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Abstract Accurate estimation of cratering asymmetry on the Moon is crucial for understanding Moon
evolution history. Early studies of cratering asymmetry have omitted the contributions of high lunar
obliquity and inclination. Here, we include lunar obliquity and inclination as new controlling variables
to derive the cratering rate spatial variation as a functionof longitude and latitude. With examining the
influence of lunar obliquity and inclination on the asteroids population encountered by the Moon, we then
have derived general formulas of the cratering rate spatialvariation based on the crater scaling law. Our
formulas with addition of lunar obliquity and inclination can reproduce the lunar cratering rate asymmetry
at the current Earth-Moon distance and predict the apex/ant-apex ratio and the pole/equator ratio of this
lunar cratering rate to be 1.36 and 0.87, respectively. The apex/ant-apex ratio is decreasing as the obliquity
and inclination increasing. Combining with the evolution of lunar obliquity and inclination, our model
shows that the apex/ant-apex ratio does not monotonically decrease with Earth-Moon distance and hence
the influences of obliquity and inclination are not negligible on evolution of apex/ant-apex ratio. This model
is generalizable to other planets and moons, especially fordifferent spin-orbit resonances.
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1 INTRODUCTION

Cratering asymmetry on the lunar surface has been
recognized in many studies (Le Feuvre & Wieczorek
2011; Wang & Zhou 2016). Understanding of such asym-
metry alters the basis of lunar cratering chronology
(Hiesinger et al. 2000; Fassett et al. 2012), because it
has assumed that cratering rate is spatially uniform
on the whole Moon (McGill 1977), which eventual-
ly influences the fundamental understanding of lunar
evolution. Quantifying the asymmetry can rectify the
deviation in counting the lunar craters sampled by
Apollo and Luna missions (Hartmann 1970; Neukum et al.
1975; Neukum 1984). Cratering asymmetry has been
also generalized to the surface datings of other plan-
ets or moons (Horedt & Neukum 1984; Neukum et al.
2001a,b; Hartmann & Neukum 2001; Zahnle et al. 2001;
Korycansky & Zahnle 2005). Various factors affecting the
cratering asymmetry on the Moon have been intensively in-
vestigated (Hartmann 1970; Neukum et al. 1975; Neukum
1984; Le Feuvre & Wieczorek 2011; Wang & Zhou 2016),

and the key factors affecting the cratering asymmetry
include (1) the speed and inclination of asteroids encoun-
tering the Moon (Le Feuvre & Wieczorek 2011) and (2)
the distance between the Earth and the Moon (Zahnle et al.
2001; Le Feuvre & Wieczorek 2011; Wang & Zhou 2016).

Three types of cratering asymmetries, i.e., the
leading/trailing asymmetry, pole/equator asymmetry,
and near/far-side asymmetry have been recognized (e.g.,
Le Feuvre & Wieczorek 2011; Wang & Zhou 2016).
The leading/trailing asymmetry has been explained by
both theoretic derivations (Horedt & Neukum 1984;
Le Feuvre & Wieczorek 2011; Wang & Zhou 2016) and
numerical simulations (Gallant et al. 2009; Wang & Zhou
2016). It has been confirmed that the leading surface
receives more impactor fluxes and higher impact speed
than the trailing surface due to the synchronous rotating,
while this difference declines with the Earth-Moon
distance increased (Le Feuvre & Wieczorek 2011;
Wang & Zhou 2016). The pole/equator asymmetry has
also been numerically modelled (Gallant et al. 2009;
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Wang & Zhou 2016), which suggested that low latitude of
the Moon receives more impactor fluxes for the gathering
of low inclination asteroids (Le Feuvre & Wieczorek 2008,
2011). In addition, the pole/equator asymmetry is found
to vary by less than 1% when the Earth-Moon distance is
between 20 and 60 Earth radii (Le Feuvre & Wieczorek
2011). The mechanism of near/far-side asymmetry has not
reached a consensus (Wiesel 1971; Bandermann & Singer
1973). In previous studies, two factors affecting impact
asymmetry, i.e., orbital obliquity and inclination of
the Moon (relative to the ecliptic), have been usually
neglected (Le Feuvre & Wieczorek 2011; Wang & Zhou
2016). However, these two factors might be important
within the first 35 Earth radii of Earth-Moon distance
when the Moon quickly left Earth (Ćuk et al. 2016;
Ward 1975). Therefore, it is necessary to investigate the
influences of these two factors on the lunar cratering
asymmetries.

In this study, we derive the impact asymmetry reliance
on the orbital obliquity and inclination of the Moon by
improving previous empirical models of leading/trailing
and pole/equator asymmetries (Le Feuvre & Wieczorek
2011) and extending two-dimensional analytic formulas
(Wang & Zhou 2016) to the complete formulas based
on three-dimensional geometry.Le Feuvre & Wieczorek
(2011) assumed the orbital obliquity of the Moon was
constant when the Earth-Moon distance is larger than 20
Earth radii.Wang & Zhou(2016) calculated the cratering
asymmetries in a planar model, which excludes the
influences of the orbital obliquity and inclination of the
Moon. Our analytical formulation including obliquity
and inclination can reveal more features of lunar lead-
ing/trailing asymmetry (Le Feuvre & Wieczorek 2011)
and add an explicit term for the pole/equator asymmetry
(Wang & Zhou 2016). In Section 2, we derived the
formulas for the distribution of impact flux, normal speed,
and cratering rate on the Moon using the concentration of
asteroids encountering with the Moon and scaling laws that
convert asteroids velocities and diameters to the diameters
of craters (Holsapple & Housen 2007). Section3 shows
the resultant distributions of impact flux, normal speed,
and cratering rate based on formulas in Section2. This
result section also estimates the evolution of the apex/ant-
apex ratio of cratering rate according to the evolution
of orbital obliquity and inclination with different Earth-
Moon distances (́Cuk et al. 2016). In Section4, we verify
formulas in Section2 by comparing with previous results
and explain how the orbital obliquity and inclination
influence the lunar cratering rate asymmetry. Additionally,
the influences of orbital obliquity and inclination of the
Moon on the concentration of asteroids encountering with
the Moon are detailed in the appendix.

