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Abstract In this work, we explore the mappings from solar images tékda (6563,&) by the Global
Oscillation Network Group (GONG) on the ground to those obse in eight different wavelengths (94,
131,171, 193, 211, 304, 335 and 16&)Dby SDOJAIA in space. Eight mappings are built by trainirngt
conditional Generative Adversarial Networks (cGANSs) otedats with 500 paired images, which arevjH
AlA94], [Ha, AIA131], [Ha, AIAL71], [Ho, AIA193], [Ha, AIA211], [Ha, AIA304], [Ha, AIA335] and
[Ha, AIA1600]. We evaluate the eight trained cGANs models olidedion and test datasets with 154-pair
images and 327-pair images, respectively. The model geteiake AlA images match the corresponding
observed AIA images well on large-scale structures suchrge lactive regions and prominences. But the
small-scale flare loops and filament threads are difficuletmnstruct. Four quantitative comparisons are
carried out on the validation and test datasets to score Hgpimgs. We find that the model-generated
images in 304 and 1608 match the corresponding observed images best. This etfarsuggests that
the cGANs are promising methods for mappings between grbased kv and space-based EUV/UV
images, while some improvements are necessary.
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1 INTRODUCTION ground-based equipment can only collect information
at radio and visible light passbands. While ultraviolet

Astronomical observations have entered the multi—(UV)’ extreme ultraviolet (EUV) and X-ray passbands

messenger era over the past few decades. Ground-bas¥§ only available in the outer space. On the one hand,

and space-based telescopes and equipment have been bllﬁﬂnching satellites with observation equipment is more

to obtain information of the universe from radio to X-ray. expensive and technically difficult than building ground-

In the case of solar observations, images of the Sun alléased equipment. On the other hand, observgtlons n
obtained through not only ground-based telescopes (e. .,V and EUV passbands.car? monitor a”‘?' predict solar
New Vacuum Solar Telescope (NVSTiu et al. 2013 Iare§ f';md coronal mass ejections (CMESs) in general, thus
and Goode Solar Telescope (GSJao etal. 201)) but providing early warning of space weather.

also space missions such as Hino#edugi et al. 200y According to the radiation theory, emissions irmvH
and Solar Dynamics Observatory (SD®gsnelletal. (6563 A) and other EUV wavelengths are intrinsically
2012. Multiple imaging devices are observing the Sunexcited, reflecting the same physical condition from
nearly simultaneously and almost from the same angldifferent aspects. The dd observation of the Sun has a
In addition to small-scale structures, we have to payong history and are routinely taken for decades. Recently
more attention to large solar activities, because somwith the development of computer science including
of them may lead to catastrophic space weather anddvanced hardwares and algorithms,“Deep Learning” rises
damage the safety of satellites and astronauts. There @d achieves remarkable success in many fields such
a serious problem in astronomical spectroscopy, which ias computer graphics and language translations, which
the absorption of light in the Earth’s atmosphere. Usuallyjnspires us to find the mappings betweea khages and
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AIA images by deep learning. If the mappings betweerNetworks (GANs), and popular methods to learn the
Ha images and AIA images in each passband are founthappings from an input dataset (A) to a target dataset
by deep learning, the historicaldHobservations can be (B) (the images in A and B are representeddogind b).
extended to the UV and EUV passbands. A cGAN usually contains two parts: the generator G and
Training the deep neural networks (DNNs; the discriminator D, which are usually two convolutional
Lecunetal. 201pis a popular method for realizing neural nets. The generator G is designed to produce the
artificial intelligence, which further leads to the concept fake target image’ that cannot be distinguished from
deep learning. The convolutional neural networks (CNNsthe real target imagé. The discriminator D is trained to
Lecunetal. 1998 are popular deep neural networks detect the faké’ from the real targeb. In the process
especially for image processing and computer visionof training, the counterfeiting and distinguishing alei
CNNs are commonly used to solve a wide variety ofof the generator G and the discriminator D are improving
image prediction problems and map between two kinds o$imultaneously. In the end, the fake imdgevhich is hard
different imagesGalvez et al. 20109 Usually, researchers to distinguish from the redl is obtained when the cGAN
have to provide a loss function to tell the CNNs how tofinds the relationship between the input dataset (A) and
minimize the differences between the output images anthrget dataset (B)sola et al.(2016§ showed that cGANs
the target images. But sometimes it is difficult to defineproduced reasonable results on a wide variety of image-
a loss function which is effective in a specific situation.mapping problems. The cGANs applied in this paper is
FortunatelyGoodfellow et al(20149 proposed Generative the “pix2pix” model which includes the generator G (a
Adversarial Networks (GANs) which are designed to learrU-Net” based architectur®onneberger et al. 201%and
a loss function from the data. The conditional Generativehe discriminator D (a convolution@l x 70 “PatchGAN”
Adversarial Networks (cGANSs) are the combination of classifier). More detailed information about the network
GANs and CNNs. Containing input limit conditions, architectures is displayed in the appendixiséla et al.
cGANs are more geared to images to images mapping2019.
(e.g.,Isola et al. 2016Wang et al. 2018 The objective or loss function of the cGAN in this
Recently several investigations were carried out tovork can be expressed as:
explore the translations between solar images taken in dif-
ferent passbands by deep learniRgrk et al.(2019 con-
ducted the generation of AlA ultraviolet (UV) and EUV ,hare the generator G tries to minimize this objec-

