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Abstract The mass and distance functions of free-floating planets (FFPs) would give major insights into
the formation and evolution of planetary systems, including any systematic differences between those in the
disk and bulge. We show that the only way to measure the mass and distance of individual FFPs over a broad
range of distances is to observe them simultaneously from two observatories separated byD ∼ O(0.01 au)
(to measure their microlens parallaxπE) and to focus on the finite-source point-lens (FSPL) events (which
yield the Einstein radiusθE). By combining the existing KMTNet 3-telescope observatory with a 0.3 m
4 deg2 telescope at L2, of order 130 such measurements could be madeover four years, down to about
M ∼ 6M⊕ for bulge FFPs andM ∼ 0.7M⊕ for disk FFPs. The same experiment would return masses
and distances for many bound planetary systems. A more ambitious experiment, with two 0.5 m satellites
(one at L2 and the other nearer Earth) and similar camera layout but in the infrared, could measure masses
and distances of sub-Moon mass objects, and thereby probe (and distinguish between) genuine sub-Moon
FFPs and sub-Moon “dwarf planets” in exo-Kuiper Belts and exo-Oort Clouds.
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1 INTRODUCTION

The mass and distance distributions of free-floating planets
(FFPs) are crucial diagnostics of planet formation and
evolution. Low (“planetary”) mass objects,M < 13MJ ,
can in principle either form by gravitational collapse in situ
or be expelled from planetary systems after forming from
a protoplanetary disk. However, the 12 FFP candidates
discovered to date (Mróz et al. 2017; Ryu et al. 2020a,
and references therein) have masses that are eitherM <∼
0.2MJ orM <∼ 8M⊕, if they reside in the Galactic bulge
or the Galactic disk, respectively. These mass ranges are far
too small for formation by gravitational collapse, so they
must have formed within protoplanetary disks.

In principle, it is possible that some or all of these
FFP candidates are actually wide-orbit planets1, whose
hosts do not leave any signature on the apparently single-
lens/single-source (1L1S) microlensing light curves from
which they are discovered. This issue will be settled by

1 There are multiple possible paths to wide-orbit planets, including in
situ formation, smooth-pumping or violent “relocation” during or after
the planet-formation phase, or late-time adiabatic orbit expansion due to
mass loss. Hence, if the FFP candidates prove to be wide-orbit planets,
their detailed study will be an important probe of all these processes.

late-time adaptive optics (AO) imaging, after the source
and the putative host are sufficiently separated to be
resolved. This will be possible for all 12 at AO first light
on 30 m telescopes (roughly 2030), and for some a few
years earlier (Ryu et al. 2020a). Until that time, we will
not know that FFPs actually exist. Nevertheless,Ryu et al.
(2020a) argue that most of these FFP candidates are likely
to be true FFPs (rather than wide-orbit planets), and we
will adopt that perspective here.

FFPs that have masses well below those of typical
perturbers behave as test particles. Therefore the mass
function of FFPs in this regime should be similar to that
of the bodies in the general region of these perturbers,
i.e., at 1–3 times the snow line, where most gas giants
and ice giants reside. This will already provide one
major diagnostic for conditions in the protoplanetary and
post-protoplanetary disk. Second, one expects that this
distribution will be strongly cut off as the mass of the
FFPs approaches that of the perturbers, so that they no
longer behave as test particles. Hence, this cut-off mass
will be another key diagnostic. Finally, the FFP frequency
and mass function may differ in different environments,
particularly between those in the bulge and the disk, which
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would provide insight into the different planet-formation
processes in these two regions. More generally, there could
be features in the mass and/or distance distribution that we
cannot anticipate today in the absence of data.

Whether the FFP mass and distance distributions are
measured this decade, this century, or this millennium,
the method will be the same: two wide-field telescopes,
separated byD ∼ O(0.01 au) will observe at least several
square degrees of the Galactic bulge for an integrated time
of at least several years.

The first reason for this is that FFPs in theM <∼
0.2MJ regime can only be studied by gravitational
microlensing. They are unbound, and so they cannot be
detected via their gravitational effect on any other object,
nor by their blocking light from any other object. Some
FFPs may emit thermal radiation due to heat trapped
from formation or violent encounters. However, the only
“guaranteed” source of thermal emission (which is what is
required for a survey based on homogeneous detections) is
radioactive decays. For Earth, with its “typical” age of 4.5
Gyr, this amounts to2 × 1020 erg s−1, or 5 × 10−14L⊙,
which (for a black body) would be emitted atT ∼ 29K,
with a bolometric magnitudeMbol = 37.9, if Earth were
“free”. This would correspond tombol = 52.5 for an
Earth-like FFP in the Galactic bulge. Therefore, FFPs are
effectively “dark”. Hence, their only detectable effect is
that they focus light from more distant stars. Indeed, a
dozen FFP candidates have been detected via this route.

Second, once detected, the only way to determine the
mass of a dark, isolated object is to measure both its
angular Einstein radiusθE and its microlens parallaxπE,

πE ≡ πrel

θE
; θE ≡

√

κM πrel;κ ≡ 4G

c2 au
≃ 8.14

mas

M⊙

.

(1)
Here,πrel ≡ au(D−1

L − D−1
S ) is the lens-source relative

parallax, which for bulge lenses is of order2 πrel ∼ 16µas.

There are only two ways to measureπE: simultaneous
photometry from two observatories during the event
(Refsdal 1966), or, photometry from a single accelerated
platform during the event (Gould 1992). The shortest FFP
events will have their timescale set by the source crossing
time t∗ = θ∗/µrel (which is of order an hour for main-
sequence sources), rather than their Einstein crossing time
tE = θE/µrel. Hereθ∗ is the angular size of the source and
µrel is the lens-source relative proper motion. Hence, to
measureπE applying the second method, the orbital period
of the accelerated platform should be of order an hour,
which is well matched to low-Earth orbit (Honma 1999).
However, for bulge lenses, the projected size of the source

2 For the typical case that(DS +DL)/2 = 8 kpc (the approximate
distance to the bulge) and(DS − DL) = 1 kpc (the approximate
thickness of the bulge).

is (Gould & Yee 2013),

R̃∗ = ρr̃E = ρ
au

πrel/θE
= au

θ∗
πrel

= 880R⊕

(

θ∗
0.6µas

)(

πrel

16µas

)−1

,

(2)

wherer̃E ≡ au/πE is the Einstein radius projected on the
observer plane andρ ≡ θ∗/θE is the angular source radius
scaled to the angular Einstein radius. Hence, for small
bulge FFPs, there would be essentially no parallax signal
as the observatory orbited Earth. Thus, the only method of
measuringπE (and so masses) for a broad range of FFPs,
in both the disk and the bulge, requires two well-separated
observatories.

In principle, there are several methods of measuringθE
for dark objects. For example, in astrometric microlensing,
the centroid of microlensed light deviates from that of the
source by∆θ = δθ/[(δθ/θE)

2 + 2], whereδθ is the
lens-source separation vector (Miyamoto & Yoshii 1995;
Hog et al. 1995; Walker 1995). However, first, this requires
measuring astrometric deviationsθE/

√
8 → 0.35µas for

the smallestθE ∼ 1µas under consideration, which is
set by the smallest accessible sources (corresponding to
M = 2.6M⊕ for πrel = 16µas bulge lenses andM =
0.33M⊕ for πrel = 125µas disk lenses3). Second, it
requires an alert to the astrometric telescope on timescales
< tE ∼ 1 hr. For a relatively precise measurement, a
dozen 100 nas (i.e.,3 σ) measurements should be acquired
within a few hours on anI ∼ 20 target. A second method
would be to resolve the two images utilizing interferometry
(Delplancke et al. 2001; Dong et al. 2019). However, the
2µas resolution required is about 1000 times better than
current interferometers, which only work on targets that
are about 1000 times brighter. In addition, this would
require alerting these massive instruments on timescales
< tE = 1 hr. Thus, the only practical method is to observe
events for which the lens passes directly over the face of
the source, leading to a light curve that is described by
four parameters(t0, u0, tE, ρ), wheret0 is the time peak
andu0 is the impact parameter (normalized toθE) (Gould
1994b; Witt & Mao 1994; Nemiroff & Wickramasinghe
1994). Then θE = θ∗/ρ, whereθ∗ can be determined
using standard techniques4 (Yoo et al. 2004). Such transits
occur with probabilityρ, which is of order10−2 – 10−3 for
typical microlensing events. However, becauseθE is small

3 Represented byDL = 4kpc andDS = 8kpc.
4 In brief, the intrinsic source color and magnitude [e.g.,[(V −

I), I]0,s] are determined from the observed offset∆[(V − I), I] =
[(V − I), I]s − [(V − I), I]cl on a color-magnitude diagram of
fields stars, together with the known intrinsic position of the red clump
[(V − I), I]0,cl (Bensby et al. 2013; Nataf et al. 2013). Applying an
empirical color/surface-brightness relation (e.g.,Kervella et al. 2004),
often after transforming to(V,K) bands using color-color relations (e.g.,
Bessell & Brett 1988), one then derives the surface brightness and so
solves forθ∗ considering the physical relationF = πSθ2∗, where the
source fluxF and the surface brightnessS are on the same system.
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for FFP candidates,ρ is much larger. Indeed, half of FFP
candidates found to date have such finite-source point-lens
(FSPL) light curves, and henceρ measurements (Ryu et al.
2020a).