2 METHOD

This section shows how we calculate the distribution
of asteroids impact flux, impact speed and cratering
rate using variables in Table1. Section2.1 introduces
assumptions and coordinate systems with which we derive
the expression of asteroid’s velocityvp and the normal
vector n at the impact site.vp and n will be used
in the following calculations. Section2.2 uses equations
from Wang & Zhou (2016) and Le Feuvre & Wieczorek
(2011) to estimate the impact flux at different impact sites.
These equations are rewritten as functions ofvp andn.
Section2.3 calculates the cratering rate variation using
scaling law fromHolsapple & Housen(2007). Obtaining
the cratering rate variation requires the impact flux
variation and impact normal speed variation. The former
has been calculated in Section2.2 and the later can be
calculated with minor changes in calculation of impact
flux.

2.1 Asteroids Velocity and Normal Vector at Impact
Site

This model assumes that the orbit of the Moon is an ellipse
with the Earth as a focus. Then in the geocentric ecliptic
coordinate system (Z-axis is parallel to the ecliptic normal
andX-axis is towards mean equinox of the J2000 epoch),
the position and velocity of the Moon arerm andvm.
We note that the influence of variation ofi1, ω1 or ω3 on
the lunar velocity can be estimated using equations (2)–
(5) of Ćuk & Burns (2004) and is< 1% compared to
the influence of variation offm. We hence ignored the
variation ofi1, ω1 or ω3 in deriving the lunar velocity. In
Equation (2), G andMe are the gravitational constant and
the mass of the Earth respectively.

rm = Rz(
π

2
+ ω1)Rx(i1)Rz(ω3)r , (1)

r =

[

am(1− e2)

1 + e cos fm
cos fm,

am(1− e2)

1 + e cos fm
sin fm, 0

]T

.

vm = Rz(
π

2
+ ω1)Rx(i1)Rz(ω3)v , (2)

v =

[

−
√

GMe

am(1− e2)
sin fm,

√

GMe

am(1− e2)
(e+ cos fm), 0

]T

,

Rx(θ) =





1 0 0
0 cos θ − sin θ
0 sin θ cos θ



 ,

Rz(θ) =





cos θ − sin θ 0
sin θ cos θ 0
0 0 1



 .
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Table 1 Variables or Parameters Used in the Method

Description Notation Range

inclination of asteroids’ encounter velocity φp [−π

2
, π

2
]

azimuth of asteroids’ encounter velocity λp [0, 2π]
encounter speed of asteroids vp [19 ∼ 20km s−1]
lunar orbit inclination i1 [0, π

2
]

lunar obliquity relative to the ecliptic i2 [0, π

2
]

azimuth of lunar orbit normal ω1 [0, 2π]
azimuth of lunar spin axis ω2 [0, 2π]
lunar true anomaly fm [0, 2π]
lunar eccentric anomaly E [0, 2π]
lunar mean anomaly M [0, 2π]
lunar argument of perihelion ω3 [0, 2π]
longitude of impact sites λ [0, 2π]
latitude of impact sites φ [−π

2
, π

2
]

semi-major axis of lunar orbit am [25Re, 60Re]
eccentricity of lunar orbit e [0,1)

The population concentrationC0 of asteroids encoun-
tering with the Moon is defined as the distribution of
the relative number of asteroids that encounter with the
Moon within a unit time and it can be determined by their
velocities (e.g., fig. 5 ofLe Feuvre & Wieczorek 2008).
In Equations (3) and (4),vp and ez are the asteroids’
encounter velocity in the geocentric ecliptic coordinate
system and a unit vector parallel to the positiveZ-axis
respectively.vp is the average encounter velocity of the
asteroids related to the Earth.

C0 = p(vp) = p(λp, φp) , (3)

vp = vpRz(
π

2
+ λp)Rx(

π

2
− φp)ez , (4)

In this model, vp is determined byλp, φp, and
vp. The concentration of asteroids encountering with the
Moon is assumed unaffected by the orbital obliquity and
inclination of the Moon (see appendixA). Equation (A.20)
indicates the concentration of asteroids encountering
with the Moon can be estimated by the concentration
encountering with the Earth. ThenC0 should be function
of (vp, λp, φp). Spectrum ofvp is not considered in
this study and it is set as the average encounter speed
(Horedt & Neukum 1984; Zahnle et al. 2001). Then C0

is independent ofvp and a function of(λp, φp). Since
the precession of lunar orbit, the asteroids’ azimuth
distribution will not affect the cratering asymmetries.
Therefore, only the marginal distribution of Equation (3)
∫ π

−π C0dλp is required in the calculation of cratering
asymmetries. This marginal distribution is taken from
Le Feuvre & Wieczorek(2008) and it has been shown in
figure 6 ofLe Feuvre & Wieczorek(2008).

