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Abstract From Rybicki’s analysis using the Fourier slice theorem, mathematically it is possible to
reproduce uniquely an edge-on axisymmetric galaxy’s 3D light distribution from its 2D surface brightness.
Utilizing galaxies from a cosmological simulation, we examine the ability of Syer and Tremaine’s made-
to-measure method and Schwarzschild’s method for stellar dynamical modeling to do so for edge-on oblate
axisymmetric galaxies. Overall, we find that the methods do not accurately recover the 3D distributions,
with the made-to-measure method producing more accurate estimates than Schwarzschild’s method.
Our results have implications broader than just luminosity density, and affect other luminosity-weighted
distributions within galaxies, for example, age and metallicity.
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1 INTRODUCTION

At optical wavelengths, our understanding of external
galaxies is limited by our observational capabilities:
we are unable to observe individual stars in these
galaxies and so are reliant on projected brightness data
and decoding blended light from many stars. Gaia-like
observations of our Galaxy (Fabricius et al. 2016) with
stellar data including three-dimensional (3D) positions
and velocities are a luxury we do not have with external
galaxies. In addition to a galaxy’s surface brightness, our
main observations comprise two-dimensional (2D) on-sky
positions, with integrated line-of-sight (los) photometric
spectral data leading to los kinematics and chemistry.
These observations are taken with optical telescopes
mounted with integral field units (IFUs) implementing
integral field spectroscopy. Galaxy surveys delivering IFU
data for individual external galaxies include ATLAS3D

(Cappellari et al. 2011), CALIFA (Sánchez et al. 2012),
MaNGA (Bundy et al. 2015), SAMI (Bryant et al. 2015)
and MUSE (Bacon et al. 2017).

From observations, we are unable to recover the full
phase space data to produce accurate, full dimensional
models of observed galaxies. Except in a few special
cases, data deprojections are in general not unique,
and, mathematically, this is impossible to overcome: in
linear algebra terms, projection matrices are singular.
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Regardless of whether models are able to reproduce the
observations or not, model solutions cannot be unique,
and so our understanding of the observed galaxies
is inherently degenerate as a consequence. This point
regarding deprojection is well-made in the introduction
section of Cappellari (2020), and in Vasiliev & Valluri
(2020). The introduction of statistical data from, say,
cosmological simulations or stellar population synthesis
may assist us by helping to eliminate non-physical models
but the resultant solutions remain unable to overcome the
deprojection non-uniqueness. As such the models indicate
what galaxies may be like but cannot be considered as
accurate. We mentioned that there are special cases when
deprojection is mathematically possible. The first case is
for a spherical system using Eddington’s formula (Binney
& Tremaine 2008). The second is for oblate axisymmetric
systems and is the subject of this paper.

Rybicki (1987) makes it clear that an axisymmetric
galaxy’s 2D surface brightness can only be deprojected
to give the 3D light distribution if the galaxy’s symmetry
axis is in the plane of the sky. In other words, deprojection
is only possible if the galaxy is viewed edge-on, that is
when the inclination angle is 90◦ degrees. Gerhard &
Binney (1996) expand on this work, introducing ‘konus’
densities and demonstrating that an infinite number of
plausible 3D densities result in the same surface brightness
when the inclination is not edge-on. A key observation in
Gerhard & Binney (1996) is that triaxial galaxies must be
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similarly affected. In this paper we will not investigate
konus densities further, as was performed by van den
Bosch (1997) or Zhao (2000), for example. It should
be noted that, even though Rybicki (1987) is framed in
terms of light, its findings apply to any axisymmetric
feature of a galaxy which is observed, or constructed,
as a 2D projection of a 3D distribution, for example,
age or metallicity perhaps. Similarly, the findings of
Gerhard & Binney (1996) can be extended to any triaxially
distributed features. de Nicola et al. (2020) in a recent
paper investigated a non-parametric approach to triaxial
deprojection: we do not take a similar route.

In this paper, we use two stellar dynamical modeling
methods, the orbit method of Schwarzschild (1979) and
the made-to-measure (M2M) particle method of Syer &
Tremaine (1996), with our implementations being based
on Long & Mao (2018) for Schwarzschild’s method,
and Long (2016) for M2M. Our research objectives are
to investigate whether or not these methods and their
implementations do recover 3D axisymmetric spatial dis-
tributions from 2D projections for edge-on axisymmetric
galaxies, and to investigate the extent to which recovery
degrades with inclination. In so doing, we will use matter
distributions taken from a cosmological simulation.

The structure of our paper is as follows. Section 2
describes at a top level the approach we will take to our
investigations. Section 3 introduces our galaxies and data.
Any relevant theory and descriptions of the methods are in
Section 4. Note that we will not describe Schwarzschild’s
method and the M2M method in any great detail but
refer the reader elsewhere. Our results and any ensuing
discussions are in Sections 5 and 6, with our conclusions
in Section 7.

2 APPROACH

Our objectives imply that we require oblate axisymmetric
galaxies with known 3D density distributions to be
available to the investigation. Known distributions mean
that use of real galaxies is ruled out, and so we select
appropriate axisymmetric galaxies from the IllustrisTNG
project’s TNG100 cosmological simulation (Nelson et al.
2019). Since no cosmologically simulated galaxies are
truly axisymmetric (as required by Rybicki’s theory), we
enforce axisymmetry by using multi-Gaussian expansions
(MGEs, see below) of the galaxies’ surface brightness
maps, and model galaxies both with and without kinematic
constraints.

We have chosen to use Schwarzschild’s method
and Syer & Tremaine’s M2M method in our modeling.
Arriving at 3D density estimates from these methods is
straightforward. M2M uses a 3D particle model and so
3D density estimates could be calculated from the end
of run weighted particles. Such calculations produce a
numerically noisy result which can be avoided if the 3D

density estimation takes place while the particle weights
are being adjusted, and is exponentially smoothed as
happens for the constraints. For Schwarzschild’s method,
there are two estimation processes which can be utilized.
The first involves building a 3D particle from the weighted
orbits as in Zhao (1996) and Wu et al. (2017) and
then binning particles on a 3D grid to arrive at the
density estimate. The second employs a technique not
too dissimilar to that used within the M2M method. The
orbit contributions to the 3D density are collected as for
other constraints but these contributions are not used when
the orbit weights are calculated. Once the weights are
available, they are combined with the orbit 3D density
contributions to determine the density estimate. We will
demonstrate that both methods yield the same density
estimate to within some tolerance.

Our assessment of deprojection accuracy is consistent
with the style of operation of the modeling methods
in that we use the residual maps formed by comparing
model observable values with their constraining values
taken from our galaxy data. The extent of their difference
expressed as a percentage for all observable points is
employed as our accuracy measure.

