using

the spatial-temporal data with neural networks, and the
peak occurring around 2022–2023.Okoh et al.(2018) used
a method called the Hybrid Regression Neural Network
to evaluate the SSN. The prediction result showed that
the maximum SSN amplitude of the 25th solar cycle was
122.1 (±18.2) with a peak in January 2025 (±six months).
Compared with previous cycles, the strength of the 25th
solar cycle will be moderate. Furthermore, an international
team co-hosted by NOAA/NASA published a preliminary
prediction in April 2019, which unanimously forecasted
that the size of the 25th solar cycle would be similar with
Solar Cycle 24.

However, in this paper we use the monthly sunspot
area (SSA) data from the Royal Observatory, Greenwich
(RGO) USAF/NOAA during the period of May 1874
to December 2020 to predict the upcoming Solar Cycle
25 with the help of the LSTM model, which shows the
maximum amplitude of the 25th solar cycle is 3115±401
and the strength of it will be 55% stronger than Solar Cycle
24. Our result is different with theirs. The most likely
reason is that the origin and length of the sunspot area
data we used are different, and the selection of the model
also has some influence. There are also some previous
prediction results that are in agreement with us.

From Table6 we can easily see thatKane (2007)
suggested that the 25th solar cycle will be 29% stronger
than the prior solar cycle, and the maximum amplitude
of SSN is in the range of 112 to 127 with a peak
occurring between 2022 and 2023.Rigozo et al.(2011)
used the extrapolation of spectral components to evaluate
the strength of the 25th solar cycle. They estimated that
Solar Cycle 25 is about 17% stronger than Solar Cycle
24 and has its maximum sunspot number amplitude of
132.1 in April 2023.Dani & Sulistiani(2019) applied the
linear regression technique to forecast Solar Cycle 25, and
they found the maximum sunspot number amplitude for
Solar Cycle 25 is of 159.4±22 in September 2023, about
10% stronger than cycle 24. According to the logarithmic
relationship of the solar cycle and geomagnetic indices,Du
(2020) found that the peak value of the 25th solar cycle is
about 151.1±16.9, about 30% stronger than cycle 24, and
the cycle reaching its peak in October 2024.

4 CONCLUSIONS AND DISCUSSION

In this study, we present two deep neural network models
and a classical method to forecast the 25th solar cycle
using the monthly sunspot area (SSA) data from the Royal
Observatory, Greenwich (RGO) USAF/NOAA during the
period of May 1874 to December 2020. We can easily
conclude that the performance of the LSTM model is
best in relation to the NNAR and ARIMA model. The
ARIMA model requires time series data to be stable. Its



184–8 Q. Li et al.: Predicting the 25th Solar Cycle Using Deep Learning Methods Based On SSA

Table 6 A Selection of Early Prediction for the 25th Solar Cycle

Method
Strength comparing to

Cycle 24

Time of reaching the

peak amplitude
Reference

LSTM 55% stronger October 2022 Our works

Feed-Forward Neural Network weaker around 2022–2023 CovasCovas et al.(2019)

Hybrid Regression Neural Network similar January 2025(±six months) OkohOkoh et al.(2018)

Spectral wavelet decomposition tree 17% stronger April 2023 Rigoz and Echer (Rigozo et al. 2011)

Similar-cycle method 30% stronger October 2024 DuDu (2020)

Extrapolation of spectral components 29% stronger between2022 and 2023 Kane (Kane 2007)

Linear Regression (LR) 10% stronger September 2023 Dani andSulistiani (Dani & Sulistiani 2019)
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Fig. 8 The predicting graphs for training and test of the last
part of the 9-pieces SSA dataset using the NNAR method
(train and test: blue, test predict: red).
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Fig. 9 The 25th solar cycle predict using the NNAR
method (actual: blue, prediction: red).

nonlinearity ability is poor, and it can only carry out short-
term prediction. The NNAR model has better nonlinearity
ability than the ARIMA model, but it does not have the
ability of long-term learning. However, the LSTM model
can learn and save information for a long time. Besides,
the LSTM model tends to do better in unstable time series
with more fixed components, which makes the prediction
length longer and the result more reliable. Therefore, it is
a good forecasting method.
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Fig. 10 Training and test predict graphs using the ARIMA
model (train and test: blue, test predict: red).
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Fig. 11 The 25th solar cycle predict using the ARIMA
model (actual: blue, prediction: red).

By using the LSTM model, we predict that the
maximum SSA amplitude of the 25th solar cycle is
3115±401 and the strength of it will be 55% stronger
than Solar Cycle 24 with a peak occuring in October
2022. Our prediction is consistent with some previous
predictions, such asKane (2007), Rigozo et al.(2011),
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Dani & Sulistiani (2019) and Du (2020). All of us used
different methods and data to obtain the same conclusion
that the 25th solar cycle would be stronger than the prior
cycle.

Our proposed method also has some disadvantages
that we cannot predict time series data for too long future
time. Maybe, we can combine LSTM model with other
linear and non-linear models. It may improve the length
of predicting time. Of course, it can be explored in the
future scope of this work. As mentioned above, predicting
solar activity is of great significance. We hope that this
study would attract more authors to use the deep learning
methods widely in predicting tasks in heliophysics.
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