The Moon is assumed to be synchronously rotating
with a constant angular velocity and the prime meridian
is determined by the mean sub-Earth point (GSFC 2008).
In the lunar fixed coordinate system whoseX-axis is the
intersection of the lunar equator plane and prime meridian
plane, andZ-axis is the lunar spin axis, the normal at
lunar surface isn(λ, φ) and the transformation matrixT

Fig. 1 The coordinate systems used in calculation. The
geocentric ecliptic coordinate system isOX1Y1Z1. The
lunar fixed coordinate system isOX2Y2Z2 and its origin
is translated to the Earth. Thegray plane C1 is the ecliptic
plane. The planeC2 is the lunar equatorial plane.OA is
the intersection ofC1 andC2.

from this lunar fixed coordinate system to the geocentric
ecliptic coordinate system are determined byω2, i2 and
M . The relationship between coordinate systems used in
this section is illustrated in Figure1.

n(λ, φ) = Rz(
π

2
+ λ)Rx(

π

2
− φ)ez , (5)

T = Rz(
π

2
+ ω2)Rx(i2)Rz(M +M0) . (6)

In Equation (6),M0 is a parameter related to the
position of the mean sub-Earth point and it will be
determined by Equations (7)–(9). When the Moon at the
perigee, the center of Earth passes through the lunar prime
meridian plane.

rm

|rm|
∣

∣

∣

fm=0
+ T · n(0, φ) = 0 . (7)
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Solving Equation (7), this gives

cosM0 =
cos i1 sin (ω1 − ω2) sinω3 − cos (ω1 − ω2) cosω3

√

1− (sin i2 sin (ω1 − ω2) cosω3 − cos i1 sin i2 cos (ω1 − ω2) sinω3 − sin i1 cos i2 sinω3)2
, (8)

sinM0 =
− cos i1 cos i2 cos (ω1 − ω2) sinω3 − cos i2 sin (ω1 − ω2) cosω3 + sin i1 sin i2 sinω3

√

1− (sin i2 sin (ω1 − ω2) cosω3 − cos i1 sin i2 cos (ω1 − ω2) sinω3 − sin i1 cos i2 sinω3)2
. (9)

2.2 Distribution of Impact Flux

For given vp, rm and vm, the velocity of asteroids

relative to the Moon isvp − vm. Definex̂ as
vp − vm

|vp − vm| ·
(Tn(λ, φ)). The impact flux δF is defined as the
distribution of the number of asteroids that impact on
the lunar surface within a unit area and a unit time.
According to equation (26) ofWang & Zhou(2016) and
equation (A.47) ofLe Feuvre & Wieczorek(2011), the
impact fluxδF is a function ofx̂. In Equation (13), Mm

andRm are the mass and radius of the Moon respectively.

δF = C0|vp − vm|f(x̂) , (10)

f1(x̂) =

{

x̂, x̂ ≥ 0
0, x̂ < 0

, (11)

f2(x) =







1
4 (1 + Γ)−1(1 + µ−1)(Γ + (1 + µ)x̂),

x̂ ≥ −Γ
2+Γ

0, x̂ < −Γ
2+Γ

,

(12)

µ =

√

1 +
2Γ

1 + x̂
, Γ =

2GMm

|vp − vm|2Rm
, (13)

where f1(x̂) and f2(x̂) are two forms off(x̂). f1(x̂)
is from Wang & Zhou(2016) which assumes the trajec-
tories of asteroids are straight lines in the direction of
their common encounter velocity. Whilef2(x̂) is from
Le Feuvre & Wieczorek(2011) in which trajectories of
asteroids are treated as hyperbolic curve with a focus at
the center of the Moon. BecauseΓ < 0.02, we can expand
Equation (12) around 0 with Taylor series.

f2(x̂) = x̂+ (
1

2
− 2x̂)Γ +

4x̂3 + 6x̂2 − 3

4(1 + x̂)2
Γ2

+ o(Γ3) x̂ >
−Γ

2 + Γ
.

(14)

Obviously,f1(x̂) is the first order approximation off2(x̂).
The absolute relative difference betweenf1 and f2 is
less than3.5%. For simplicity, we usef(x̂) = f1(x̂)
in following calculations. Then the average flux within a

period of lunar orbit is

F =
1

2π

∫ 2π

0

δFdM

=
1

2π

∫ 2π

0

C0|vp − vm|f(x̂)dM .

(15)

It is known today thatω3 changes with a period of 8.85
years andω2 changes with a period of 18.61 years. The
secular average flux independent of them is

F (λ, φ; am, e, i1, i2, vp) =

∫ 2π

0

dω3

2π

∫ 2π

0

dω2

2π

×
∫ 2π

0

dλp

2π

∫ π

2

−π

2

F
dφp

π
.

(16)

2.3 Distribution of Normal Impact Speed and
Cratering Rate

In this model, the impact angle of asteroids at lunar surface
is θ (eq. (A.54) of Le Feuvre & Wieczorek 2011) and
the normal impact speed isV⊥ (eqs. (A.50)–(A.51) of
Le Feuvre & Wieczorek 2011).

V⊥ = |vp − vm|
√
1 + Γ sin θ = |vp − vm|g(x̂) , (17)

g(x̂) can also be written as two different formsg1(x̂) and
g2(x̂). g1(x̂) is from Wang & Zhou(2016) and g2(x̂) is
from Le Feuvre & Wieczorek(2011).

g1(x̂) = x̂/
√
1 + Γ , (18)

g2(x̂) =

√

1 + Γ− (
1 + µ

2
)2(1− x̂2)

= |x̂|+ 1

2
sgn(x̂)Γ− sgn(x̂)

4(1 + x̂)
Γ2 + o(Γ3) . (19)

Similar tof(x̂), we expandg2(x̂) aroundΓ = 0. g1(x̂) is
the first order approximation ofg2(x̂). Substitutingg1(x̂)



H. Li et al.: Lunar Cratering Asymmetries 140–5

into Equation (17). We obtain the average normal speed

V ⊥(λ, φ; am, e, i1, i2, vp) =
1

F (λ, φ; am, e, i1, i2, vp)

×
∫ 2π

0

dω3

2π

∫ 2π

0

dω2

2π

∫ 2π

0

dλp

2π

∫ π

2

−π

2

dφp

π

×
∫ 2π

0

δFV⊥
dM

2π
.