In brief, the only conceivable route to measuring the
mass and distance distributions of FFP candidates over a
broad range of distances is by synoptic observations from
two observatories that are separated by many Earth radii.

Here, we map the path toward making these mea-
surements. We begin by further quantifying the two
requirements described above, i.e., to measureπE from a
pair of observatories and to measureθE from FSPL events.
Next, we discuss specific possible implementations,
beginning with those that can take advantage of existing
resources and moving toward more complex and difficult
experiments. We demonstrate that the mass function of
the “known class” of FFPs (Mróz et al. 2017; Ryu et al.
2020a) can be measured in the “near” (5–10 year) future.
A more ambitious, but already feasible, experiment could
study sub-Moon “dwarf planet” FFPs, as well as similar
objects that remain bound in exo-Kuiper Belts (exo-KBOs)
and exo-Oort Clouds (exo-OCOs). We also comment on
the additional microlensing science that would be returned
by these efforts.

2 MICROLENS PARALLAX REQUIREMENTS

We begin by analyzing the requirements for making the
measurements in a very general way before considering
specific implementations.

The first general requirement is that the lens and
source be sufficiently separated in the Einstein ring that the
light curves differ enough to allow a parallax measurement.
This places a lower limit on the projected separation of the
two observatoriesD⊥. We designate the vector separation
of the two observatories asD, which at any given time
yields a projected separation on the skyD⊥. In fact,
we will mostly be concerned with the magnitude of this
two-dimensional (2-D) vector, i.e.,D⊥. The ratio of this
separation to the projected radius of the source (similar to
Eq. (2)) is

D⊥

R̃∗

=
D⊥

au

πrel

θ∗

= 0.27

(

D⊥

0.01 au

)(

πrel

16µas

)(

θ∗
0.6µas

)−1

.

(3)

We have normalized Equation (3) to θ∗ = 0.6µas,
which is the source radius of the most common type of
“reasonably bright” FSPL FFP event (as we will discuss in
more detail in Section3). We have also normalizedπrel to
that of a typical bulge lens, which is the most challenging
FFP. With the fiducial parameters of Equation (3), the peak
times t0 would differ by 0.27 t∗ assuming that the lens-
source motionµrel were aligned withD⊥ while the two

trajectories would be displaced by0.27 θ∗ if µrel andD⊥

were orthogonal. Because these quantities can easily be
measured to 1/10 of these values with reasonable data, this
separation is quite adequate.

The second requirement is that the source trajectories
as seen by each observatory should come within the
Einstein radius of the lens. Otherwise one will obtain only
a lower limit on this separation, and hence only a lower
limit on πE. Of course, for events withρ > 1 one could
measure this offset up to separations∼ θ∗ = ρθE, and,
with sufficiently good data, one could measure it up to
∼ 2θE (or more) even for events withρ <∼ 1. However, in
the limiting cases that define this criterion, measurement at
one Einstein radius will be challenging. We also note that
if µrel were perfectly parallel toD⊥, then both trajectories
would have the same impact parameter, regardless of the
magnitude ofD⊥. However, the criterion should be set by
the general problem of detectability, not special cases. That
is, the magnitude of the normalized separation,

∆u = |∆u| =
∣

∣

∣

∣

D⊥

r̃E

∣

∣

∣

∣

=
D⊥

au

√

πrel

κM
, (4)

should be∆u < 1.
An important aspect of the experiment is that it should

be sensitive to lenses of the same mass in both the disk
and the bulge. Equation (4) demonstrates that at fixed lens
mass,∆u ∝ √

πrel. Hence, for sufficiently largeπrel

the source as seen from the second observatory will be
“driven out” of the Einstein ring. However, if we consider
the smallest bulge lenses from the example above, with
θE = θ∗ = 0.6µas (and thereforeM = θ2E/κπrel =
0.9M⊕), then this condition will be met provided that
πrel < (16µas)/0.272 = 220µas, corresponding to
DL > 2.9 kpc. After taking account of the fact that at
somewhat largerπrel there will still be many measurements
due to non-orthogonal trajectories, a very broad range of
distances will be included even for the case of the most
difficult mass for bulge detections.

To review, because it is possible to make a parallax
measurement when the offset in Einstein ring∆u is much
less than the normalized source size∆u/ρ = D⊥/R̃∗ ≪
1, it is also possible to keep the lens-source separation
inside the Einstein ring for a broad range of distances:
πrel,bulge < πrel < (R̃∗/D⊥)

2πrel,bulge.

3 FSPL REQUIREMENTS

In one sense, the FSPL requirement is exquisitely simple:
the lens must transit the source, i.e., come withinθ∗ of
its center. However, the range of properties of potential
sources is enormous, and any concrete experimental FSPL-
survey design must focus on some subset or subsets. For
example,Kim et al. (2021) focused on giants. Moreover,
the FSPL component of a survey that incorporates parallax,
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must take account of the constraints arising from the
parallax measurement (see Section2).

Before reviewing the characteristics of the source
population, we note that the event rate (as a function of
lens mass) for FSPL events is very different from the
microlensing event rate. For an individual source, with
radiusθ∗, these are,

ΓFSPL(M) = 2θ∗

∫ Ds

0

dDD2n(M,D)〈µ(D)〉, (5)

and

Γevent(M) = 2

∫ Ds

0

dDD2n(M,D)〈µ(D)〉θE(M,D)

= 2

∫ Ds

0

dDD2n(M,D)〈µ(D)〉
√

κMπrel,

(6)
wheren(M,D) is the number density of lenses with mass
M and distanceD, and where〈µ(D)〉 is the mean lens-
source relative proper motion of these lenses. Due to the
last factor in Equation (6), more massive lenses and more
nearby lenses are heavily favored relative to their number
density in the overall event rate, which is not true of the
FSPL rate. From the standpoint of studying FFPs, this
FSPL bias toward low mass objects is obviously good:
if there are really 5–10 times more super-Earth FFPs
than stars (Mróz et al. 2017; Ryu et al. 2020a) then there
will be 5–10 times more FSPL FFP events than FSPL
stellar events. However, from the standpoint of probing
a broad range of distances (and so a broad range of
environments), this bias is somewhat troubling. Due to the
low surface density of disk stars, they contribute a minority
of all events, even with their

√
πrel advantage shown

in Equation (6). This shortfall will now be multiplied
by a factor [(125µas)/(16µas)]1/2 = 2.8, which will
be an important consideration further below. Finally, we
recall from Section2 that at fixed mass, lowπrel (e.g.,
bulge) lenses drop out of the sample due to the difficulty
of measuring their microlens parallax. Thus, any survey
design strategy must take account of both the intrinsically
low rate of disk FSPL events and the suppression of
low-mass bulge events in the process of their parallax
measurement.