Both M2M and Schwarzschild’s methods can only
utilize the particles or orbits determined by the initial
conditions and the gravitational potential. The question
being answered by the methods is whether or not there is
some weighting of the orbits that can be found to enable
the model observables to match the real observations.
Changing the orbits provided implies a different answer
- see Cappellari (2020). The orbit or particle weightings
are not determined by astrophysical considerations. For
example, with an implementation of Schwarzschild’s
method using Lawson & Hanson (1974), just which orbits
are zero-weighted is determined by the non-negative least
squares (NNLS) code, and does not involve any knowledge
as to which orbit types are astrophysically more likely. For
Schwarzschild’s method, in line with Long & Mao (2018),
we use the convex optimization package CVXOPT (Boyd
& Vandenberghe 2004) to determine the orbit weights.
More information on different NLLS methods is contained
in Chen & Plemmons (2009). Two methods are employed
for the particle and orbit initial conditions. We continue
with the three integral scheme as in Long (2016) and
Long & Mao (2018), and also introduce an additional,
observationally motivated scheme based around the Jeans
equations. Both schemes are described in Section 4.5.

We do not use regularization (Tikhonov 1963) as a
matter of course in our models. We do however run a
small number of models with a quadratic regularization
term penalizing large, orbit or particle weights to evaluate
its effect on 3D density estimates. Utilizing a quadratic
form, as in Valluri et al. (2004), Vasiliev (2013) and Long
(2016), means that the convex nature of the optimization
that yields the orbit weights is maintained. The same
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quadratic scheme is available for use with both M2M and
Schwarzschild’s methods.

We endeavor to employ as much commonality as
possible in our use of the Schwarzschild and M2M
methods. For a given galaxy, the gravitational potentials
are the same; the data are the same apart from any mass or
luminosity weighting for Schwarzschild purposes; model
bin sizes, regularization schemes and initial conditions are
also the same.

A galaxy’s potential is modeled as two multi-Gaussian
expansions (MGEs) (see Emsellem et al. 1994), an
axisymmetric one for the stellar matter and a spherical
one for the dark matter. As indicated earlier, we are
employing the stellar MGE to enforce axisymmetry on
the models. For a single galaxy, the models we run utilize
these MGEs with luminosity constraints coming from the
axisymmetric stellar component, and with and without
kinematic constraints. The full set of models for a galaxy
is

1. a full mass, edge-on galaxy model using both MGEs
and with stellar luminosity constraints only,

2. as item 1 with kinematic constraints included as well
as luminosity constraints,

3. as item 1 with the galaxy inclined to the line of sight
(seven different inclinations).

Every model comprises two parts: the first uses the known
3D stellar MGE density as a constraint to ensure that
the 3D density is able to be reproduced by the modeling
method; and, the second, the 2D stellar surface brightness
so that the extent to which a model’s 3D density estimate
matches the true 3D density can be assessed. Every
model is run using the two different sets of orbit/particle
initial conditions. Particularly in figures, we will refer to
models with no kinematic constraints as Nokin models, and
similarly Kin for models with kinematic constraints.

Even though we run models with and without
kinematic constraints, the models without kinematic
constraints are produced as an aid to understanding. It is
the models with kinematics constraints that will eventually
guide whether our objectives have been met or not.

3 GALAXY DATA

In this section, we describe how we select suitable
galaxies for our investigation from the publicly released
IllustrisTNG project’s TNG100 simulation data (Nelson
et al. 2019), and how, from those galaxies, we construct
IFU-like data for modeling purposes.

Our galaxy selection strategy is designed to ensure
we initially bias our selection towards oblate elliptical
galaxies with sufficient mass resolution such that galaxies
with possible spiral features that are largely present in
star forming disk galaxies are not included in our sample.
To that end, we first select galaxies with stellar mass

larger than 1010.5M�, with a bulge to total luminosity
ratio larger than 0.5, and with a minor to major axial
ratio in the range 0.42 < c/a < 0.9. We then refine
our selection to oblate central (not satellite) galaxies
with simple kinematics, perhaps with rotation around the
symmetry axis, and close alignment of the mass and
kinematic axes. Close in this context means within 3
degrees. Our criterion for axisymmetry is that the axial
ratio of the axes perpendicular to the symmetry axis (the
minor axis) should be such that b/a > 0.95.

Approximately 130 galaxies met our criteria, and in
Table 1 we list the five galaxies we have selected for
modeling. The Sérsic indices (Sérsic 1963) of the galaxies
are close to the accepted elliptical galaxy value of 4 for
all the galaxies. Both the Sérsic indices and the hot orbit
fractions are taken from Xu et al. (2019). Galaxy A1190
has a position angle difference > 3 degrees and has been
included deliberately.

We take Rhsm, the half stellar mass radius of a galaxy,
as the galaxy’s ‘effective radius’ Re and will use it to
scale distances within our models (see Sect. 4.4). For data
preparation purposes, we assume that all galaxies are at
redshift z = 0.01, which means 1 kpc equals 1.612 arcsec.

For all galaxies, we are concerned only with the stellar
and dark matter particles. The focus in our work is on
modeling the stellar mass (light) distribution so black
hole particles are ignored. We do not utilize simulation
calculated luminosity values but just use the stellar mass
distribution and take the stellar mass-to-light ratio as 1. Gas
plays no role in the modeling methods we are evaluating.
We employ the virial radius (r200 to be precise, see Binney
& Tremaine (2008) section 9.2) to set the overall size
of a galaxy and to identify the galaxy’s particles. No
further filter on stellar particles is employed. The dark
matter component of a galaxy’s gravitational potential is
determined by fitting a generalized spherical NFW profile
(Navarro et al. 1996, 1997, and see also An & Zhao
2013) to the dark matter particles and then converting the
profile into an MGE. Similarly, the axisymmetric stellar
potential is determined from an MGE of the galaxy’s
edge-on surface brightness. Note that the MGE formalism
automatically gives us axisymmetric expressions for the
3D densities. The stellar MGEs for the galaxies we have
chosen are shown in Figure A.1.

For modeling purposes, luminosity data are always
calculated from the stellar MGEs. Brightness data for
inclined galaxies are found by adjusting the observed
flattening terms within the MGE (Eq. (1)) and then using
the adjusted MGE to calculate the data values.

qi =

√
q290 sin

2 i+ cos2 i, (1)

where q90 is the edge-on flattening, i is the galaxy’s
inclination to the line of sight and qi is the ‘on-sky’
projected flattening.
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Table 1 TNG100 Galaxies - Selection and Modeling Data

Galaxy Id Sub Id Rhsm log(M∗) Sérsic Frac. ∆pa b/a c/a Model size Voronoi
(kpc) Index Hot (Rhsm) Cells

A490 318633 6.586 11.13 3.79 0.34 1.68 0.98 0.46 8 197
A1090 377539 6.354 11.00 3.67 0.29 1.33 0.95 0.64 8 110
A1190 414146 6.090 10.77 4.96 0.33 6.63 0.99 0.67 8 173
A1290 416112 5.590 10.95 4.84 0.31 1.27 0.99 0.55 9 119
A1390 443421 5.154 10.82 4.46 0.27 4.00 0.96 0.52 9 220

The columns are our galaxy identifier, the TNG100 sub-halo identifier, the half stellar mass radius Rhsm, the stellar mass M∗, the
Sérsic index, the fraction of hot orbits (calculated inside 2Rhsm), the position angle difference in degrees between the mass and velocity
kinematic axes, and the stellar axial ratios b/a and c/a in the usual notation. The axial ratios are calculated using the inner 10 kpc of data.
Model sizes are in units of the half stellar mass radius Rhsm. The Voronoi cells are used for kinematic data constraints only.