(20)
Combing Equation (16) and Equation (20), we finally ob-
tain the cratering rate expression. Similar to equation (56)
of Wang & Zhou (2016) and applying the scaling law
of crater diameters (e.g.,Holsapple & Housen 2007), the
cratering rate in our model is

Nc(λ, φ; am, e, i1, i2, vp) ∝
(V ⊥(λ, φ; am, e, i1, i2, vp))

γpαp

× F (λ, φ; am, e, i1, i2, vp) .

(21)

Here the cratering rate calculation only takes account
the the near-Earth objects:γpαp = 0.987 (Bottke et al.
2002; Holsapple & Housen 2007).αp is an exponent in the
cumulative size distribution of near-Earth objects diameter
(Bottke et al. 2002). γp is a parameter in the scaling
law (Holsapple & Housen 2007; Le Feuvre & Wieczorek
2011; Wang & Zhou 2016).

3 RESULT

In this section, we describe the cratering rate asymmetry
produced by Equation (21). Section 3.1 demonstrates
the spatial variation of impact flux, normal speed, and
cratering rate. Section3.2 reveals the influences of orbital
obliquity and inclination of the Moon on lunar cratering
rate asymmetry. Section3.3 provides the evolution of
apex/ant-apex ratio with orbital obliquity and inclination
of the Moon.

3.1 Spatial Variations of Impact Flux, Normal Speed,
and Cratering Rate

First, our derived formula is used to calculate the cratering
rate spatial variation at current values of the Earth-
Moon system since such variation can be compared with
previous predictions byLe Feuvre & Wieczorek(2011)
and Wang & Zhou (2016). Figure 2 shows the relative
spatial variation of impact flux, normal speed, and
cratering rate on the Moon with parameters set at
current values of the Earth-Moon system. The parameters
involved in Equation (21) are set as(am, e, i1, i2, vp) =
(60Re, 0.0549, 5.145

◦, 1.535◦, 19km s−1) (Re is the ra-
dius of the Earth). In Figure2, the relative cratering rate is
symmetry about0◦N . This symmetry arises from the sym-
metry of the asteroids’s concentrationC0. The maximum
of impact flux occurs at(90◦W, 0◦N) and the minimum

is at (90◦E,±65◦N). The maximum/minimum ratio of
impact flux is 1.24. The maximum of normal speed occurs
at (90◦W, 0◦N) and the minimum is at(90◦E,±47◦N).
The maximum normal speed is 13.7km s−1 and the
minimum is 12.1km s−1. The maximum of cratering
rate occurs at(90◦W, 0◦N) and the minimum is at
(90◦E,±53◦N). The maximum/minimum cratering rate
ratio is 1.40. The apex/ant-apex ratio (the cratering rate
ratio between(90◦W, 0◦N) and(90◦E, 0◦N)) is 1.36 and
this ratio is a measure of the longitudinal variation. The
pole/equator ratio is 0.87 and this is a measure of the
latitudinal variation. The impact flux, normal speed, and
cratering rate withe = 0 (other parameters are set same
as Fig.2) are also calculated. The relative difference of
cratering rate (e = 0) from Figure2 is less than 0.2%.

3.2 Influences of Orbital Inclination and Obliquity of
the Moon

We next investigate the specific effects of lunar orbital in-
clination and obliquity on apex/ant-apex and pole/equator
ratios. Figure3 shows the apex/ant-apex ratior1 and
pole/equator ratior2 with different lunar inclination and
obliquity. i2 is not same with the lunar obliquity to its
orbit normal. For Cassini state 2 (ω1 = ω2 + π), lunar
obliquity relative to the lunar orbit normal isi1 + i2,
while for Cassini state 1 (ω1 = ω2), lunar obliquity
relative to the lunar orbit normal is|i1 − i2| (Ward 1975).
Other parameters in Equation (21) are set as(am, e, vp) =
(60Re, 0.0549, 19km s−1). r1 decreases with bothi1 and
i2 increased, whiler2 increases with increase ini2 and
seems to be independent ofi1. Based on our calculated
i1 andi2 distribution, we speculate the correlation ofr1 or
r2 with cos (i1 + i2) andcos (2i2) can be fitted as linear
regressions.

r1 = a11 + a12 cos (i1 + i2) + a13 cos (2i2) . (22)

r2 = a21 + a22 cos (i1 + i2) + a23 cos (2i2) . (23)

Whenam = 60Re, the fitting result is
(

a11 a12 a13
a21 a22 a23

)

=

(

1.12676 0.2469790 0.0089461
0.97137 −0.0029778 −0.0930123

)

.

(24)
Wheni1 andi2 are between0◦ and45◦, the relative error
between fitting result and Figure 3 is less than 2.4% forr1
and 0.15% forr2.