To frame the issues of survey design, we first make
a rough estimate of the event rate from G dwarf sources
using the Holtzman et al. (1998) luminosity function,
which we first multiply by a factor of two because the
density of sources and lenses is about two (or more) times
higher in the best microlensing fields (Nataf et al. 2013;
D. Nataf 2019, private communication). We ignore disk
lenses because, as just discussed, they are a numerically
minor (though scientifically very important) addition to the

overall rate. The rate per unit area is

dΓFSPL/G

dΩ
= 2 〈θ∗〉NFFPNG〈µ〉

→ 2× 0.5µas
5× 105

arcmin2
3× 103

arcmin2
6.5masyr−1

=
9.8 yr−1

deg2
,

(7)
where we have adopted〈θ∗〉 = 0.5µas as the mean
radius of G dwarfs, defined as3.5 < MI < 5. We
estimateNG, the surface density of G dwarfs, by doubling
the number within3.5 < MI < 5 in figure 5 of
Holtzman et al.(1998). We extrapolate this diagram to
estimate the surface density of stars as5 × 104/arcmin2,
then double this number to consider a better microlensing
field, and then multiply by five based on the 5:1 FFP/star
ratio estimated byMróz et al.(2017). We approximate the
bulge proper-motion distribution as an isotropic Gaussian
with dispersionσ = 2.9masyr−1 based on experience
with Gaia proper-motion data in many high event-rate
fields. This functional form implies〈µ〉 = (4/

√
π)σ. See

Appendix.
Next we repeat this calculation for three other brighter

classes of stars, turnoff/subgiants (2 < MI < 3.5),
lower-giant-branch (0.5 < MI < 2) and upper-giant-
branch+red-clump (MI < 0.5). For the four classes, we
adopt surface-density ratios (1.000, 0.267, 0.027, 0.025)
and cross sections2〈θ∗〉 = (1.0, 2.4, 9.0, 14.0) µas. The
product of these factors is(1.00, 0.64, 0.24, 0.35). Hence,
scaling to Equation (7), these yield respective rates

dΓ

dΩ









G dwarfs
Turnoff/Subgiants

Lower Giants
Upper Giants









=









9.8
6.2
2.3
3.4









yr−1

deg2
. (8)

The first point to note regarding Equation (8) is
that there can be a large number of potential FFP mass
measurements, provided that some or all of these regimes
can actually be probed. There are about10 deg2 of high
event-rate fields in the southern bulge that have modest
extinction,AI <∼ 2, for which the G-dwarf limit would
require Ilim ∼ 21.5. Now, it is certainly not possible
to properly characterize magnificationA ∼ 2 events on
I = 21.5 sources from any current ground-based surveys,
so the simplest implementation of this approach (coupling
a new observatory orbiting at L2 with existing ground-
based surveys) could not reach this limit.

However, the defining target of the first survey would
be the bulge analogs of theθE ∼ 6µas disk FFP
population that has already been detected, i.e., withθE =
(16/125)1/26µas = 2µas. To be sensitive to a broad
range of bulgeπrel, we adopt a more conservative fiducial
value ofθE = 1.5µas. For these,ρ = θ∗/θE = 0.33 and
so the peak magnification isAmax =

√

1 + 4/ρ2 → 6,
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implying a difference-star magnitude ofI = 19.8. Such an
event probably could not be reliably recognized in ground
data alone. However, if the L2 telescope had substantially
better data, and in particular could determinetE and ρ,
then the fit to the ground-based light curve would be
highly constrained (the reverse of the situation considered
by Gould 1995; Boutreux & Gould 1996; Gaudi & Gould
1997). The situation would be substantially better for G
dwarfs in the middle of the distribution, i.e., a factor 2
brighter.

We now turn to the opposite extreme: giant sources.
The same bulge super-Earth discussed above would
magnify only a small part of a clump giant’s(θ∗ = 6µas)
surface, implyingAmax = 1.12 and soIdiff = 18.8, i.e., a
magnitude brighter than the G-dwarf case. The background
(due to the giant itself) is higher, but this is overall a
secondary effect.

The lower-giant branch stars have similar color, and
so similar surface brightness. Because only a portion of
their surface would be magnified by aθ∗ = 1.5µas
lens, the difference star would have similar brightness
Idiff = 18.8. Moreover, the source itself would generate
less background noise.

The best case would be the turnoff/subgiants because
they have higher surface brightness. For example, for
MI = 3 andθ∗ = 1.2µas, Idiff = 18.6. That is, all four
classes in Equation (8) could potentially contribute to FFP
detections, although it will still be necessary to examine
the integrated measurement process as a whole.

In brief, there is a known population of 12 FFPs, of
which 11 are likely due to super-Earths, mostly in the disk
(Ryu et al. 2020a), with five of these 11 having measured
θE ∼ 6µas. If there are analogs of these objects in the
bulge (withθE ∼ 1.5µas), then none have been detected in
current surveys, and the sensitivity of these surveys to such
objects is limited5. However, even at the adoptedMI ∼ 5
threshold, ground surveys could marginally characterize
the light curve generated by such putative bulge super-
Earths, provided that(ρ, tE) were well determined from
space. This would permit a marginal mass measurement
at this threshold. Mid-G dwarf and brighter sources would
yield substantially better results.

4 KMTNET + L2 SATELLITE (KMT+L2)

In this and the next section, we will consider two of
the many possible two-observatory scenarios that could
probe the FFP mass and distance functions. We begin this
section by motivating why combining the KMTNet survey

5 OGLE-2016-BLG-1928 hasθE ∼ 1µas, but it is almost certainly a
much lower mass object that lies in the disk (Mróz et al. 2020). The fact
that it was detected shows that current surveys have some sensitivity to
bulge analogs of the detected FSPL events, although it is weak.

(Kim et al. 2016) with an L2 satellite (KMT+L2) should
be one of those subjected to review6.

First, KMT+L2 is an intrinsically cheap option. The
satellite requirements are limited by the fact that whatever
FSPL events that it might detect that are “inaccessible” to
KMTNet (in the sense that they cannot be characterized
with ground-based data even iftE and ρ are known
infinitely well from space) are useless.

Second, such a low-requirement satellite could be built
very quickly, while KMTNet is still in operation (or could
be persuaded to remain in operation). Thus, it could return
results on FFPs before it is absolutely confirmed that the
bulk of the FFP candidates that have been reported to date
are FFPs (rather than wide-orbit planets).

Note that while wide-orbit planets, if they exist, would
be just as interesting and important as FFPs, they do not
require such specialized equipment to measure their mass
and distance functions. The very same 30 m AO followup
that would prove that the FFP candidates have hosts, would
also measure the mass and distance of these hosts, while
second AO epochs would yield the host-planet separations
(Gould 2016; Ryu et al. 2020a).

Therefore, the low cost of KMT+L2 is well matched
to the higher risk that the target population may be non-
existent.

Third, by obtaining early results, KMT+L2 could
influence the design of more advanced experiments
that would be motivated by AO confirmation of ear-
lier FFP candidates. For example,Ryu et al. (2020a)
demonstrate that FFP candidates (OGLE-2016-BLG-1540,
OGLE-2016-BLG-1928, OGLE-2012-BLG-1323, KMT-
2017-BLG-2820) (Mróz et al. 2018, 2020, 2019; Ryu et al.
2020a) can be confirmed (or ruled out) as FFPs by (2024,
2024, 2027, 2028), respectively.

Fourth, as we will show, any experiment designed to
measure masses and distances of FFPs will automatically
return these same measurements for a large fraction
of bound-planet lenses in its field of view. Such
measurements will remain of exceptional interest only
until the advent of 30 m AO, at which point such mass
and distance measurements will generally be possible
after wait times of 3–5 years. The exception is that
two-observatory experiments will also yield masses and
distances for dark (e.g., brown dwarf, white dwarf) hosts,
whereas AO followup will not.

As a specific example, we will consider a 0.3 m
optical telescope in L2, equipped by a 18k×18k camera.
This choice is partly motivated by the actual design of a
planned multi-telescope satellite (Earth 2.0 Transit Survey

6 KMTNet combines three telescopes, located in Australia (KMTA),
Chile (KMTC) and South Africa (KMTS), each with a 1.6 m telescope,
equipped with an 18 k×18 k camera spanning a4 deg2 field. Of some
practical import in the present context, the telescopes areon equatorial
mounts, and the field is oriented on equatorial coordinates.See, e.g.,
figure 12 ofKim et al. (2018).
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Mission), which will mainly be utilized for transits, but
which could include a microlensing telescope, and partly
because a 0.3 m telescope would yield photometry that is
significantly (but not dramatically) better than KMTNet at
the faint end, in accordance with the first motivating point
given above.

We will assume a throughput similar to KMTNet and
a filter similar toI-band as well. These imply a full width
at half maximum (FWHM) =0.67′′ and photometric zero
point ofIzero = 26.75 for a nine-minute exposure, i.e., 200
photons from anI = 21 difference star.

We now consider a specific implementation with a
2◦ × 2◦ field of view and0.40′′ pixels, i.e., identical to
KMTNet. The camera would be centered and oriented to
exactly match the KMT observations. The center would
be at about(ℓ, b) = (+1.0,−1.8) if the KMTNet
cameras can be rotated to Galactic coordinates and about
(ℓ, b) = (+1.0,−2.1) if they cannot. The blue dots in
figure 8 ofRyu et al.(2020b) display published planetary
microlensing events from 2003–2010, a period when
microlensing survey cadences were adequate to find events
over a broad area, but mostly could not characterize
planetary perturbations by themselves. Rather, planets
were mostly found by targeted follow-up observations
of these events (Gould & Loeb 1992). The distribution
is quite broad over the southern bulge, although it does
favor regions that are closer to the plane. Hence, the huge
concentration of planet discoveries centered on(ℓ, b) =
(+1.0,−1.8) from subsequent years is mainly a product of
the fact that much higher-cadence surveys concentrated on
these areas. Nevertheless, KMTNet’s choice to concentrate
on this area with its highest cadence fields (red field
numbers) does reflect the highest intrinsic event rate as
determined following the method ofPoleski(2016).