Generation of IFU-like stellar kinematic data is
achieved by viewing the galaxy along some desired line
of sight (inclination), binning stellar particle data into
0.5 kpc square bins, and then re-binning into Voronoi bins
(Cappellari & Copin 2003) to achieve a minimum signal
to noise ratio, S/N ∼ 20. In practice, only edge-on
kinematic data have been required in this research. Edge-
on line of sight velocity maps for our selected galaxies
are shown in appendix A. The fraction of hot orbits in
Table 1 is used in assessing the suitability of the initial
conditions (see Sect. 4.5). Once we have constructed the
MGEs and kinematic data, we make no further use of the
cosmological simulation’s particles.

For the galaxies we have selected, we do not attempt to
model any quantities other than luminosity and kinematics.
We note however that age or metallicity data, say, could be
modeled but if they are not axisymmetrically distributed
(which is likely) then the observations made in Gerhard
& Binney (1996) will apply and it will not be possible to
estimate their 3D distributions with any accuracy.

In this investigation, we are trying to establish
whether or not two general purpose modeling schemes
are able to deliver models that conform to the theoretical
statements in Rybicki (1987). To assist us in developing
our understanding of the deprojection capabilities of
the Schwarzschild and M2M modeling schemes, we
run galaxy models with and without kinematic data
constraints.

4 THEORY AND METHODS

4.1 General Theoretical Considerations

The theoretical considerations behind this paper come
from the following four points.

1. Except in a few special cases, deprojection of lower
dimensional galaxy data to higher dimensions is not
unique. This means that quantities calculated from the
phase space coordinates arising from the orbits and
particles in the modeling methods cannot be taken as
accurately representing a galaxy.

2. One of these special cases is edge-on axisymmetric
galaxies where the work of Rybicki (1987), Gerhard
& Binney (1996) and Kochanek & Rybicki (1996)

applies, and unique deprojections are possible math-
ematically. The question being asked in this paper is
whether or not Schwarzschild’s method and the M2M
method (and their implementations) are capable of
such unique deprojections.

3. An examination of Rybicki (1987) indicates that its
arguments are not specific to light or mass distri-
butions and should apply to other 3D axisymmetric
distributions. In addition, the arguments in Gerhard
& Binney (1996) regarding 3D non-axisymmetric
distributions also apply. Recovery of metallicity and
age distributions, for example, would therefore also be
subject to the question asked in point 2.

4. From the theory of orbits in an axisymmetric potential
(section 3.2 in Binney & Tremaine 2008), the symme-
try axis (the z-axis) is protected as if by a ‘centrifugal
barrier’. In the context of this investigation, it is
important that this barrier is overcome by ensuring
that orbits with low or zero angular momentum about
the z-axis are included. Failure to do so would mean
that the modeling methods would be prevented from
modeling the 3D density close to the axis.

4.2 Schwarzschild’s Method

The modeling method described in Schwarzschild (1979)
to create equilibrium triaxial stellar models has evolved
over time into a method for modeling external galaxies.
Our implementation in Long & Mao (2018) is influenced
by the use of Gauss-Hermite coefficients as constraints
in Rix et al. (1997) and by the implementation used
in Cappellari et al. (2006) and van den Bosch et al.
(2008). The method takes a galaxy’s gravitational potential
and constructs a library of orbits recording the orbits’
contributions to some set of constraining, luminosity and
kinematic observables. These orbit contributions are then
weighted in an attempt to reproduce the constraints’
observational data. We refer the reader to Long & Mao
(2018) for more information.

In order to use Schwarzschild’s method to estimate
a 3D density in the absence of a 3D density constraint,
we have two options. The first is construct a weighted 3D
particle model from the orbits in Schwarzschild modeling,
and then calculate a 3D density estimate from that particle
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model (see Zhao 1996 and Wu et al. 2017). The second
is motivated by the M2M estimation approach in 4.3 and
involves collecting the orbit contributions to the 3D density
but not using these contributions in the weight calculations.
Once weights have been calculated, the orbit contributions
can be used with the weights to produce the density
estimate. In Section 4.2.1, we demonstrate that the options
produce very similar results.

In our models, we fix the number of orbits at 8000,
and collect orbit contributions over 50 hmdtu (half mass
dynamical time units) (see Binney & Tremaine 2008).

4.2.1 Schwarzschild 3D Density Estimators

In the previous section, we indicated that there are two
means of estimating a 3D density using Schwarzschild’s
method. The first requires a particle model to be
created, and the second needs a slight adjustment to
Schwarzschild’s method. We now demonstrate the two
estimation methods for the Nokin and Kin sets of models,
using both the 3I and MDJV schemes for initial conditions
described in Section 4.5.

For the particle model, we must first run
Schwarzschild’s method to produce the orbit weights. The
particle model is then created by taking each orbit and
dividing the orbit into a number N of equal time intervals.
After each time interval, we create a particle of weight
wj/N at the position reached along the orbit (wj is the
weight of orbit j). Binning these particles allows the 3D
density to be estimated. We take N = 1000 giving 8× 106

particles per model.
In Figure 1 we compare the two estimation methods.

Results using 3I initial conditions are in the first column,
and MDJV in the second column, with the individual plots
showing the 1σ residual percentages - see Equation (2).
Nokin models for the galaxies are in the first row, with Kin
models in the second row. As can be seen, the two methods
yield very similar results with typically the difference
being ≈ 1%. For operational convenience, we choose to
use only the Schwarzschild based estimator in analyzing
our results.

4.3 Made-to-measure Method

The M2M method described in Syer & Tremaine (1996)
takes a system of weighted particles and orbits them in a
gravitational potential representative of a galaxy. While the
particles are being orbited, their weights are adjusted so
that various observationally based constraints are met. The
following papers have all contributed in some way to the
development or use of the method: de Lorenzi et al. (2007),
Dehnen (2009), Long & Mao (2010, 2012), Morganti
& Gerhard (2012), Hunt & Kawata (2013), Malvido &
Sellwood (2015), Portail et al. (2015), Long (2016) and
Bovy et al. (2018). There are slight variations in the low

level designs and implementations of the method. We
choose to follow Long (2016), and refer the reader to
that paper for more information about the method and our
implementation.

In order to use M2M to estimate a 3D density in the
absence of a 3D density constraint, we include in our M2M
implementation ‘estimator’ objects. These objects act
similarly to constraints in the sense that model estimates
are calculated as the weighted particles are orbited and
are put through the exponential smoothing process, but
they are not included in the particle weight adaption
mechanism. A similar technique was used in Morganti
et al. (2013) to estimate the β(r) velocity dispersion
anisotropy parameter.