images from the magnetograms of SDO/HelioseismiGye \while the discriminator D tries to maximize it.
and Maghet|c Imager (HMISch.ou etal. 2012by the Lecan(G, D) and Li(G) work together to make the
cGANs.Kim et al.(2019 further tried to generate the solar output fakeb’ look like the real target and minimize the

farside magnetograms, taking 3é4images observed by L1 distance or relative error between the fdakeand the
Solar TErrestrial RElationship Observatory (STEREO) aggq)s,.

inputs. These studies show that the cGANs could be used

to build mappings between different telescopes onboard Leaan(G, D) = Ey yopyuia (o [log D(z, )]

the same or different space missions, and the generated + Eypy... (), 2~p.(z)108(1 — D(z,G(x, 2)))],  (2)
fake solar images matchlng the real pbservatlon relatively 1,(@) = By ypanea (@), o~pe () 1y — G2, 2)]]-
well. However, the mappings of solar images form ground-

based to space-based telescopes are rare §hig.etal. In the afore_ment|oned loss f“”Ct_'mva”F’ y are
2020. instances of the inputand the targét, = is the noise input

to the generator and the output fakeis represented as
G(z, z). The probabilities calculated by the discriminator

G* =arg mén max Legan(G, D)+ A1 (G), (1)

In this work, we explore whether the cGANs have
the capability to map from H images to AIA images. In _ s i ,
Section2, we introduce the deep neural networks used irP using real pairsd andb) and fake palrsd_andb) are
this study. We train the networks with the data presented ii?(2,y) and D(z, G(z, 2)). In order to realize the high
Section3. The evaluating functions for scoring the model- SiMilarity of b andb, we mix the GAN objective with a

generated images are displayed in SectiohVe present L, loss. The noise is provided in the form qf dropout
the results in Sectios. Summary and discussions are on several layers of our generator G. We tried different

listed in Sectiors. generator configurations such as ‘U-net’ and residual net
which resulted in generated images with similar scores.