At (0.67/0.40) = 1.7 pixelFWHM−1, the images
would be slightly subsampled, but still much better
sampled than for3.6µm observations onSpitzer: 0.9
pixel FWHM−1. Moreover, the photometry would benefit
from the much more uniform pixel response function
characteristic of optical CCDs. Hence, it is plausible that
photon-limited photometry could be achieved. Considering
the point spread function (PSF) ofπ FWHM2 =
1.4 arcsec2, there would be about 1.5 G dwarfs (similar
to the target source population) per PSF. Hence, anA = 2
magnification event (of anMI = 4.5, AI = 2 star) would
have a 200 photon signal and

√
200× 2.5 ∼ 25 photon

noise (assuming good read noise, etc), i.e., a signal-to-
noise ratio (SNR) of 8. With 10 such exposures over a
typical2 t∗ = 1.6 hr event, there would be a clear detection
and reasonable characterization of extremeθE = θ∗ ∼
0.5µas FFPs. However, because this same event could
barely be “detected” from the ground7 (even if one knew
from the space observations where to look), there would

7 See KMT error bars nearI ∼ 20.2 in Fig. 1.
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Fig. 1 Illustration of light-curve data and error bars for
KMTC (black) and a 0.3 m satellite such as Earth 2.0 (red)
for an M = 5.75M⊕ lens lying in the Galactic bulge,
πrel = 16µas (e.g., DS = 8.5 kpc, DL = 7.5 kpc)
magnifying a solar type source (MI = 4, AI = 2). These
parameters yieldθ∗ = 0.58µas. tE = 120min, t∗ =
46min,ρ = 0.38. For Earth(t0, u0) = (0.2500 d, 0.2000),
and for the satellite∆(t0, u0) = (−7.9min, 0.065). The
displayed KMTC points are binned over 8.25 minute
cycles, of three 1.00-minuteI-band exposures, together
with one 1.25 minuteV -band exposure (not shown), with
1.00 minute read-out time. The satellite points have 9.0-
minute integrations and 1.0-minute read out. In this case
∆t0/t∗ = 17%. The four-fold degeneracy (Refsdal 1966;
Gould 1994a) yields two solutions with the true parameters
of the system, and another two with(∆t0, |∆u0|) =
(−7.9min, 0.465), which would implyM = 1.12M⊕,
πrel = 82µas andDL = 4.8 kpc. This solution requires
fine tuning and would be heavily discounted in a statistical
analysis, but could not be ruled out in any individual case.
See text. For a concrete realization with simulated noise,
see Fig.2.

be no parallax measurement. Still, the “routine” detection
of such small-θE FSPL events would be of considerable
interest. By contrast, only one suchθE < 1µas event has
been detected in 10 years of OGLE-IV data (Mróz et al.
2020).

Becauseθ∗ = 0.5µas is already in theρ >∼ 1 limit
for which the excess flux is basically just twice the area of
the Einstein ring times the surface brightness, the brighter
three classes have similar excess fluxes.

On the other hand, as discussed in Section3, for
putative bulge super-Earth FFPs ofθE = 3 θ∗ ∼ 1.5µas,
the satellite would yield excellent characterization and,
based on the resulting(ρ, tE) measurements, the ground
light curve could be well characterized. See Figures1 and
2.

However, the true rate of measurements would be
well below that implied by Equation (8) simply because
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Fig. 2 Concrete realization of observations of the event
displayed in Fig.1 with simulated Gaussian noise. The
noise is applied to the flux, with the values and errors
transformed to magnitudes for plotting. Note that, even in
the presence of scatter, the differences in center, width and
height between the two curves is discernible by eye.

Table 1 KMT+L2 Telescope Properties

Property KMT L2

Aperture (m) 1.6 0.3
Cycle time (min) 8.25 10.0
I-band zero point 29.20 26.75
Pixel Size (arcsec) 0.40 0.40
FWHM (arcsec) 1.3–2.5 0.67
I-background (arcsec−2) 18.5 20.5
I-background (PSF−1) 16.7–15.3 20.1
V -band zero point 28.65
V -background (arcsec−2) 20.9

KMT “cycles” contain three 60 sI- and one 75 sV -band exposures.
KMT background is sky dominated and is taken as 1.4 times “dark”
value. L2 background is ambient-star dominated and is evaluated at
AI = 2 and2×Holtzman et al.(1998) luminosity function. Compare
baseline and magnified performance of KMT vs. L2 in Fig.1.

these require simultaneous observations. While the L2
observations could be carried out continuously (apart from
a short window when the Sun passes through the bulge),
the combined three KMTNet telescopes can observe a
given bulge field 49% (after taking account of a 3%
overlap between KMTS and KMTC) of the year due to
the annual and diurnal cycles. See Figure3. For about
1/4 of this 49% (averaged over the three telescopes),
bad weather or high background would prevent useful
observations, leaving about 37%. For about 30% of this
remaining time, the projected separation would beD⊥ <
0.5D due to the alignment of Earth, L2, and the bulge
near (June 20)±(1 month). This would degrade parallax
measurements for smallπrel, in some cases critically. We
estimate that KMTNet and the L2 satellite would be able
to work together about 28% of the year. Equation (8) then
implies that a four-year mission would make mass/distance
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Fig. 3 Day versus time of actual 2019 observations
of closely overlapping KMT fields BLG02 and BLG42,
color coded as indicated in the legend for the three
KMT observatories: KMTA, KMTS and KMTC. The
red quadrangle around the KMTC observations is the
empirically determined limit of the observational window
for that field. Note that KMT does not observe in the
extreme wings of the season, but could in principle. The
remaining two red quadrangles are translated versions
of the KMTC quadrangle. They match the empirical
boundary of KMTS very well, but the match is less perfect
for KMTA. Nevertheless, it is satisfactory for present
purposes. See Fig.4.

measurements for about 100 bulge super-Earth FFPs.
There are, intrinsically, about 5 times fewer corresponding
disk FFPs. However, due to their roughly 8 times larger
πrel (and corresponding∼ 2.8 times largerθE), they are
hardly affected by the contraction ofD⊥ near opposition.
Moreover, the peak magnification for FSPL events is
more than 1 magnitude greater, meaning that 1 additional
magnitude from the Holtzman luminosity function is
accessible. Hence, we estimate roughly 30 measurements
of disk FFPs from the same population. In addition,
it is plausible that the FFP mass function rises toward
lower (e.g., Earth and Mars) masses, in which case the
experiment would be sensitive to those as well, but only
in the disk.

Table 1 summarizes the adopted properties of the
KMT+L2 system, and Table2 summarizes the prospective
FFP detections as a function of source type and lens
population.

4.1 Source Color Measurements

The determination ofθE requires that the source color be
measured, or at least accurately estimated. The best way to
do this is to take data in two bands during the event, and
either fit them both to a common model, or just perform
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Table 2 FFP MASS MEASUREMENTS FORKMT+L2

Characteristic G dwarfs MS/SG Lower Giants Upper Giants

〈θ∗〉 (µas) 0.5 1.2 4.5 7.0
Nsource (arcmin−2) 3000 800 80 75
2〈θ∗〉〈µ〉NFFP,bulgeNsourceΩTeff,bulge 44 28 10 15 97
2〈θ∗〉〈µ〉NFFP,diskNsourceΩTeff,disk 18 7 3 4 32

Assumes〈µ〉 = 6.5mas yr−1, survey areaΩ = 4deg2, Teff,bulge = 28% (4 yr), Teff,disk = 37%

(4 yr), NFFP,bulge = 5 × 105 arcmin−2, NFFP,disk = NFFP,bulge/5 and that there are 1.4 times
more accessible main-sequence (“G dwarf”) sources for diskFFPs compared to bulge FFPs.

linear regression on the fluxes. In the present case, the only
source of data in a second band will be KMTV -band data.
For the marginal events just described, with difference
magnitudesIdiff = 21, theV -band difference magnitudes
will be Vdiff = Idiff +(V − I)0+E(V − I) → Idiff +2.2
for (V − I)0 = 0.7 andE(V − I) = 1.5. This will not be
measurable in the most extreme casesIdiff = 21, for which
it will be necessary to estimate the color, either from that
of the baseline object (see Section4.2) or from the fitted
source flux (or even baseline flux) together with a color-
magnitude diagram. The former method can work quite
well provided that the baseline images are resolved to the
depth of the source flux. The latter can lead to errors inθE
(and soM ) of ∼ 15% for main-sequence stars and turnoff
stars.