M2M has substantially more hyper-parameters avail-
able to tune the method than Schwarzschild’s method. We
fix the number of particles we use to 2 × 105 but allow
some variation in model durations and the value of the
ε parameter (which controls the rate of weight adaption)
so that χ2 per bin ≈ 1 for all observational constraints.
Typically, durations are 200 time units for models with
MDJV initial conditions, and 300 units for 3I models. The
ε parameter is usually either 5 × 10−5 or 1 × 10−4. With
M2M, we must specify the initial particle weights (there
is no requirement to do so in Schwarzschild’s method).
In line with earlier modeling (Long & Mao 2010; Long
2016), we choose to set their fractional values to 1/N
where N is the number of particles used. Given that
only the Kin models have more than one observational
constraint, apart from these models, automatic numerical
balancing in the weight adaption equation is turned off.
Overall, these parameters also enable us to achieve weight
convergence of ≈ 95% for 3I models and ≈ 98% for
MDJV models (see Sect. 4.5 for an explanation of 3I and
MDJV).

4.4 Commonality

In order to facilitate comparison between our chosen
dynamical modeling methods, we will seek to use as much
commonality as possible in our usage of the methods. In
this section, we identify the common areas. The units we
use are the same as in Long (2016) and Long & Mao
(2018) and are effective radii for length, 107 years for time
and mass in units of the solar mass M� with luminosity
similarly so.

The galaxy gravitational potentials are constructed
from MGEs of the stellar and dark matter masses
with a stellar mass-to-light ratio of 1. Even though the
IllustrisTNG galaxies include black hole particles, we
do not utilize them in our modeling: most models do
not involve kinematic constraints. Having determined
the potential, the initial conditions (spatial and velocity)
are constructed for our particles and orbits. The only
difference here is that the number of orbits used in
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3I Initial Conditions MDJV Initial Conditions

Nokin

Kin

Fig. 1 Comparison between the two methods for Schwarzschild 3D density estimation (Sect. 4.2.1). Blue indicates the
embedded Schwarzschild estimator values and orange the particle method values. The individual plots show the 1σ
residual percentages - see Eq. (2). Overall, there are no significant differences between the two estimation methods.

Schwarzschild’s models (8000) is considerably smaller
than the number of particles used in the M2M models
(2 × 105). The methods for setting the initial conditions
are described in the next section, Section 4.5.

The luminosity constraints are 2D surface brightness
and 3D luminosity density calculated from the stellar
MGEs. Error terms are numerically set as 10 percent
relative errors. Surface brightness data are held on a
polar (R,φ) (16, 16) grid giving 256 cells, and luminosity
density data on an axisymmetric (r, θ) (12, 25) half grid
with 300 cells. Both the polar and axisymmetric grids are
logarithmic in radius. Kinematic constraints are utilized in
Gauss-Hermite coefficient h1 to h4 form (van der Marel
& Franx 1993; Gerhard 1993), and are symmetrized as
appropriate to axisymmetry before modeling (for example,
Cappellari et al. 2006, van den Bosch et al. 2008). The
associated Voronoi cells (see Table 1) are used directly
in the modeling with no attempt made to interpolate
kinematic data onto a regular grid, say. In addition,
we apply a sum of weights constraint (equal to 1) in
all our models. The modeling methods differ in the
way kinematic constraints are dealt with: Schwarzschild’s
method requires surface luminosity times the constraint
values whereas M2M does not.

For 3D luminosity density estimation (as distinct
from 3D density as a constraint), we also employ an
axisymmetric (r, θ) (12, 25) half grid with 300 cells.

4.5 Initial Conditions

We employ two different schemes for creating initial
conditions for the orbits/particles. The first is a well
established method employing sampling from the 3D space
of the isolating integrals of motion for an axisymmetric
system (Cappellari et al. 2006; van den Bosch et al. 2008;
Long 2016), and the second is concerned with sampling
observational space and using the Jeans equations (similar
to that utilized in Long & Mao 2010, 2012).

The three integral scheme samples, energy, angular
momentum about the symmetry axis z and a surrogate
third integral, (E,Lz, I3) to set the initial positions and
velocities. We implement the scheme in gridless form as
in Long & Mao (2012). For convenience we refer to this
scheme as the 3I scheme.

The second scheme is in two parts: first, the initial
spatial positions are set in such a way that the distribution
profile matches that of the surface brightness MGE; and
second, the initial velocities are determined by solving
the axisymmetric isotropic Jeans equations at each initial
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spatial position and using Gaussian sampling to set the
actual velocities. Given the gravitational potential and the
initial conditions, it is straightforward to calculate the
energy E and angular momentum Lz for inclusion in later
model analyses. We refer to this scheme as the MDJV
(match density, Jeans velocities) scheme.

As may be seen from Figure 2, the two schemes
result in different energy and angular momentum profiles
for the orbits/particles, and these different profiles will
influence the results from our modeling. We do not mix
the two schemes, or add in additional orbits as other
researchers have sometimes done, for example van den
Bosch et al. (2008). We do ensure that the two schemes
share a common lower angular momentum bound (10−7 in
internal units).

Table 2 shows the percentages of hot orbits generated
by the initial condition schemes. Hot orbits are those with
|λz| < 0.25 where λz is the orbit circularity measure
defined as the ratio of the orbit’s angular momentum to
the maximum angular momentum allowed by the orbit’s
energy. The 3I values of 25% are to be expected given
the way the 3I scheme functions (see Fig. 2, right hand
plot). The 3I scheme in general underestimates the hot
orbit values from the simulation particle data by ≈ 6%,
with the MDJV scheme matching the data values to within
≈ ±3%.

Table 2 Hot Orbits Comparison

Galaxy Id 3I MDJV Data

A490 25% 28% 34%
A1090 25% 32% 29%
A1190 25% 36% 33%
A1290 25% 28% 31%
A1390 25% 31% 27%

A comparison of the 3I and MDJV initial condition schemes (Sect. 4.5)
showing the percentage of hot orbits generated by each scheme. The
columns from left to right are the galaxy identifier, and then the
percentages of hot orbits from the 3I and MDJV initial conditions and
from the TNG100 stellar particle data. Hot orbits are defined as those
with |λz | < 0.25 where λz is the circularity measure. The particle data
values are taken directly from Table 1.

M2M is more flexible than Schwarzschild’s method in
that the particle weights are available from the start of a
modeling run. As indicated in Section 4.3, we use the same
initial value for all particles. It is quite possible to design
alternative schemes, and we have experimented with this
by setting initial weights using the surface luminosity at a
particle’s on-sky position. Having run models using both
sets of initial conditions (3I and MDJV) with and without
kinematic constraints, we find that our alternative scheme
has little impact (±2%) on 3D density estimates. The
determination of initial conditions uses random numbers,
and, as a consequence, initial conditions are subject to
stochastic variations. We do not attempt to assess the
impact of these variations in this work.