3.3 Evolution of the Apex/ant-apex Ratio

The past obliquity has been very high and the lunar
inclination is also different from current value (Ward
1975; Ćuk et al. 2016). We obtain the evolution of the
lunar orbital obliquity and inclination with the Earth-Moon
distance by reproducing the semi-analytical method for
the lunar orbital evolution fromĆuk et al. (2016). This
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Fig. 2 Distribution of impact flux (a), normal speed (b), and cratering rate (c) on the Moon for the current lunar orbital
obliquity, inclination and Earth-Moon distance. The maximum is set to 1.00.

method includes solving the differential equations of lunar
synchronous orbit controlled by Earth and Moon tidal
dissipation, as well as coupling them with the equation to

satisfy the Cassini state (Ward 1975). The solutions show
that the lunar inclination damps from the initial high value
to its present low value5.1◦ due to tidal dissipation, and the
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Fig. 3 The apex/ant-apex (a) and pole/equator (b) ratios with orbital obliquity and inclination of the Moon. Only the
Cassini state 2 (ω1 = ω2 + π) is calculated.

Fig. 4 Evolution of the apex/ant-apex ratio with Earth-Moon distance. The X-axis represents the Earth-Moon distance and
Y-axis represents the apex/ant-apex ratio. Theblack solid line is 1.12e−0.0529am/Re +1.32 from Le Feuvre & Wieczorek
(2011). The value ofαpγp in Le Feuvre & Wieczorek(2011) ranges from0.907 to 1.25. The other twodashed black
curves represent eq. (124) ofWang & Zhou(2016) with αpγp = 0.987. Thered andblue triangles represent results from
Eq. (21) which uses constant obliquity and inclination same as current values(i1, i2) = (5.145◦, 1.535◦). Thered and
blue lines is calculated basing on the evolution of orbital obliquity and inclination of the Moon froḿCuk et al.(2016)
with lunar tidal dissipation numberQM = 38.

lunar obliquity first increases and then decreases to current
value1.5◦ with the jump between 29.7Re and 35Re due to
the transitions from Cassini state 1 to Cassini state 2, which
is similar to the extended data figure 1 inĆuk et al.(2016).
We next apply this evolution in our model to estimate
the evolution of apex/ant-apex ratio (Fig.4). According to
Ćuk et al.(2016), the Moon is in non-synchronous rotation
from 29.7Re to about 35Re (gray box in Fig.4). When
the Moon is at Cassini state 1 (the Earth-Moon distance

< 29.7Re), the apex/ant-apex ratio decreases witham.
When the Moon is at Cassini state 2 (> 35Re), this ratio
reaches a maximum between 40Re and 45Re.

3.4 Cratering Rate Distribution of 3:2 Resonance

Our formulas can also predict cratering rate distributions
with various spin-orbit resonance. When the resonance is
3:2 (applicable to Mercury,Colombo 1965), we have a
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Fig. 5 Apex/ant-apex ratio of cratering rate with different
αpγp andvp. Other parameters involved in Eq. (21) is set
as(am, e, i1, i2) = (60Re, 0.0549, 5.145

◦, 1.535◦).

different transformation matrix in Equation (6) as

T
′

= Rz(
π

2
+ ω2)Rx(i2)Rz(

3

2
M +M0) . (25)

Also because this resonance is 3:2, a full integration
interval for Equations (16), (20), and (21) is
extended to two periods(0, 4π]. If setting up
the parameters involved in Equation (21) as
those for Mercury (

√

GMe/am, e, i1, i2, vp) =
(48.0km s−1, 0.205, 7.0◦, 7.0◦, 42.2km s−1). Further
substituting T in Equations (7)–(21) with T ′ and
using the asteroids inclination distribution from
Le Feuvre & Wieczorek (2008), the maximum and
minimum of cratering rate with 3:2 resonance is
at (±90◦E, 0◦N) and ±90◦N , respectively. The
maximum/minimum cratering rate ratio is 3.64.
When the orbital eccentric is degraded to 0.0
(Le Feuvre & Wieczorek 2008; Wang & Zhou 2016),
the maximum and minimum are at0◦N and ±90◦N ,
respectively. The maximum/minimum cratering rate ratio
is 2.91.

4 DISCUSSION

4.1 Comparison with Previous Results

In Figure 2(c), this study gives a similar current
cratering rate spatial variation (am = 60Re)
as Le Feuvre & Wieczorek (2011) in which the
maximum and minimum appear at(90◦W, 0◦N)
and (90◦E,±65◦N) respectively. The difference in
the location of the minimum between our result and
Le Feuvre & Wieczorek(2011) may be brought byf1
andg1 used in our calculations. The apex/ant-apex ratio
for current Moon fromLe Feuvre & Wieczorek(2011)
is 1.37. The apex/ant-apex ratio for current Moon from
Wang & Zhou(2016) with vp = 19km s−1, αpγp = 0.987

Fig. 6 Sketch for our model in a Moon-centric coordinate
system the lunar fixed coordinate systemOX2Y2Z2. The
origin O is at the center of the Moon. TheZ2-axis is
parallel to the lunar spin axiss and theX2-axis points to
the mean sub earth point.k is the ecliptic normal.n is
the lunar orbit normal. The Z-axis is the ecliptic normal
k and the X-axis points to the mean sub earth point.s

is the lunar spin axis.n is the lunar orbit normal. For a
given mean anomalyM , vm is the lunar velocity and the
apex is the point(−90◦E, 0◦N). Point B andA0 are on the
lunar surface.OB is parallel tovm. A0 is the intersection
of Y-axis and the lunar surface. Point A, B, and C are on
the intersection of the lunar surface and the planeOY2Z2.
OB is parallel tovm and perpendicular ton. Point A is
on the lunar equator planeC2 and it is the ant-apex point
(90◦E, 0◦N). Point C is on the ecliptic plane. Point D is
the mean sub-earth point.