However, for the defining targets, bulge super-Earths
with θE ∼ 1.5µas, a turnoff source,MV = 3.7, θ∗ =
1.2µas and AV = 3.5, together implyVdiff = 21.2.
This corresponds to about 1000 difference photons in a
75 second exposure, of which there would be a dozen
over peak. Hence, there would be many robust color
measurements as well as some estimated colors with larger
error bars.

4.2 CSST Imaging for Baseline-Object Color and
Blending

The Chinese Space Station Telescope (CSST) is a 2 m
wide-field (1.2 deg2) imager with 75 mas pixels, scheduled
for launch in 2024. There is no filter wheel, but sections of
the focal plane are allocated to various pass bands, includ-
ing SDSS(g, r, i, z, y)8, with FWHM=(60,82,98,123,136)
mas. Hence, the entire KMT+L24 deg2 field could be
covered ingriy in 200 overlapping pointings9, with about
90% of the area imaged twice in each band.

At this resolution, and at the depth relevant to the
experiment, the field is essentially “empty”, i.e., just
6 × 10−3 G dwarfs per pixel. In most cases, the event
could be localized to 0.1 KMT/L2 pixels (40 mas) from
difference imaging. Hence, very few ambient stars would
be mistaken for and/or blended with the source. That

8 Other sections are allocated tou and NUV filters, as well as to
various grisms.

9 Given the specific layout of the detector, complete coveragein z
would require an additional 200 pointings.

is, the potential blends would be essentially restricted to
companions of the source or lens. For cases that the source
flux derived from the fit was in tight agreement with
that of the corresponding baseline object, the baseline-
object color would be an excellent proxy for the source
color. In other cases, one could adopt the color and
magnitude of the baseline object, together with a suitable
statistical distribution based on properties of potential
lens and source companions. This entire procedure could
be rigorously tested on hundreds of high-magnification
microlensing events, for which the(V − I) color will be
precisely measured by KMT.

4.3 Discrete and Continuous Parallax Degeneracies

Refsdal(1966) already pointed out that satellite parallax
determinations are subject to a four-fold degeneracy
because we inferπE = ∆u(au/D⊥) from a measurement
of the offset in the Einstein ring,∆u = (∆t0/tE,∆u0),
from the fit parameters(t0, u0) to the ground and satellite
light curves. However, whileu0 is a signed quantity,
only its modulus can generally be determined from the
light curve of short events. Thus, there are two solutions
with the source passing on the same side of the lens
as seen by both observatories,(+,+) and (−,−), and
two with the source passing on opposite sides,(+,−)
and (−,+). The two members of each pair have the
sameπE but different directions. However, the first pair
has smallerπE than the second:πE,±,± < πE,±,∓. See
figure 1 fromGould (1994a). For the very short events
under consideration here, the only way to rigorously break
this degeneracy is to observe the event from a third
observatory (Refsdal 1966) as was done in the cases
of (OGLE-2007-BLG-224, OGLE-2008-BLG-279, MOA-
2016-BLG-290)10 (Gould et al. 2009; Yee et al. 2009;
Zhu et al. 2017).

The only other path to distinguishing betweenπE,±,±

andπE,±,∓ is statistical: ifπE,±,± ≪ πE,±,∓ (i.e.,∆u0 ≪
u0) then the latter solution requires fine tuning (J. Rich,

10 The first two were terrestrial-parallax measurements from (Chile,
South Africa, Canaries) and (Tasmania, South Africa, Israel), respec-
tively. The third combined (Earth,Spitzer, Kepler). NeitherGould et al.
(2009) nor Yee et al. (2009) explicitly recognized that the four-fold
degeneracy was broken by three observatories, althoughGould et al.
(2009) did note the consistency of two time delays, which is the same
issue. Hence,Zhu et al. (2017) were the first to explicitly break this
degeneracy.
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circa 1997, private communication;Calchi Novati et al.
2015). In fact, the “Rich Argument” factor appears
naturally as a Jacobian within a standard Bayesian analysis
(Gould 2020).

For KMT+L2 FFP parallax measurements, the “Rich
argument” will often prove applicable to giant-source
events. For example, according to Equation (3), for a
lower-giant-branch source (θ∗ = 3µas) and a bulge lens
πrel = 16µas, the offset between the two observatories
will be 0.054 source radii. Hence, foru0 ∼ ρ/2,
πE,±∓/πE,±± ∼ 20. That is, the lens will transit the
source at similar (source) impact parameters, and it would
require fine tuning to arrange that they transited at almost
symmetric impact parameters11. In addition, for cases that
ρ ≪ 1, so thatu0 ≪ ρ is necessarily small as seen
from one observatory (to have an FSPL event), the lens
trajectory may fall well outside the source as seen from
the other observatory, in which caseπE,±,± ≃ πE,±,∓, so
there is no real degeneracy. However, particularly forρ ∼
1, which includes the most extreme and difficult lenses,
there may be significant ambiguity in the interpretation of
individual events.

This discrete degeneracy interacts with the continuous
degeneracy in∆u0. If the source flux is left as a free
parameter for a 1L1S (more specifically FSPL) event, then
the error inu0 will in general be much larger than the
error in t0/tE. Therefore, if the twou0 from the two
observatories are treated as independent parameters, then
the error in∆u0 will be correspondingly greater than in
∆t0/tE. However, if the ratio of source-flux parametersfs
is constrained from comparison stars, then the error in∆u0

can be greatly reduced, but only for the smallπE solution.
See Equation (2.5) ofGould (1995) for the first example
of a calculation of this effect. The reason is that as the flux
is varied, the two values of|u0| move in tandem. For the
small-parallax solution, this means that the two values of
u0 also move together, but for the large-parallax solution,
they move oppositely.

For relatively bright sources, the issue of continuous
degeneracies can be removed if a good argument can be
made that the source is unblended, so that the source flux
can be fixed. In the general case, the same argument can
ultimately be made after followup AO observations show
the source and (possible) host in isolation. Then the source
flux can be measured (and transformed toI band), thereby

11 We note that for the very large sources,ρ ≫ 1, parallax
measurements may be difficult for the subset of events withz0 ≪ 1,

wherez ≡ u/ρ. The “effective half-duration”tdur ≡ t∗

√

1− z20 is

extremely well determined from the light curve, but a small fractional
error in t∗, δ ln t∗ then results in comparable error inz20 , δ(z20 ) ≃
2δ ln t∗, and hence (forz0 ≪ 1), a much larger error inz0, and so
in u0: δu0 ≃ ρ2δt∗/u0. See, e.g., the case of OGLE-2012-BLG-1323
(Mróz et al. 2019). However, these concerns do not apply for largerz0,
such as thez0 = 0.5 example used here to illustrate the applicability of
the Rich Argument to large sources.

greatly reducing the continuous degeneracy. If the source
and host both appear, then the vector proper motion can
be measured, which will very likely completely resolve
the four-fold degeneracy (see fig. 1 ofGould 1994a). Of
course, this will not include the cases of genuine FFPs. For
some fraction of these, there will be∼ O(2) errors in the
mass estimate due to unresolved four-fold degeneracies.

4.4 Bound Planets: Masses and Distances

KMT+L2 would have many other applications. We focus
here on those that rest on combined mass and distance
determinations for microlensing events, i.e., combinedθE
andπE measurements. First among these are binary-lens
single-source (2L1S) events, particularly those containing
planets.

Graff & Gould (2002) pointed out that 2L1S events
were ripe for mass measurements by a parallax satellite
because (in contrast to the overwhelming majority of 1L1S
events) ground-based data routinely return measurements
of θE due to finite-source effects during caustic crossings.
This in turn is due to the facts that the caustics are
much larger for 2L1S and (very importantly) that we
mainly become aware of the lens binarity due to such
caustic crossings. Hence, all that is needed to complete
the mass and distance determinations is aπE measurement.
Graff & Gould (2002) investigated a number of problems
related to such measurements (including the role of
degenerate solutions – see their fig. 4), but they did so
within the context of an Earth-trailing parallax satellitethat
would be triggered to sparse observations by a ground-
based alert.

Gould et al.(2003) studied a problem much closer to
the present one: a survey telescope at L2, complemented by
a simultaneous ground-based survey. However, their main
concern was to investigate the possibility of measuringπE

and θE for Earth-mass planets even in the absence of a
caustic crossing (see their fig. 1). They comment in passing
that such a ground+L2 survey will routinely yieldπE plus
θE measurements for caustic crossing events, but they do
not further explain this.