2 METHODS The ‘U-net’ is chosen in the end due to its high efficiency.
After several attempts, we set the learning rate as 0.0002

Conditional Generative Adversarial Networks (cGAN- in the training phase during whichis set to be 100 which

s) are input-data-constrained Generative Adversariaderves as the proportion @f; loss. The generator G and
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the discriminator D are trained to find optimal parameterf pixels with relative error less than 10 percent) and
to map from dataset A to dataset B until thegan and  pixel-to-pixel Pearson correlation coefficient (PCC) whic
L, gradually tend to convergence. During the test phaseare the common metrics to measure the error and
thed’ is obtained from the input through the established correlation between two images (e.Galvez et al. 2019
mappings. andPark et al. 201p

— T f '
3 DATA RL=> x5 —x]1/>x5, 3)

The Atmospheric Imaging Assembly (AlA:emen et al. wherei is the serial number of evaluation samplg; is

2012 onboard the Solar Dynamics Observatory (SDO; the pixel value of the real observation magé)&(ndx is
Pesnell etal. 20)2has been monitoring the Sun for thatfor model-generated images)(

about 10 years. It captures imagd896 x 4096 pixels) 2

of the full Sun in seven EUV passbands and two UV R2; = (X§ - X]f) /> (X}')27
passband§ in 94, 131, 171, 193, 211, 304, 335, 1600 Npin
and 1700A respectively, with the spatial resolution of PPE10; =
0.6” per pixel and temporal resolution @2 s for EUV

passbands an?4 s for UV passbands. A large number where Npix
of simultaneous observations in UV and EUV passbands
are obtained, which provides a vast treasure trove fo
deep learning. We obtained SDO/AIA EUV and UV number of pixels in one image.
images of years 2012, 2013 and 2014 with cadence of

(4)

X5 =x] /x5 <10%

)

Npix,p

Ix /X <10% means the number of pixels
J J

Ixj — xj

ere is lower than10% and Npix,, is the total

f
24 hours from the Joint Science Operations Center and 2 (0 —myr) (Xj - mxf) 5)
processed the images to level 1.5 by the SolarSoft routine f 2’
“aia_prep”. All AIA images are divided by their exposure 2 (5 = myr) Z (Xj - mxf)

time and downsampled to the sizeloR4 x 1024 pixels by

averaging ambient x 4 pixels. We process the data with Wherem, andm, ; are the mean of the} and X],

the routines in SunPySunPy Community et al. 2020 respectively. We also calculate the standard deviation of
The Global Oscillation Network Group (GONG; R1, R2, PPE10 and PCC to evaluate the reliability and

Hill etal. 1994 includes six stations, which are the Stability of the trained cGAN models. The equation is

Big Bear Solar Observatory, High Altitude Observatory,p,q = \/Z?ﬂ (pi — ng)2 /n, wherem,, is the mean of
Learmonth Solar Observatory, Udaipur Solar Observatorythe scores.

Instituto de Astrofisica de Canarias and Cerro Tololo

Interamerican Observatory. GONG has the ability of5 RESULTS

obtaining nearly continuous observations of the Sun on the . . . .

ground. Full-disk H line-center images2048 x 204g8) ~ The eight mappings from #images to AlA images are
with cadence of about 1 minute and spatial resolution ofstablished by cGANs, which are displayed in Figlre
AIA images and average their neighboriggx 2 pixels ~ Our trained models with limited images, we randomly cut
to make Hy images the same size as the AIA images. Inthe images024 x 1024) into 512 x 512 subsets and then
the end, 981 pairs of SDO/AIA andimages with the feed the cGANs with the subsets. We train the cGANSs with
the damaged observations. We leave 327-paiaHd AIA ~ One iteration one pair of randomly cut subsets is fed to
images (in year 2012) as the test datasets and divide tf8€ CGANs and all of the 500-pair subsets are thrown
images of years 2013 and 2014 into training (500 pairsinto the networks in one epoch. We save the generator G

and validation (154 pairs) datasets in chronological orderand the discriminator D every 10 epochs, as a result 160
models (20 models for every eight mappings af dnd