5 RESULTS

Before looking at specific modeling runs, we first describe
how in general we assess our results. As stated earlier
each run is in two parts. The first part is concerned
with checking that, for a given model configuration, the
modeling method implementation we are utilizing is able
to reproduce the 3D density when constrained to do so.
If it is unable to do this, we must stop and investigate.
The second part is concerned with running the same model
configuration again but this time constrained by the 2D
density (and, in later models, perhaps kinematics data as
well). What we are looking for this time is for all the
constraints to be met, and to see how well the modeling
method is able to estimate the 3D density distribution
when it is not constrained to do so. If the estimate is
not acceptable, then we investigate why this is the case,
using comparisons with the output from the first part in the
diagnostic process.

In more detail, for acceptable models, we want the
χ2 per bin value for each constraint to be ≈ 1, where
the χ2 per bin value is calculated as the total constraint
χ2 divided by the number of constraint bins. For the 3D
density distribution estimator, given we know what the true
3D values are, again, we want the χ2

3D ≈ 1 but this time,
more importantly, we also want to examine the residual
maps on a point by point basis to understand what the
modeling methods are and are not capable of achieving.
χ2 per bin values alone are too coarse for our purposes.
We normalize the residuals using the error terms, and color
code our point residual maps using

|yj − Yj | < αEj (2)

where, for data point j, Yj and Ej are the observed,
measured or target value and its error respectively, yj is
the model estimated value, and α is one of [1, 1.5, 2, 3].
Points for which the inequality is true are colored yellow,
over-estimated points are red and under-estimated points
are blue. Loosely, we refer to estimates or percentages as
1 or 2σ values (and so on) depending on the value of α
being used. Figure 3 shows some example plots taken from
a Schwarzschild model of galaxy A1090 while Figure 4
shows the equivalent, more traditional contour residual
map.

As part of our diagnostic work, we find it instructive
to look at an analysis of orbit or particle weights by
circularity measure λz . Because Schwarzschild’s method
and the M2M method tend to select a small number of
orbits or particles and weight them relatively highly (see,
for example, Long & Mao (2018)), we partition them into
the heaviest orbits or particles comprising [25%, 50%,
75%, 100%] of the total weight. Figure 5 contains some
example plots taken from a Nokin M2M model of galaxy
A1090.
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Fig. 2 A comparison of the 3I and MDJV initial condition schemes (Sect. 4.5) showing how the orbit (particle) energy
and angular momentum distributions differ. We do not plot angular momentum directly but use the circularity measure λz
instead. From the plots, it can be seen that the MDJV (match density, Jeans velocities) scheme generates more orbits with
λz ≈ 0 than the 3I (three integral) scheme, and this is important when analyzing our results in Sect. 5. The precise λz ≈ 0
difference varies for each galaxy. The data for the plots come from the M2M Nokin models for galaxy A1390.

Fig. 3 Examples of 3D density estimator point residual maps (1σ and 2σ) taken from a Schwarzschild Nokin model of
A1090 using 3I initial conditions (Sect. 5). Yellow points are within the error terms (αEj in Eq. (2)), over-estimated points
are red and under-estimated points are blue. There are 300 points in total. The maps show significant under-estimation
along the z-axis, and minor over-estimation around the boundary. The equivalent 1σ contour residual map is shown in
Fig. 4.

5.1 3D Density Constrained Models

As indicated earlier, each modeling run for a galaxy is
made up of two models, the first using 3D luminosity
density as a constraint and the second, 2D surface
brightness. As no issues appeared with the first parts in
any of the modeling groups (the 3D luminosity constraint
was met), it is convenient to deal with all these models
in one section. All the χ2 per bin values are << 1 for
the Schwarzschild models and ≈ 1 for the M2M models.
The χ2 differences come from Schwarzschild’s method,
generally over-fitting the data if it is able to do so, and
differences in the way the two methods deal with data
error terms. For Kin models, for both modeling methods
and both sets of initial conditions, the Gauss-Hermite
coefficients h1 to h4 all have χ2 per bin values < 1.
We show the 3D luminosity density point residual 1σ
percentages in Figure 6. These percentages tell us how well

the modeling methods are able to meet the 3D luminosity
density constraints.

Summarizing Figure 6, the Schwarzschild models
perform slightly better than M2M models; the MDJV
initial conditions are to be preferred over 3I; and, models
with kinematic constraints perform less well than models
with no kinematic constraints. It is important to understand
just which orbits and particles are having a significant
impact on the modeling methods’ abilities to reproduce
the 3D density. Figure 5 gives a first indication with its
higher-weighted λz ≈ 0 orbits, and we will return to
this point in Sections 5.2 and 5.3. For our M2M models,
any concerns regarding meeting the 3D density constraint
along the z-axis (see Sect. 4.1) have not materialized for
the MDJV initial conditions. For the 3I initial conditions,
particle counts along the z-axis are low for estimation
purposes but the constraint processes function as expected.
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Fig. 4 The 1σ contour residual map equivalent to the left hand plot in Fig. 3. Residuals have been normalized by the error
terms. The over-estimation around the boundary is less immediately visible than in Fig. 3.

Fig. 5 Examples of circularity measure (λz) plots taken from an M2M Nokin model of A1090 using 3I initial conditions
(Sect. 5). The left hand plot shows the weight distribution for the heaviest weighted particles making up 50% of the total
weight, and the right hand plot shows the weight per orbit. In this case only 14% (of 2×105 particles) are needed to make
up 50% of the weight (the total weight is 1 for all models). The central peak at λz ≈ 0 is typical of models where 3D
luminosity density is being used as a constraint.

For our Schwarzschild models, no z-axis concerns have
been identified.

5.2 2D Density Constrained Models

The edge-on models in this section contribute towards
points 1 and 2 from the Approach, Section 2. Only models
using surface brightness as a 2D luminosity constraint
are described in this section: 3D luminosity constraints
are covered in Section 5.1. In all models, the surface
brightness χ2 per bin values are < 1. In the Kin models,
the Gauss-Hermite coefficients h1 to h4 all have χ2 per
bin values < 1. In this respect all the models, regardless of
initial conditions, are able to reproduce their constraining
observables successfully. In Figure 7, we show how well
the models have been able to estimate the 3D luminosity
densities of our galaxies. The figure shows that the
accuracy of the model 3D luminosity density estimates
improves when the MDJV scheme for initial conditions
is used, but decreases with the introduction of kinematic

constraints. Overall, the better results are achieved using
M2M.

Reviewing 3D density estimates across the models at
the individual point level, it is clear that estimates along
or close to the z-axis are not accurately reflecting their
true values well. As with the percentage residual analysis
above, the MDJV initial conditions have better z-axis
performance, and the introduction of kinematic constraints
reduces the accuracy of the estimates. In Figure 8, we
illustrate the z-axis issue by showing point residual plots
from galaxy A1090 M2M modeling runs. We assess the
comparative success of the M2M method as being due to a
combination of factors including the number of orbits, the
initial conditions, the ability to specify initial weights and
the mechanism used to determine particle weights.