Here, we discuss to what extent this is actually the
case. We begin by asking what can be learned from
observations of the source crossing a single caustic,
combined with a model of the caustic geometry derived
from the overall light curve as observed from a single
observatory (say, the satellite). In particular, the crossing
will take place at an angleφ (whereφ = 0 corresponds
to perpendicular). Then, as seen from Earth, the crossing
will take place ∆t = ∆t0 + tanφ∆u0tE later,
where (∆t0/tE,∆u0)r̃E is the offset between the two
observatories in the Einstein ring. If only∆t is measured
(no matter how precisely), one can gain only one constraint
on the vector∆u = (∆τ,∆β) ≡ (∆t0/tE,∆u0),
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and hence cannot uniquely determineπE = ∆u au/D⊥.
In principle, there is additional information from the
difference between the “strength” of the caustic at the
positions crossed by the source as seen from the two
observatories. A “stronger” caustic will lead to a greater
magnification at the peak of the crossing. However, except
near the cusps, the gradient in caustic strength is very
weak, meaning that in practice it is difficult or impossible
to extract useful information from the different caustic-
peak fluxes. As pointed out byGould et al.(2003), it is
also possible to get an independent constraint from the
one-dimensional (1-D) annual parallax (Gould et al. 1994)
measured from the overall light curve. This will be feasible
in some cases, but not others, in particular those with short
tE and/or faint sources. Here we focus on extraction ofπE

from the caustic features of the light curve alone.
As caustics are closed curves, every entrance will

be matched by an exit. If delays∆t1 and∆t2 occur at
crossing anglesφ1 and φ2, and each is measured with
precisionσ, then the measurements can be expressed as
two equations with two unknowns(∆τ,∆β),

∆ti = (1 ·∆τ +tanφi ·∆β)tE ± σ; (i = 1, 2), (9)

whose covariance matrix is

ci,j

(

∆τ
∆β

)

=
σ2

(tanφ2 − tanφ1)t2E

(

tanφ2 − tanφ1

−1 1

)

.

(10)
Thus, for example, if the crossings are on consecutive
caustic segments (i.e., separated by one cusp) then|φ2 −
φ1| is likely to be a few tens of degrees, so that| tanφ2 −
tanφ1|−1 will be only of order a few. However, if the
caustic segments are separated by two cusps (or three cusps
for some resonant caustics), then they could be roughly
parallel, leading to| tanφ2 − tanφ1|−1 being of order ten
or even a few tens.

However, in most cases, the measurement of two
different caustic-crossing time offsets will yield good mass
and distance determinations. The first point is that the
offsets themselves are of order

∆t ∼ D⊥

ṽ
=

D⊥

au

πrel

µrel

= 13min
D⊥

0.01 au

(

πrel

16µas

)(

µrel

6.5masyr−1

)−1

,

(11)
while the full caustic crossing times will be2 | secφ|t∗ =
97min secφ(θ∗/0.6µas)/(µrel/6.5masyr−1). Hence,
there will be many observations per crossing. Here,
ṽ ≡ r̃E/tE is the lens-source relative velocity projected on
the observer plane. Moreover, caustic crossings generally
yield magnification jumps∆A ∼ O(10), which are easier
to detect than the∆A ∼few level events that define the
requirements of the FFP experiment.

The main difficulty is that both observatories must
observe both caustics. This would be automatic for the

L2 satellite during the time (perhaps eight months per
year) of its continuous observation. However, the ground
observations would face interruptions due to weather and
diurnal cycle. Approximating the two caustic crossings
as independent, and scaling weather/Moon interruptions
as (15,25,35)% at KMT(C,S,A), then 22% of all events
during the (365 d) year would be observed during two
caustic crossings and another 29% would be observed
during one. See Figure4. As noted above,πE could be
recovered for some of the latter by combining the single
caustic time offset with the 1-D annual parallax signal.
Moreover, high-magnification events, which are especially
prone to planetary anomalies (Griest & Safizadeh 1998),
will often yield parallax measurements even if planetary
caustic crossings are not observed (Yee 2013). We also
note that if we exclude the 31 d closest to opposition, when
both parallax signals will be much smaller (due to small
D⊥ and low projected acceleration of the satellite and
of Earth), then these percentages drop to 17% and 26%,
respectively.

5 TWO-SATELLITE EXPERIMENT: IRX2

By launching two identical survey telescopes into orbits
separated byD ∼ O(0.01 au), one could pursue substan-
tially different science relative to KMT+L2 (Section4).
For example, one satellite could be at L2 and the other
in a low-Earth polar orbit or in geosynchronous orbit at
relatively high inclination12.

The main value of having two identical satellites is that
the experiment would not be fundamentally constrained by
the limits of ground-based observations. These constraints
include both time coverage and resolution. However, the
most important ground constraint comes from the high sky
background in the infrared (IR).

To address the various choices, we first focus on the
main potential scientific objectives. As we have discussed
above, the effective limit of KMT+L2 in Einstein radii is
θE >∼ 1.5µas, which roughly corresponds to FFP masses
M ∼ 6M⊕ in the bulge orM ∼ 0.7M⊕ in the disk.
Bodies on the latter mass scale are relatively common in
the solar system (two examples). However, bodies that
are 100 times less massive, i.e.,M ∼ 0.5MMoon are
more common, even though they are substantially more

12 Another, more ambitious, approach would be to launch three
such satellites into the same L2 halo orbit with epicyclic radius, e.g.,
rhalo ∼ 0.003 au, and separated in phase by120◦. Then, the projected
separation between some pair of these would always be1.5 rhalo <
maxij(D⊥,ij) <

√
3 rhalo, whereD⊥,ij is the projected separation

between satellitesi and j. Then the third satellite could almost always
break theπ±±/π±∓ degeneracy, even whenminij(D⊥,ij) was small
(although the much less important directional degeneracy would usually
not be broken).Bachelet & Penny(2019) and Ban (2020) discuss a
2-satellite variant of this scenario, composed of the planned Euclid
and Roman missions, although the possibility of joint observations is
restricted to about 40 d per year by design features of these observatories.
See Section6.
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Fig. 4 Fraction of time that A: a given 1L1S event can be
observed by some KMT observatory (magenta); B: exactly
one caustic of a given 2L1S event can be observed by some
KMT observatory (blue); and C: both caustics of a given
2L1S event can be observed by some KMT observatory
(red), assuming that KMT(A,S,C) are incapacitated by
weather/Moon (35,25,15)% of the time. Hence, in the parts
of the season that the red quadrangles in Fig.3 do not
overlap, the magenta curve is simply 75% of the time
that a given day lies inside one of these quadrangles.
When they do overlap, account is taken of the fact that
observations could take place at either observatory. Then,
fred = f2

magenta and fblue = 2(fmagenta − fred). The
black dashed lines indicate the times ofD⊥ < 0.0025 au
(when 2L1SπE measurements are very difficult) under the
assumption that the satellite is exactly at L2. In fact, L2
orbits have a minimum24◦ in-plane motion, so this “dead
zone” will actually lie somewhere±25 d from where it
is shown. However, this is a minor effect. For 1L1S, the
range of “difficult” parallax measurements (not displayed)
is about two times longer.

difficult to detect. In the context of the Solar System, such
bodies could plausibly have been prodigiously “ejected”
to the Oort Cloud or to unbound orbits, or they could
remain “hidden” in the outer regions of the Kuiper Belt.
Hence, the systematic study of such objects, both bound
to and unbound from other stars, would give enormous
insight into planetary-system formation and evolution. In
particular, the FFP candidates with measured parallaxes
and vector proper motions could be identified as part of
the Oort Cloud of their hosts, even at several104 au,
because the “background” of ambient field stars could be
drastically reduced by demanding common proper motion
and distance (Gould 2016).

To reach the goal ofθE ∼ 0.15µas requires one
to probeθ∗ ∼ 0.3µas sources, which corresponds to
Msource ∼ 0.5M⊙. In this case,ρ ∼ 2, so Amax ≃
√

1 + 4/ρ2 ∼ 1.4. TheseMI ∼ 6.5 sources are a few
times more common than G dwarfs, but also have only half

the cross section(2 θ∗). Therefore, the underlying rates
are similar. The main difficulty is that the difference-star
magnitude atAmax = 1.4 and extinctionAI = 2 is
Idiff = 24.1. To obtain 10% photometry in a 9-minute
diffraction-limited exposure would require aD ∼ 2m
diameter mirror.