and this study are 1.32 and 1.36 respectively. As an
extension based onLe Feuvre & Wieczorek(2011) and
Wang & Zhou (2016), this study gives a value between
them. The larger relative difference between this study
andWang & Zhou(2016) is probably caused by either the
asteroids inclination or the orbital obliquity and inclination
of the Moon. The pole/equator ratio in Figure2(c) is 0.87.
This value is higher than 0.80 inLe Feuvre & Wieczorek
(2011). This difference may be brought byf1 andg1 used
in our calculations. Besides the current cratering rate, this
study also gives the evolution of the apex/ant-apex ratio in
Figure 4. The results fromLe Feuvre & Wieczorek(2011)
and Wang & Zhou(2016) are also included in Figure 4.
The value ofαpγp adopted inLe Feuvre & Wieczorek
(2011) is about0.907 ∼ 1.25, because they used different
parameters in crater scaling law (in non-porous gravity
scaling regimeγp = 0.564 while in porousγp = 0.410)
and a 10th-order polynomial to fit the size distribution
of asteroids (αp ≈ 2.22). The influences ofαpγp is
shown in Figure5. Whenαpγp is between0.907 ∼ 1.25
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and vp is between19 ∼ 20km s−1, the apex/ant-apex
ratio for current Moon calculated by this model is
about1.33 ∼ 1.41. Although the value ofαpγp or vp
in this study is different fromLe Feuvre & Wieczorek
(2011), if the orbital obliquity and inclination of the
Moon is assumed constant and same with current values
(i1, i2) = (5.145◦, 1.535◦), this study will reproduce the
results predicted byLe Feuvre & Wieczorek(2011) (red
and blue triangle in Fig.4).

If we consider the variation of obliquity and
inclination, when the Earth-Moon distance is more
than ∼ 42Re, this model gives a consistent value
with Le Feuvre & Wieczorek(2011) and a similar trend
with Wang & Zhou(2016). However, when Earth-Moon
distance is between35Re and ∼ 42Re, this study
gives an opposite trend to previous results. According
to Ćuk et al.(2016), the orbital obliquity and inclination
of the Moon decrease in this interval. This evolution
trend of apex/ant-apex ratio can be explained by the
influences of orbital obliquity and inclination of the
Moon. When Earth-Moon distance is between29.7Re

and 35Re, the Moon is in non-synchronous rotation
and the apex/ant-apex ratio will be diminished by non-
synchronous rotation. When Earth-Moon distance is less
than 29.7Re, the apex/ant-apex ratio is calculated under
the assumption: the inclination distribution of asteroids’
velocity is same as current distribution. Although the
obliquity and inclination is very high, the apex/ant-apex
ratio is consistent withLe Feuvre & Wieczorek(2011).
We note that the population of asteroids is dominated by
main-belt asteroids during the late heavy bombardment
and and near-Earth objects since3.8− 3.7 Ga according to
Strom et al.(2015). The population of near-Earth objects
have been in steady state for the past∼ 3 Ga (Bottke et al.
2002). The evolution of apex/ant-apex ratio for the Earth-
Moon distance< 29.7Re may be quite different from
that shown in Figure4. It is confirmed that the influences
of orbital obliquity and inclination of the Moon are not
negligible in analysing lunar cratering asymmetry.

4.2 Explanation for the Influences of Orbital
Obliquity and Inclination of the Moon

When the lunar orbit eccentrice = 0.0, our model is
sketched in Figure6. In a lunar rotation period, the relative
position between{n,k, s} and the coordinate system
OX2Y2Z2 is not fixed. The apex or ant-apex point is on
the gray cycleC2. Wheni1 = i2 = 0, the gray circleC2,
red circle, and yellow circle coincide andr1 reaches its
maximum. The influence of asteroids inclination is related
to the length of

⌢

AC. The influence of lunar velocity is

related to the length of
⌢

AB. The farther the ant-apex is
from B or C, the smaller the leading/trailing asymmetry.
In our model, the angular distance between A (ant-apex)

and B is in[0,max{|i1 + i2|, |i1 − i2|}] uand the angular
distance between A and C is in[0, i2]. For Cassini state 2,
max{|i1 + i2|, |i1 − i2|} = |i1 + i2|. This is consistent
with the fitting result:r1 is proportional tocos (i1 + i2)
andcos (2i2). r2 is related to the angular distance between
point D and the red or yellow plane. Wheni1 = i2 = 0, r2
reaches its minimum. The angular distance between point
D and the red circle is in[0, i2] and the angular distance
between point D and the yellow circle is in[0,max{|i1 +
i2|, |i1 − i2|}. The pole/equator asymmetry will decrease
with increasing in those two angular distances. This is
also consistent with the fitting result:r2 is proportional to
cos (2i2) andcos (i1 + i2).

4.3 Generalization of this Model

The orbital obliquity and inclination of the Moon, Earth-
Moon distance, lunar orbital eccentric, and lunar rotation
speed have been included in this model. In addition to
the Moon, this model can be applied to other planets and
moons, especially for the types of spin-orbit resonance. For
example, Mercury is tidally locked with the Sun in a 3:2
resonance. The cratering rate distribution of 3:2 resonance
is detailed in Figure7. Figure7(a) shows the distribution
of cratering rate for 3:2 resonance. This cratering
rate asymmetry has been reported inWieczorek et al.
(2012). They predict the cratering asymmetry maximizes
at (0◦E, 0◦N) and (180◦E, 0◦N) and minimizes at
(±90◦E, 0◦N). Both of this study andWieczorek et al.
(2012) predict the distance between maxima of cratering
asymmetry is180◦. The difference between this study and
Wieczorek et al.(2012) may be from the ignorance of the
non-uniformity on the azimuth of asteroids velocity in this
study uand different definition of prime meridian between
this study andWieczorek et al.(2012). In Figure7(b), the
cratering with orbital eccentrice = 0 shows a different
distribution from e = 0.205 for 3:2 resonance. The
longitudinal variation of cratering rate is diminished by
rotation of planets and moons with eccentrice = 0.
However, in the cratering rate on the Moon, the difference
caused by eccentric is less than 0.2%. The influences of
eccentric is probably related to the types of spin-orbit
resonance and will be investigated in a future work.