5.3 Weights Analysis

Comparing circularity measure (λz) plots between the
models in Section 5.2 (2D surface brightness constraints)
with the models in Section 5.1 (3D luminosity density
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Fig. 6 Modeling with 3D luminosity density constraints in edge-on Schwarzschild and M2M models (Sect. 5.1). The
height of the bars is the percentage of points where the model 3D density agrees with the known value to within 1σ (see
Eq. (2) with α = 1).

constraints) is instructive. Figure 9 contains the relevant
plots, while Figure 10 shows the difference in weights
created by using the two different constraints. We restrict
the figures to just one galaxy, A1390, and show results
from its Nokin models. The other galaxies have similar
results.

The weight comparison in Figure 9 shows differences
in the weighting of low |λz|, hot orbits between the 3D
and 2D luminosity constraints. The lower, low |λz| weight
levels for surface brightness are a direct consequence of
only using a 2D constraint, which results in the brightness
models being unable to model the 3D density along the
z-axis. These lower levels are not surprising given the
absence of any modeling constraints positioned along or
near the axis. In Figure 10, we look at the heaviest orbits
making up 50% of the total weight for a galaxy, and select
those orbits which are common to both 3D luminosity
density constrained and 2D surface brightness constrained
models. From the figure, it is clear that the same orbits do
not have the same weights, and that just which constraints
are used does influence the solution from modeling.

Schwarzschild Kin models have low numbers of heav-
ily weighted orbits and this requires further investigation
(see the use of regularization in Sect. 5.4). Less than 5 per
cent of the orbits in these models account for 50 percent of

the total weight available. Imbalances are not uncommon
in M2M and Schwarzschild models but this is the most
extreme of any of the models.

5.4 Regularization

As indicated in the Approach, Section 2, we investigate
the use of regularization to penalize high-valued weights
to see if such a constraint improves our 3D density
estimates. We only regularize Schwarzschild models as it
is computationally cheap to do so: we just need to rerun
the weight calculation with the regularization constraint
included while M2M requires complete model reruns.
We take 2 × 10−1 as the value of the regularization
parameter (Long & Mao 2018). All the models experience
an expected increase in constraint χ2 per bin values but the
values remain ≤ 1 as desired.

We display the results in Figure 11 for our regularized
Schwarzschild Nokin and Kin models. As can be seen from
Figure 11, regularization has a small positive benefit to the
models with no kinematic constraints (the Nokin models)
but a somewhat larger effect on the models with kinematic
constraints (the Kin models). For these models, the number
of heavy orbits contributing to 50% of the total weight has
increased from < 2% of the 8000 orbits originally used
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Fig. 7 Percentage residuals from 3D luminosity density estimation using edge-on models (Sect. 5.2). The models on the
left employ the 3I scheme for initial conditions while the models on the right use the MDJV scheme. The height of the
bars is the percentage of points where the estimated 3D density agrees with the known value to within 1σ (see Eq. (2) with
α = 1). Overall, the plots demonstrate that recovery of the 3D luminosity density improves when MDJV initial conditions
are used, but decreases with the introduction of kinematic constraints.

to ≈ 10% for models using the 3I initial conditions, and
to ≈ 20% for the MDJV conditions (see the lower plots in
Fig. 11). In addition, the overall accuracy of the 3D density
estimates has improved but not to a level that might be
considered ‘good’ (the upper plots in Fig. 11).

Regularization achieves the desired effect of penal-
izing high-valued weights with the maximum weight
per model reducing by an order of magnitude. In
Figure 12, we illustrate the impact this has using results
from the Kin model with MDJV initial conditions for
galaxy A1290. Taking A1290 as an example, the balance
between the fractional numbers of orbits and weights for
individual galaxies is also improved and is similar to the
unregularized M2M model.

5.5 Inclined Models

The models and results in this section correspond to point
3 in the Approach, Section 2. We choose to restrict our
modeling of inclined galaxies to Nokin models using both
modeling methods and both sets of initial conditions.
Figure 13 shows the results we obtain. Overall, results
improve as the inclination angle increases towards edge-

on (90◦) with the M2M MDJV model giving the best
1σ 3D density estimation percentages. For the M2M
MJDV models, the difference between the percentages
for inclinations of 75◦ and 90◦ is typically ≈ 1%. For
inclinations of 60◦ and 75◦, the difference becomes larger
and is typically 22% but with a range of 5% to 36%. Based
on these results, for inclinations lower than 75◦, confidence
in the 3D density estimates becomes much reduced.

As the inclination angle increases towards 90◦, the
percentage of the heaviest orbits contributing to 50% of
the total weight decreases. For M2M MDJV models the
percentages are approximately 45% at 15◦, reducing to
35% at 90◦. The Schwarzschild MDJV percentage values
are about 5% points lower.

5.6 Additional Schwarzschild Models

Based on our results so far, it is clear that Schwarzschild’s
method does not perform as well in our tests as the M2M
method. In this section we report on some additional
Schwarzschild models we have performed for diagnostic
purposes. All the models in this section are edge-on, and
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Fig. 8 Point residual plots for galaxy A1090 (Sect. 5.2). The Nokin models use luminosity constraints only while the
Kin models use both luminosity and kinetic constraints. Overall, the plots show that recovery of the 3D luminosity
density along or close to the z-axis improves when MDJV initial conditions are used, but decreases for both sets of
initial conditions with the introduction of kinematic constraints.
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Fig. 9 Overall weight and weight per orbit comparisons showing differences in the weighting of low |λz| orbits between
the 3D and 2D luminosity constraints (Sect. 5.3). The red line and shading indicate the 3D luminosity density constraint
profile, and the blue line and shading are the same for 2D surface brightness. The shading indicates which of the two
constraints produces higher values in a given λz interval. The higher λz ≈ 0 weight levels for luminosity density (red)
are a direct consequence of using a 3D constraint.

M2M Model Schwarzschild Model

Fig. 10 Individual weight comparison between luminosity constraints (Sect. 5.3). Each plot shows the common heaviest
orbits which make up 50% of the total weight. The blue dashed line indicates equality of the luminosity density and
surface brightness weights while the red line is the best-fit to the two sets of model weights.

cover extra orbits, longer model durations and mixed initial
conditions.