An alternative would be a broadH-band filter similar
to that of the Nancy Grace Roman (f.k.a. WFIRST)
telescope (Spergel et al. 2013). At Hdiff = 21.1, a 9-
minute exposure on a 0.5 m telescope (with diffraction-
limited FWHM∼ 0.8′′), would yield 10% photometry.
The same camera layout as KMT+L2 (0.4′′ pixel scale,
18k×18k detectors) would then imply Nyquist sampling.
Thus, the telescope dimensions are qualitatively similar to
KMT+L2, with the main difference being that the former
would be equipped with IR detectors. We dub this two-
telescope system: IRx2.

Simultaneous observation by two identical telescopes
plays a central role not only in measuringπE (and so the
FFP masses), but also in robustly distinguishing between
extremely short, very faint microlensing events and various
forms of astrophysical and instrumental noise.

The key problem is that for each square degree, and
for a year of integrated observations, IRx2 would observe
about3 × 107 early M dwarfs for 8760 hours, enabling
2.5×1011 independent probes for dwarf-planet FFPs/Exo-
KBOs/Exo-OCOs. This might yield five detections or 5000
(per yr-deg2): there is no way to reliably estimate at this
point. However, how can one be sure that any one, or
any 1000 of these are actually due to microlensing? One
issue is instrumental noise. If the noise were Gaussian,
then an8 σ signal would be enough to reject false positives
at p = exp(−82/2) ∼ 10−14. However, it would be
difficult to rule out non-Gaussian noise in the detector
or the detection system based on one observatory alone
(such asRoman, which is expected to detect hundreds of
larger FFPs,Johnson et al. 2020). However, this possibility
would easily be ruled out if two observatories saw an event
on the same star at nearly the same time.

A more fundamental problem is astrophysical noise.
Suppose that one in a million early M dwarfs had one one-
hour outburst per year. This would give rise to 30 “FFP
events”. In fact, M dwarfs are known to have outbursts13. In
contrast to the case of instrumental noise, merely observing
the same event from two independent telescopes would not
guard against this astrophysical noise in any way: the effect
is real, so all observers viewing it from the same place will
see the same thing.

However, for IRx2, the event will look different as
seen from the two observatories, i.e., delayed and/or with

13 Of course, just as with cataclysmic variables in current microlensing
surveys, one would have to begin by eliminating all light curves with more
than one outburst over the lifetime of the experiment. Only then would it
be feasible to vet the relatively few remaining “bumps” by comparing the
observations of the two satellites.
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a different amplitude. The delay (tens of minutes) will be
much longer than the light travel time between the obser-
vatories (< 5 sec(D/0.01 au)). There is no other effect
that could cause delays, apart from interstellar refraction,
which is not a strong effect at these wavelengths. Similar
arguments apply to differences in the amplitude of the
event as seen by the two observatories.

6 PARALLAX-ONLY EVENTS

Our focus in this paper has been on FFP mass mea-
surements,M = θE/κπE, derived from simultaneous
measurements ofθE and πE. However, any experiment
capable of delivering both parameters will yield many
more measurements ofπE that are not complemented
by measurementsθE. In this section, we investigate
the relative precision of massestimates based onπE-
only measurements, compared tomeasurements based on
πE+θE. We then ask in what way and to what degree
such estimates can augment our understanding of the FFP
population and of other low-mass, non-luminous objects.

There are several previous studies that focused on
L2-scale microlens parallax measurements.Zhu & Gould
(2016) investigated combined KMTNet andRoman
observations under the assumption that the latter would
point at a relatively unextincted(AH ∼ 0.5) field. In
contrast to the KMT+L2 study that we carried out in
Section 4, the Zhu & Gould (2016) L2 telescope was
vastly more powerful than KMT, so that any event that
was detectable by KMT had essentially perfect data from
Roman. Nevertheless, we can use this study for some basic
guidance on the issues discussed below.Bachelet & Penny
(2019) and Ban (2020) each studied joint observations
by Euclid and Roman, both of which are planned to
have L2 orbits. As mentioned above, “L2 orbits” have
epicyclic radii of a few×105 km, around the mathematical
“L2” point, so that the separation of these two satellites
could be a large fraction of the Earth-L2 distance. They
pursued complementary approaches.Bachelet & Penny
(2019) applied a Fisher-matrix analysis to a narrow subset
of possible events, whileBan (2020) subjected a detailed
Galactic-model simulation to relatively simple cuts. In
addition, Ban (2020) investigated joint Large Synoptic
Survey Telescope (LSST)-Roman observations, as well as
some other combinations. All three studies note that finite-
source effects impact an increasing fraction of events as the
lens mass decreases. However, onlyZhu & Gould (2016)
make a quantitative estimate of this fraction. See their
Figure 2.

6.1 Precision of Parallax-only Mass Estimates

Although satellite microlens-parallax measurements were
proposed more than a half century ago (Refsdal 1966)
and have been a very active area of investigation for a

quarter century (Gould 1994a), it appears that no one
has asked what is the fundamental limit of parallax-only
microlens mass estimates. The key to doing so is a point
already made byHan & Gould (1995): lens populations
at different distances have very similar proper-motion
distributions,µrel = θE/tE, but very different projected
velocity distributions, ṽ = (au/πrel)µrel. Therefore,
by measuringθE, or (becausetE is usually very well
measured) equivalentlyµrel, one is only determining more
precisely a quantity that is already “basically known.”
By contrast, onceπE is measured, one can “guess”
µrel to reasonable precision and then estimateM =
µrel,esttE/κπE. Indeed this is howBan (2020) estimated
lens masses from the simulation results, which were then
compared to the simulation input masses.Ban (2020)
found, usingµrel,est = 7.5± 1.5masyr−1, that the scatter
was larger than the assumed error, although the exact origin
of this discrepancy could not be pinpointed because the
simulation contained several other sources of error.

Let us initially consider a lens that is “known” to be
in the bulge. For example, it could haveṽ = 3000 kms−1.
Let us assume thatπE andtE are measured very well. We
can imagine trying to evaluate the lens mass by a Bayesian
analysis utilizing a Galactic model. If we ignore for the
moment any prior on the lens mass, then the only relevant
information from the model is the kinematic distributions
of the sources and lenses, which are both drawn from the
same approximately isotropic Gaussian, with dispersionσ.
Then, this Bayesian analysis will return an analytic result
(see Appendix),

Mest =
µrel,esttE
κπE

=
tE
κπE

[〈µrel〉 ±
√

var(µrel)]

=
σtE
κπE

[

4√
π
±
√

6− 16

π

]

,

(12)

which then yields a fractional error in the mass estimate
√

var(M)

Mest

=

√

var(µrel)

µrel,est
=

√

3π

8
− 1 = 0.42. (13)

If we now add a mass prior, then it could somewhat change
the mean estimate, but (unless it is very strong), it will
not substantially change the standard deviation. Note that
in the regime of FFPs, there is no basis for a strong
prior (otherwise we would not be doing the experiment).
Because theµrel distribution for disk lenses is very similar
to that of bulge lenses, the fractional mass error is likewise
similar. We have not as yet included the directional
information that is returned by theπE measurement.
However, for bulge lenses, this is completely irrelevant
because the prior is essentially isotropic. Moreover, it is
basically irrelevant if the lens is known to be in the disk
because the directional distribution forµrel is basically
independent of distance. For cases that the lens could be
either in the disk or bulge, the directional information can
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help distinguish between these alternatives, but this cannot
reduce the fractional mass-estimate error below the values
derived under the assumption that the population is known.

Therefore, there is a hard limit of42% fractional mass-
estimate error, even if the parallax is measured perfectly14.

6.2 Improvement from Measuring µs

For the case of FFPs, there is no lens light, so the
source proper motionµs can be measured from two well
separated high-resolution epochs. For example, we have
suggestedCSST observations. Let us first imagine that such
a measurement has been made, and it is found thatµs = 0
(in the bulge frame). Then, given this measurement, the
estimatedµrel distribution still has a mean of zero, but
now its dispersion drops from

√
2σ to σ. This means

that the mass estimate drops by a factor
√
2 from what

it would be without this measurement, but the fractional
mass error, given by Equation (13), is still exactly the same.
However, as|µs| increases (in the bulge frame), there is
increasing information constraining both the magnitude
and direction. To illustrate this, we initially ignore the
directional information and display the resulting mean
mass estimate and fractional mass-estimate error (relative
to the case of no source proper-motion measurement) in
Figure5.

The role of directional information is difficult to
represent, in part because there are two directions that
cannot be distinguished for short events without a third
observatory at a similar distance from the first two (and
even with such an observatory, breaking this directional
degeneracy is difficult,Zhu et al. 2017). Therefore, we do
not further pursue this analytic approach. The importance
of the directional information can only be assessed by
extensive Monte Carlo simulations. Nevertheless, as we
have demonstrated in Figure5, µs measurements can
definitely contribute to the understanding ofπE-only
events.