4 EVALUATION AIA images) are collected. In the validation phase, we try

to find the best trained models which get the highest scores
In order to evaluate our results, we compare the modelfR1, R2, PPE10 and PCC on validation datasets (154-pair
generated images with the observed images by the averageages), and then the eight best models are tested on test
normalized absolute error (R1), normalized mean squardatasets (327-pair images). We show the R1, R2, PPE10
error (R2), percentage of good pixels (PPE10: percentagend PCC scores of the eight best models in the end.
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Fig. 1 This figure shows the mappings from ground-basedrlages to SDO/AIA UV and EUV images of the Sun. Eight
cGAN models are trained by 500-paintand AlA images which are paired images oifHAIA94], [Ha, AIA131], [He,
AIA171], [Ha, AIA193], [Ha, AIA211], [Ha, AIA304], [Ha, AIA335] and [Ha, AIA1600].
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Fig.2 Eight pairs of real and model generated images (the firsteB2V test datasets: real and fake AIA94, AIA131,
AIAL171, AIA193, AlIA211, AIA304, AIA335 and AIA1600) are diayed in this figure. An animation of all 327 test
datasets is available onlinefatt p: / / www. r aa- j our nal . or g/ docs/ Supp/ n84798f i g2novi e. np4.
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Fig.3 The pixel values of eight pairs of real and fake images (in Bigre scattered along horizontal and vertical axes in
this figure afterl x 4 pixels rebinned. We renormalize the pixel values to [0:1408] parallel move the eight pairs images

to the corresponding locations. The corresponding R1 afid PRre listed in the top left corner. An animation of all 327

test datasets is available onlinenatt p: / / www. r aa- j our nal . or g/ docs/ Supp/ ms4798f i g3novi e. np4.

Figure 2 shows the comparisons of eight pairs of narrow ends and a wide middle, which indicates that the
real and fake AIA images. We find that the cGANSs generations of high-value pixels are better than that of the
have the ability to generate AlA-like images with the low-value pixels. The upward bending at the low-value part
large-scale structures such as large active regions arn the scatter plots of AIA 171, 193 and 2R suggests
prominences matching that of the real observations. Buthat the trained cGANs models tend to overestimate the
the model generated small-scale flare loops and filamemtixel values in the solar limb regions. The listed L1 and
threads deviate from those in the real images. We faile®PE10 in Figure3 show that the generated AlA 94, 131,
to reconstruct the solar limb structures such as coron&35, 304 and 1608 images obtain higher scores than the
cavities and streamers, because theitdages possess few generated AIA 171, 193 and 211 images.

features of the solar imb structures. The mean and standard deviation of R1, R2, PPE10
In order to compare the results, we resize the real andnd PCC on the test (327-pairimages) and validation (154-
fake imagesi024 x 1024) to 256 x 256 images, normalize pair images) datasets are displayed in Figutesnd 5.
the pixel values to [0:100] and then scatter them alond=quations of R1, R2, PPE10 and PCC are presented in
horizontal and vertical axes, which is displayed in Figdire Section4 and all of the calculations are based on image
All of the points should be located along the 45-degrearrays aftert x 4 binning. The evaluation results about the
line, if the fake and real images are exactly the same. Wealidation and test datasets are highly consistent with eac
find that most of the scatter plots are shuttle shapes witbther, which indicates that our trained cGANs are universal
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Fig.4 The mean and Standard Deviation (SD) of R1, R2, PPE10 and E@€sson the test datasets (327 images). The
scores of the eight mappingsdHo-AlA) are marked by bars.

models for different datasets. Considering R1 scores, weeal observations best according to the visual comparison
find that the model generated AIA @Hmages arethe best as shown in Figur@. We think that the higher similarity
with the mean and standard deviation equal to 0.0494 andetween the fake AIA 304, 1600A and target real AIA
0.0067 and the generated AlA Zéimages areworstwith 304A, 1600A images is due to the initial higher similarity
the mean and standard deviation being 0.1550 and 0.0213 the real AIA 304 and 1600 images with the inputvH

for the test datasets. The R2 scores of the test datasets alstages.