5 CONCLUSIONS

In this study, we have presented an extension of
Wang & Zhou(2016) andLe Feuvre & Wieczorek(2011)
to calculate the lunar cratering asymmetry with high
obliquity and inclination. Different from previous models,
this model is also able to calculate the cratering asymmetry
with different Cassini states, and synchronous rotating
speed. This model gives consistent results with previous
with low obliquity and inclination. When the obliquity,
inclination and Earth-Moon distance are at current values,
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Fig. 7 The relative cratering rate for 3:2 resonance. The maximum is set to 1.00. longitudes0◦ and180◦ are subsolar
points whenM = 0. In subfigure (a), the orbital eccentric is 0.205. In subfigure (b), the orbital eccentric is 0.0.

this model gives an cratering asymmetry maximizing at
(90◦W, 0◦N) and minimizing at(90◦E,±53◦N) using
the encountering velocity inclination distribution calcu-
lated in Le Feuvre & Wieczorek(2008). The apex/ant-
apex ratio of this asymmetry is 1.36 and the pole/equator
ratio is 0.87. In order to calculate the cratering rate with
high obliquity and inclination, we have assumed that the
orbital obliquity and inclination of the Moon do not affect
the asteroids population encountering with the Moon.
Increasing the orbital obliquity and inclination of the Moon
reduces the apex/ant-apex ratio. According to the evolution
of orbital obliquity and inclination of the Moon, this model
gives an increasing trend in apex/ant-apex ratio with the
Earth-Moon distance between[35Re, 42Re]. This ratio
was predicted decreased with the increasing of Earth-
Moon distance in previous studies. Besides the cratering
rate, this model also gives the spatial variation of impact
flux and impact normal speed. Our results provide the

quantitative information for evaluating and rectifying the
lunar cratering chronology.
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Appendix A: ASTEROIDS ENCOUNTERING WITH
THE MOON WITH HIGH
OBLIQUITY AND INCLINATION

In Section 2.1, we assumed that the concentration of
asteroids encountering with the Moon is unaffected by the
orbital obliquity and inclination of the Moon. Although
the probability of asteroids encountering with the Moon
has been estimated based on (Opik 1951; Wetherill 1967;
Greenberg 1982), it has been demonstrated that the
probability encountering with the Moon is similar with the
Earth when the lunar inclination and obliquity is about 0
in figure 6 of Le Feuvre & Wieczorek(2008). But when
the inclination and obliquity is high, the rationality of
our assumption is uncertain. In this section we introduce
a different framework to prove this assumption. For any
asteroid with semi-major axis, eccentricity, inclination,
longitude of ascending node, argument of perihelion,
true anomaly, mean anomaly and eccentric anomaly
are (a, e, i,Ω, ω, f,M,E). Here we use subscripte to
represent the orbit of Earth andm to represent the Moon.
In the heliocentric ecliptic coordinates system, the position

of this asteroid is

r = rRz(Ω)Rx(i)Rz(ω + f)[1, 0, 0]T , (A.1)

r = a(1− e2)/(1 + e cos f) = a(1− e cosE), (A.2)

rmax = a(1 + e) , rmin = a(1− e).

For elliptic trajectory,

M = E − e sinE , (A.3)

cos f =
cosE − e

1− e cosE
, (A.4)

sin f =

√
1− e2 sinE

1− e cosE
. (A.5)

Using the common assumption: uniform precession ofΩ
andω(Opik 1951; Wetherill 1967; Greenberg 1982), for
given(a, e, i) the joint probability density is

PΩ,ω,M (Ω, ω,M |a, e, i) =
(

1

2π

)3

, (A.6)

PΩ,ω,E(Ω, ω, E|a, e, i)

= PΩ,ω,M (Ω, ω,M |a, e, i)|∂M
∂E

|

=

(

1

2π

)3

(1 + e sinE) , (A.7)

Ω ∈ [−π, π], ω ∈ [−π, π], M ∈ [−π, π], E ∈ [−π, π] .
(A.8)

The position of this asteroid can also be expressed asr = [x, y, z]T , then we obtain a transformation:(Ω, ω, E) 7→
(x, y, z).







x = r(cosΩ cos (ω + f)− sinΩ sin (ω + f) cos i)
y = r(sin Ω cos (ω + f) + cosΩ sin (ω + f) cos i)
z = r sin (ω + f) sin i

. (A.9)

Equation (A.9) has four solutions:(Ωk, ωk, Ek), k = 1, 2, 3, 4.










































cos fk =
a(1 − e2)

e
√

x2 + y2 + z2
−

1

e

sin (ωk + fk) =
z

√

x2 + y2 + z2 sin i

Ωk = atan2
(

x cos (ωk + fk) + y sin (ωk + fk) cos i, y cos (ωk + fk)− x sin (ωk + fk) cos i
)

Ek = atan2
(

√

x2 + y2 + z2 cos fk + ae,
√

x2 + y2 + z2 sin fk
1√

1−e2

)

.