6.3 Role of Parallax-Only Measurements

In the KMT+L2 experiment that we have described, for
every bulge super-Earth with measurements of bothθE and
πE, there will be of order one with aπE-only measurement.
This can be understood by considering Figures1 and 2:
if the lens had passed outside the source (so dropping
in amplified flux by a factor∼ 2) then the event

14 Strictly speaking, this statement applies only if there is literally no
information aboutρ. However, even ifρ is not measured, there could
in principle be an upper limit onρ. The actual upper limit must be
determined from the fit, but in general it is of orderρ <∼ u0. Then
µrel

>∼ θ∗/u0tE. Indeed,Kim et al. (2021) employed this formalism
to identify FSPL candidates. For the general case, the fraction ofπE-only
events that have such partialρ information will be small, but it will be
larger for the lowest-mass FFPs because the lens must then pass within a
few θ∗ to yield a parallax measurement. See Section6.3.

µsource/σ
0 1 2 3

0

.5

1

1.5

Relative number

<µ>/<µ>0

[<σ>/<µ>]/[<σ>/<µ>]0

Fig. 5 Effect of making a measurement of the source
proper motion in units of the 1-D source proper-motion
dispersion. The red curve shows the expected proper
motion relative to the case of no measurement ofµs, while
the black curve indicates a similar comparison for the
fractional error in theµrel estimate. Given Equation (13),
these comparisons are exactly the same for the mass
estimate. Hence, for example, ifµs = 0, then the mass
estimate should be reduced by

√
2 but the fractional error

is exactly the same. On the other hand, ifµs = 2σ, then
the mean mass estimate is 17% higher than the no-µs-
measurement case, while the fractional error drops to 79%
of the no-µs-measurement case. The green curve shows
the relative number of events withµs at various values.
This plot is constructed assuming that the directional
information from the parallax measurement is ignored.

would have already become much noisier. An additional
factor of two would make parameter measurements
difficult or impossible. Zhu & Gould (2016) reached
similar conclusions for somewhat different assumptions.
For thetE ∼ 0.3 d bulge events that we are considering,
about half of all those withπE measurements also hadθE
measurements. See their Figure 2. Because theπE-only
mass estimates have much larger errors, the addition of
a comparable number of these to theπE+θE sample will
have marginal scientific impact.

However, the same is not true for higher-mass objects,
such as free-floating Jupiters and low-mass brown dwarfs.
First, these are almost certainly much rarer, and the number
of FSPL events is directly proportional to the number
density of the population. Hence, the number of direct
mass measurements is likely to be tiny. Second, the ratio
of πE-only to πE+θE measurements is much greater.
Consider, for example, a lens that is 100 times more
massive than theθE ∼ 1.5µas example in Figures1 and2,
i.e., right in the middle of the “Einstein desert” discussed
by Ryu et al.(2020a). With the same trajectory, it would be
about 10 times brighter. Even passing at∼ 5θ∗, it would
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be somewhat brighter than the event in those figures. Thus,
πE-only measurements may be the only way to obtain mass
estimates for this population.

7 DISCUSSION

The basic physical principle, i.e., synoptic observations
of FSPL events from two locations, is the same as
that proposed byGould (1997) for terrestrial-parallax
mass measurements of “extreme microlensing” events.
Gould & Yee(2013) later demonstrated that the expected
rate of such “extreme microlensing” mass measurements
was only of order one per century under observing
conditions of that time. Hence, they found it surprising that
there were already two such measurements (Gould et al.
2009; Yee et al. 2009) when they published their analysis..

Because the physical principle and its mathematical
representation are identical, it is worthwhile to understand
the physical basis of theO(103.5) difference in expected
rates relative to the KMT+L2 experiment that we describe
here.

Several factors are actually similar, including〈µ〉 =
(10 vs.6.5)mas yr−1 and〈θ∗〉 = (0.6 vs.0.5)µas, as well
as the assumption that(25 vs. 28)% of the year would
be effectively monitored. Moreover, the total number of
sources assumed byGould & Yee (2013) was about 10
times higher because they considered potential follow-
up observations of all Galactic bulge microlensing fields,
whereas we have assumed continuous observations of just
4 deg2. However, this enhancement was canceled by the
fact that only 1/10 of events would be observable at peak
from multiple continents. Moreover, they estimated that
only half of these would be successfully monitored (based
on the statistical analysis ofGould et al. 2010).

The overwhelming majority of the difference comes
from the fact thatGould & Yee(2013) estimated a surface
density of lenses of4.5 × 102 arcmin−2, whereas we
have estimated5 × 105 arcmin−2, i.e., a difference of
103. A small part of this difference was in turn due to
a different FFP model. In both cases, the lens surface
density is dominated by FFPs, butGould & Yee (2013)
applied theSumi et al.(2011) model of two FFPs per star,
whereas we have used theMróz et al. (2017) model of
five FFPs per star. However, the main difference was that
Gould & Yee (2013) showed that the FSPL+terrestrial-
parallax technique could only be applied to lenses within
DL <∼ 2.5 kpc. That is, even with very good photometry
on highly magnified15 events (such as OGLE-2007-BLG-
224 and OGLE-2008-BLG-279) they considered that only
events withD⊥/R̃∗ > 0.02 would yield measurable
parallaxes. BecauseD⊥ ∼ R⊕ for terrestrial parallax

15 Note that atDL = 2.5 kpc, even aSumi et al.(2011) M = Mj

planet hasθE ∼ 50µas and soAmax ∼ 170. This compares to
Amax ∼ 5 for a Mróz et al.(2017) M = 5M⊕ planet in the Galactic
bulge,πrel ∼ 16µas.

(compared toD⊥ ∼ 250R⊕ for L2 parallax), and because
R̃∗ = auθ∗/πrel, the FSPL+terrestrial-parallax technique
is restricted to lenses with highπrel.

8 CONCLUSIONS

The masses of FFPs can only be measured over a
broad range of distances by simultaneous microlensing
surveys conducted by two observatories separated by
O(0.01 au). Fortuitously, KMTNet can operate as one of
these observatories. We show that a 0.3 m telescope at
L2, equipped with a KMT-like camera could be the other.
Such a system would measure the masses of about 130
FFPs (from the known super-Earth population) over a 4-
year mission, taking account of breaks in the observing
schedule due to weather, Moon, and the diurnal and annual
cycles. It could also discover lower-mass FFPs in the
disk (down to Earth-mass or below), if these are equally
common or more common. Finally, it would measure the
masses and distances of many bound planets.

A next generation experiment, IRx2, consisting of two
0.5 m IR satellites (at L2 and near Earth), could probe
to sub-Moon masses, which are generally classified as
“dwarf planets” rather than “planets”. These might actually
be “free,” but could also be exo-KBOs and exo-OCOs.
Once the masses, distances, and proper motions of these
objects are found by IRx2, one epoch of AO followup can
distinguish between these objects being “free” or part of
exo-systems. If the latter, a second AO epoch can measure
their projected separation from their host, and so determine
whether they are exo-KBOs or exo-OCOs.

The duality and separation of the IRx2 system is
crucial for verifying that the very weak and rare signals due
to dwarf-planet FFPs are caused by microlensing rather
than instrumental or astrophysical effects. The fact that
there is signal from both satellites will prove that it is not
due to instrumental effects. Moreover, the fact that the two
signals are different (due to parallax) will prove that they
are not due to astrophysical effects.
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Appendix A: 〈µ〉 FOR ISOTROPIC GAUSSIAN

If µl andµs have isotropic 2-D Gaussian distributions with
the same dispersionsσ and the same mean, thenµrel =
µl − µs has a Gaussian distribution with zero mean and
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dispersions =
√
2σ

f(µx, µy)dµx dµy =
exp[−(µ2

x + µ2
y)/2s

2]

2πs2
dµx dµy

=
exp[−µ2/2s2]

2πs2
dµx dµy,

(A.1)
where for simplicity, we have relabeledµ = µrel. Then the
mean value ofµ weighted by the event rate (i.e.,µ itself)
is

〈µ〉 =
∫

dµx dµy µ× µ f(µx, µy)
∫

dµx dµy µ f(µx, µy)

=

∫∞

0
2πµ dµµ2 exp(−µ2/2s2)

∫∞

0
2πµ dµµ exp(−µ2/2s2)

(A.2)

〈µ〉 = 2 σ

∫∞

0
dz z exp(−z)

∫∞

0
dz z1/2 exp(−z)

= 2 σ
1!

(1/2)!
=

4√
π
σ,

(A.3)
wherez ≡ µ2/4σ2. Similarly,

√

var(µ) =
√

〈µ2〉 − 〈µ〉2 =

√

6− 16

π
σ. (A.4)
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