In Section 5.3, we identified that only a small number
of orbits are really contributing to the Schwarzschild Kin
models (see Fig. 14). Penalizing heavy orbit weights as in
Section 5.4 does act to improve matters and causes more
orbits to actively contribute. Considering the number of
heaviest particles making up 50% of the total weight, for

Nokin models, the number is in the range 1000 to 3000 (out
of 8000 orbits in total). For the Kin models the number is
only < 300, a significant drop. It might be thought that
50% of the weight should be supplied by 50% of the orbits
or particles but the results indicate this is not the case.
Increasing the number of orbits from 8000 to 16 000 does
not alter significantly the number of orbits contributing and
does not improve the 3D density estimates. The results
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Fig. 11 Regularization of Schwarzschild models (Sect. 5.4) comparing results both with and without regularization. The
top two rows show the impact on 3D density estimation, and the bottom two rows the impact on the percentage of heavier
orbits contributing to 50% of the total weight available. Nokin models benefit slightly from regularization being used, the
Kin models considerably more so.
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Without Regularization With Regularization

Fig. 12 Regularization of galaxy A1290 Schwarzschild Kin models using MDJV initial conditions (Sect. 5.4). The top
row shows the distributions of orbits and weights. The left hand plot of the row indicates the imbalance between the
fractional numbers of orbits and weights when no regularization is used. The right hand panel shows how this changes
when regularization is used to penalize high value weights: the imbalance is reduced as is the maximum orbit weight.
The single plot in the middle row is from an unregularized M2M MDJV Kin model of A1290 and shows a similar profile
to a regularized Schwarzschild model. The bottom row demonstrates how the 1σ 3D density estimate improves when
regularization is used (an almost 16% improvement).

are displayed in Table 3. It is clear that the number of
contributing orbits does not scale with the total number
of orbits used. It would therefore seem that, once a
sufficiently varied pool of orbits is available, the number
contributing is probably related to the competing demands
of the constraining kinematic and luminosity observables.
This result is consistent with Jin et al. (2019) where a
different Schwarzschild implementation was used. The
findings from Section 5.4 do appear to offer an alternative

strategy which is to utilize MDJV initial conditions with
regularization penalizing high value weights.

Schwarzschild models typically have shorter modeling
durations than M2M models: in M2M, time has to be
allowed for particle weight convergence. In this section,
we report on the effect of doubling the Schwarzschild
durations from 50 to 100 and 200 hmdtu. Our results for
the Nokin set of models are shown in Table 4. As can
be seen, the point estimate percentages may show small
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Fig. 13 Inclined Nokin Galaxy Models - 3D Density Estimation. 3D density estimation using inclined Nokin galaxy
models (Sect. 5.5). The plots give the percentage of points where the model 3D density agrees with the known value to
within 1σ (see Eq. (2) with α = 1). The M2M models using MDJV initial conditions give the best estimation percentages.
Once the inclination is less than 75◦, the percentages become too low for there to be much confidence in the 3D density
estimates.

Table 3 Schwarzschild Kin Models - Number of Orbits

3I Initial Conditions MDJV Initial Conditions
Galaxy Total Orbits 3D density Orbits 3D density

Orbits 50% weight 1σ estimate 50% weight 1σ estimate

A490 8000 96 30.7% 121 47.4%
16 000 113 38.2% 122 40.3%

A1090 8000 104 33.3% 106 32.3%
16 000 113 28.7% 122 39.0%

A1190 8000 86 36.3% 95 43.7%
16 000 92 19.9% 123 50.0%

A1290 8000 98 37.7% 122 36.3%
16 000 131 34.6% 143 47.7%

A1390 8000 84 33.0% 92 34.3%
16 000 88 33.1% 102 39.0%

By default, we use 8000 orbits in all Schwarzschild models. Increasing the number to 16 000 has little impact on the number
of orbits actively contributing to matching the observable constraints and only marginally improves the 3D density estimates
(Sect. 5.6). The number of the heaviest orbits making up 50% of the total weight is shown in the columns labeled ‘Orbits
50% weight’. The 3D density columns give the percentage of 3D density point estimates with 1σ of the known values.

improvements, particularly with the 3I initial conditions
but less so with the MDJV conditions.

We have tried mixed initial conditions where we take
some combination of 3I and MDJV initial conditions. As
might be expected, we find that the results lie between the
two extremes represented by the 3I and MDJV schemes.
The closer the mixed conditions are to a full MDJV set,
the better the 3D luminosity density estimates become.

5.7 Computer Utilization

The software implementation used is based on the designs
in Long & Mao (2010, 2012) and as re-implemented
in Python 3 and Cython for Long (2016) and Long &
Mao (2018). Both Schwarzschild’s method and the M2M
method are supported by the same implementation. The
main modeling software is written in Cython with some
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Fig. 14 Edge-on Models 3D Estimator Weight Imbalance. The weight to orbit imbalance in edge-on models estimating
the 3D density (Sect. 5.6). The height of the bars is the percentage of orbits or particles (taking the heaviest ordered
by descending weight) that account for 50 per cent of the total available. Schwarzschild Kin models have the lowest
percentages at < 2 per cent.

Table 4 Schwarzschild Nokin Models - Extended Run
Times

3I MDJV
Galaxy Duration 3D density 3D density

(hmdu) 1σ estimates 1σ estimates

A490 50 50.0% 73.5%
100 59.6% 78.7%
200 64.0% 79.4%

A1090 50 56.6% 81.6%
100 57.4% 83.1%
200 62.5% 80.1%

A1190 50 39.7% 82.4%
100 41.2% 82.4%
200 43.4% 83.8%

A1290 50 53.7% 69.1%
100 60.3% 72.1%
200 66.2% 72.1%

A1390 50 63.2% 81.6%
100 66.9% 83.1%
200 66.9% 83.8%

By default, we use durations of 50 hmdtu for all Schwarzschild
models. Increasing the duration to 100 and 200 hmdtu may yield small
improvements in the 3D density estimates (Sect. 5.6). The two 3D
density columns give the percentage of 3D density point estimates
within 1σ of the known values (α is 1 in Eq. (2)).

functions in C for performance reasons. The implementa-

tion has been parallelized with Message Passing Interface
(MPI) being used during model execution, and with
OpenMP during preparation and analysis. Modeling runs
were executed on a high-performance computing (HPC)
cluster for M2M, and a desktop PC for Schwarzschild’s
method. As an approximate guide to elapsed times,
based on modeling for galaxy A1290, M2M runs on
28 processing cores took 65 min for models not using
kinematic constraints, and 100 min for models using
kinematics. Schwarzschild runs with no kinematics took
11 min on 8 cores to create the orbit library with a
further 2 min to determine the orbit weights, while runs
with kinematics took 18 min for the library and 4 min
for the weights. Increasing the number of orbits with
Schwarzschild’s method as in Section 5.6 does not result
in a simple linear increase in elapsed time in determining
the weights: doubling the orbits from 8000 to 16 000 meant
25 min were required for the weights.

6 DISCUSSION

In this section, we review qualitatively our results from
Section 5, and comment on their implications for modeling
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and for understanding the 3D structures and distributions
in external galaxies. In particular, as described in the
Introduction, we wish to understand whether the M2M and
Schwarzschild methods are able to accurately deproject an
edge-on axisymmetric galaxy’s 2D luminosity density to
give its exact underlying 3D density.