(A.10)

Using Equations (A.6)–(A.10), the joint probability density is

Px,y,z(x, y, z|a, e, i) =
4
∑

k=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂(Ωk, ωk, Ek)

∂(x, y, z)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

PΩ,ω,E(Ωk, ωk, Ek|a, e, i)

=
1

2aπ3

1
√

r2 sin2 i− z2

1
√

(r − rmin)(rmax − r)
, r =

√

x2 + y2 + z2 . (A.11)

In Equation (A.11),
∂(Ωk, ωk, Ek)

∂(x, y, z)
is the Jacobi matrix. Equation (A.11) is valid when(x, y, z) ∈ D = {|z| ≤

| sin i|r and rmin ≤ r ≤ rmax}. When(x, y, z) /∈ D, Px,y,z(x, y, z|a, e, i) = 0. This asteroid encountering with a fixed
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pointr0 = [x0, y0, z0]
T is defined as|r − r0| ≤ τ (τ is different for the Moon and the Earth) andτ ≪ min{|r|, |r0|}.

Then we obtain the probability encountering with a fixed point P1 and its errorδP1.

P1 =

∫∫∫

|r−r0|≤τ

Px,y,z(x, y, z|a, e, i)dxdydz ≈ 4

3
πτ3Px,y,z(x0, y0, z0|a, e, i) , (A.12)

δP1 ≈
∫∫∫

|r−r0|≤τ

|r − r0||∇Px,y,z(x0, y0, z0|a, e, i)|dxdydz = πτ4|∇Px,y,z(x0, y0, z0|a, e, i)| . (A.13)

BecausePx,y,z is not bounded with(r2 sin2 i− z2)(r − rmax)(r − rmin) = 0. Equation (A.12) and Equation (A.13) are
valid whenmin{|r sin i±z|, |r−rmax|, |r−rmin|} ≥ εa (ε > 0). Whenmin{|r sin i±z|, |r−rmax|, |r−rmin|} < εa,
the supremum ofP1 can be estimated in spherical coordinates,

P1 ≤
∫∫∫

E

Px,y,zr
2| sin θ|drdθdϕ =

1

2aπ3

(
∫

ϕ

dϕ

)

Re

(

∫

θ

sin θdθ
√

sin2 i− cos2 θ

)

Re

(

∫

r

rdr
√

(r − rmin)(rmax − r)

)

,

(A.14)

E =
{

|r − r0| ≤ τ, |θ − θ0| ≤ arctan τ/r0, |ϕ− ϕ0| ≤ arctan
τ

r0 cos θ0

}

. (A.15)

This section is only a qualitative explanation. For simplicity, following derivations are under the condition:min{|r sin i±
z|, |r − rmax|, |r − rmin|} ≥ εa. Whenr0 is not fixed, for the Earthr0 = re = reRz(Ωe)Rx(ie)Rz(ωe + fe)[1, 0, 0]

T ,
this asteroid encounters with the Earth by probabilityP2.

P2 =

∫∫∫

(Ωe,ωe,Me)

P (Ωe, ωe,Me|ae, ee, ie)P1dΩedωedMe = 2π

∫∫

(ωe,Me)

P (Ωe = 0, ωe,Me|ae, ee, ie)P1dωedMe ,

(A.16)

δP2 = 2π

∫∫

(ωe,Me)

P (Ωe = 0, ωe,Me|ae, ee, ie)δP1dωedMe . (A.17)

Equation (A.16) and Equation (A.17) use the rotational symmetry about the z axis ofPx,y,z. For the Moonr0 = re +
rm = reRz(Ωe)Rx(ie)Rz(ωe+fe)[1, 0, 0]

T + rmRz(Ωm)Rx(im)Rz(ωm+fm)[1, 0, 0]T , this asteroid encounters with
the Moon byP3.

P3 = 2π

∫∫

(ωe,Me)

P (Ωe = 0, ωe,Me|ae, ee, ie)
∫∫∫

(Ωm,ωm,Mm)

P (Ωm, ωm,Mm|am, em, im)P1dωedMedΩmdωmdMm , (A.18)

δP3 = 2π

∫∫

(ωe,Me)

P (Ωe = 0, ωe,Me|ae, ee, ie)
∫∫∫

(Ωm,ωm,Mm)

P (Ωm, ωm,Mm|am, em, im)δP1dωedMedΩmdωmdMm . (A.19)

The difference betweenP2 andP3 can be estimated by

|P2τ
−3
e − P3τ

−3
m | ≤ 2π

∫∫

(ωe,Me)

P (Ωe = 0, ωe,Me|ae, ee, ie)
∫∫∫

(Ωm,ωm,Mm)

P (Ωm, ωm,Mm|am, em, im)

× 4π

3
|Px,y,z(xm + xe, ym + ye, zm + ze|a, e, i)− Px,y,z(xe, ye, ze|a, e, i)|dωedMedΩmdωmdMm . (A.20)

From Equation (A.20),P3 can be estimated by

P2
τ3

m

τ3
e

. While P2
τ3

m

τ3
e

is independent of lunar inclination
and obliquity, therefore we can use the concentration
of asteroids encountering with the Moon with low
inclination and obliquity to replace the concentration
with high inclination and obliquity. We note that when

(ae, ie, ee) = (1, 0, 0), for 87% of the near-earth orbits (the
dataset of near-earth orbts is taken from the International
Astronomical Union’s website), the relative error between

P2
τ3

m

τ3
e

andP3 calculated by Equation (A.20) is less than
5%.
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