indicate that the fake AIA 94 images get the highest

scores (the mean and standard deviation are 0.0049 afdSUMMARY AND DISCUSSION

0.0013) and the lowest scores are obtained by the fake AI,IA

o L this work, we train cGAN models to find the mappings
211A images (the mean and standard deviation are 0.01 ppIng

rom Ha images to AIA94, AIA131, AIAL171, AIA193,

thathe trained CGANS model of AT Na211, AIA304, AIA335 and AIA1600 images. With
atthe trainedc s modetotmapping TomMnages o yrained models and realldHmages, we generate the

to AIA 94 A images works best again with the mean andcorresponding fake AIA images whose macro structures
standard deviation of 0.8841 and 0.0390. The PPE10 of the . . . .
o ! are consistent with those of real AIA images. But fine
327 faked AIA 171A images is the lowesStfPE10,0an = : .
0.6389: PPEL0 _ 0.0329). Th structures such as the flare loops and filament threads in
e standard deviation = 0.0329). The mean generated AIA images do not match well with the
and standard deviation of PCC for the 327 faked AIA . . . .
o . corresponding detailed structures in the real AIA images.
94 A images are 0.8855 and 0.0179 which are the wor

Sbn the one hand, we think that the information of fine
scores. The PCC scores suggest that the generated AlA . ) )
o structures in the H images is not enough to generate

1600 and 304A images are the top two whose mean and . X . .
corresponding fine structures in the AIA images. The

standard deviation are 0.9856, 0.0105 and 0.9649, 0'005§ructures of the non-potential flare loops and filament

respectively. In addjti(_)n to scores, the model gener_atefhreads observed by the AIA UV and EUV images depend
AIA 1600 and 3044 images match the corresponding on coronal magnetic fields which can be extrapolated from
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Fig.5 Same with Fig4, but for validation datasets.

the photospheric vector magnetic field under the forcelarge amount of different solar images. We train the cGANs
free-field hypothesis (e.gWiegelmann 2008Guo etal. with datasets containing hundreds of paired scientific
2017. It is obvious that not only the radiation intensity images. This benefits from the generator G in the cGANs
but also the radiation polarization are necessary to measubeing a “U-Net” based architecture which is designed to
the photospheric vector magnetic fields. So the informatiomvork with very few training images and yield more precise
of radiation intensity (4 images) itself is not enough to segmentationdRonneberger et al. 2015

generate non-potential structures observed by AIAimages. There is no doubt that cGANs are good methods
One the other hand, the GANs and cGANs are designegy image-to-image mappings and inspire us to explore
to solve image-to-image translations which are not one-toge possibility of obtaining SDO/AIA Solar UV and
one mappings. Given an inputimage, many outputimagegyy images from ground-basedaHobservations. The
are permissible as long as they look like the real targetGANs model generated images are inaccurate and cannot
images. But one H image should have one and only one yeplace real observations at this stage. In order to obtain
corresponding AlA image, because the observationsof H jmuch better cGANs model-generated AIA images, two
and AlA are unique and corresponding one by one. ways are possible to improve the mapping results. One
After synthesizing the above two aspects, we think thats that both the radiation intensity and the radiation
the cGANSs are unlikely to have the ability to learn a perfectpolarization are included to train the cGANs models. The
mapping between two kinds of scientific images such asther is that considering the temporal evolution of solar
Ha images and AIA images. The perfect mapping meansbservations and further constrain the cGANs. Besides,
that the mapping-generated images are consistent with thveith the development and promotion of thevltelescopes,
corresponding target images not only on macro structurethe future Hv images with higher spatial and temporal
but also on fine structures. In other words the cGANgesolutions will be applied to obtain the corresponding
model generated images cannot be exactly the same withV and EUV images with higher spatial and temporal
the corresponding observed images. Nevertheless, cGANssolutions, which shows a good prospect for application.
do have potential development for the mappings betweeRuture missions such as the Advanced Space-based Solar
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Observatory Gan etal. 2019 Huangetal. 2019 and  Guo, Y., Cheng, X., & Ding, M. 2017, Science China Earth

Chinese K Solar Explorer (i etal. 2019 will provide Sciences, 60, 1408
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