Both M2M and Schwarzschild galaxy models meet
supplied 3D luminosity density constraints, no matter
which initial conditions scheme is used or whether
the modeling is with or without kinematic constraints
(Sect. 5.1). This is an important first step: if it had not
been met, the value of continuing with the research would
have been doubtful. In these initial tests, Schwarzschild’s
method performed marginally better in meeting the 3D
constraints than M2M, and the more usual three integral
scheme (3I) for initial conditions was outperformed by the
observationally based scheme (MDJV).

Using 2D luminosity constraints, the performance of
the MDJV scheme is re-affirmed, but the roles of M2M and
Schwarzschild modeling are reversed with M2M leading in
its ability to estimate the 3D density (Sect. 5.2). Modeling
close to the z-axis, or in the center of the galaxy is a
problem particularly for Schwarzschild’s method. Also,
the accuracy of the 3D estimates drops for both methods
with the introduction of kinematic constraints, markedly
so for Schwarzschild’s method.

Analyzing and comparing the orbit (particle) weights
between models using 3D and models using 2D luminosity
constraints, it is clear that the weight determination
mechanisms prefer orbits that can contribute towards
meeting the constraints (Sect. 5.3). It is not surprising
therefore that Schwarzschild’s method is unable to produce
a ‘good’ estimate of the 3D density when it is not
constrained to do so. Low |λz| orbits are crucial to
reproducing observations or producing estimates along or
close to the z-axis and the center of the galaxy. This gives
some insight into why the MDJV initial conditions are
more effective than the 3I initial conditions: the MDJV
orbit mix is better suited to the models we have run.
It must be stressed that orbit weightings do not indicate
the importance of orbits in an astrophysical sense, only
their usefulness to a numerical optimization algorithm.
Different initial conditions mean different orbits are used,
resulting in different solutions. This means that any orbital
analysis work may not be truly representative of a galaxy
as is all work using phase space coordinates arising in the
modeling processes. The constraints utilized also influence
the relative importance of the orbits in the weighting
process with, for example, low |λz| orbits receiving higher
weights when a 3D density constraint is employed rather
than 2D surface brightness.

The low active orbit numbers for Schwarzschild
models with kinematic constraints can be alleviated by
employing regularization to penalize heavy orbit weights
(Sect. 5.4). The 3D density estimates improve as a result

of regularization being used but not to the extent that the
target values are well-reproduced. Other approaches, such
as more orbits, or longer model durations, or mixed initial
conditions, to improve the estimates have minimal impact
(Sect. 5.6). Overall, it has not been possible to cross the gap
to the results achieved by the M2M method. Perhaps more
consideration of other aspects or features, for example,
whether or not any mass to velocity dispersion anisotropy
degeneracy (Gerhard et al. 1998) is influencing the results,
is required.

The main thrust of our work is to investigate the
accuracy of density estimation for edge-on galaxies. Some
modeling runs with inclined galaxies were performed,
and we found that M2M MDJV models appear to
produce approximately the same 3D density estimates for
inclinations between 75◦ and 90◦ (edge-on) (Sect. 5.5).
Below 75◦ the accuracy of density estimates drops
significantly.

From our results and the summary above, it appears
that both Schwarzschild’s method and the M2M method
are not able to recreate accurately 3D density distributions
of edge-on axisymmetric galaxies from 2D data. The
processes within the two methods do not support Rybicki
(1987): they are designed as replicators of galaxy data, not
as 2D to 3D deprojectors. More generally, these modeling
methods cannot be used to understand accurately 3D
structures and distributions inside an external galaxy from
current observational data: they are able to indicate, to
illustrate, what a galaxy might be like internally but their
models cannot be taken as accurate or definitive. This is
no more than can be expected from the external galaxy
data astronomers are currently capable of collecting.
The methods are able to meet an imposed axisymmetric
3D luminosity density constraint and this may be an
acceptable assumption to make, provided of course that
it is clearly stated. Appropriate assumptions for other
physical, less smooth, 3D distributions (for example, age
or metallicity) are much less clear, and, in addition, it
must be remembered that such distributions are modeled
as luminosity weighted quantities and the accuracy of their
modeling depends on an accurate 3D luminosity density
being produced first.

We have considered whether ‘usable 3D regions’
might exist, for example close to the equatorial plane, or
avoiding the z-axis. The M2M Kin models using MDJV
may offer such a solution provided the unusable regions
can be consistently identified without knowing what the
true 3D distribution is. Imposing some so called ‘strong
priors’ on the modeling may be appropriate but cannot fun-
damentally change any issues: the projection/deprojection
issues arising from the observed data are not surmountable.
Extrapolating, it is not obvious how 3D distributions from
galaxies in cosmological simulations can be validated.

From a broader perspective, accurate estimation of
a galaxy’s 3D luminosity density distribution has an
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important role to play in estimating other dynamical
quantities such as the central dark matter fraction or
distribution in a galaxy, or a galaxy’s mix of high to
low angular momentum orbits. Perhaps, solutions to these
matters lie elsewhere, through exploitation of machine
learning techniques, for example.

Recently, there have been papers published which
would have benefited from the inclusion of caveats (as
indicated above) on their results. Rather than dwell on
these negative aspects, we encourage researchers to follow
the lead in Jin et al. (2019, 2020) and make the limitations
of their work clearly visible to avoid misleading the less
experienced in our astronomical community.

Our Schwarzschild modeling activities benefited
operationally from the use of a multi-core workstation,
avoiding the need to utilize HPC systems (Sect. 5.7).
Development of an efficient graphics processing unit
(GPU) workstation M2M implementation would enable
the same benefits to be enjoyed by M2M modeling
activities.

Only one software implementation has been used in
this research, and it is likely that different implementations
will achieve slightly different results. We believe that our
analysis is sound and is a reflection of the capabilities
of the methods, and is not implementation specific.
We recommend however that all implementation owners
should check the 3D behaviors of their implementations as
part of presenting or publishing any 3D results.

7 CONCLUSIONS

We have met the objectives set out in the Introduction,
Section 1. Based on our results in Section 5 and discussed
in Section 6, we now understand that Schwarzschild’s
method and the M2M method are unable to recover
accurately 3D luminosity distributions from their 2D
projections for our sample of axisymmetric edge-on
galaxies constructed from a cosmological simulation. The
methods do not support the theory in Rybicki (1987), and
no assumptions to this end should be made.

Our results reinforce the messages in Jin et al. (2019,
2020) that Schwarzschild models of external galaxies
(and M2M models as well) can only be thought of as
illustrative and not as definitive, accurate statements. The
projection/deprojection issues arising from observations of
external galaxies are not surmountable using these stellar
dynamical modeling methods. With adequate training data,
it may be that more insight into the 3D structures of
external galaxies might be forthcoming using machine
learning techniques. Our results have implications broader
than just luminosity density, and affect other luminosity-
weighted distributions within galaxies, for example, age
and metallicity.
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Appendix A: PLOTS OF GALAXY DATA

In this Appendix, in Figure A.1, we show plots of some of
the data from the galaxies we model.
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