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Abstract The effective observation of burst events in solar radio research has been impeded by various
interference signals, especially interference signals with a wide frequency range and high intensity, as
they can partially or completely obscure the observation of burst events. Image processing methods that
directly remove the interference signal channels and subtract the average of the interference signal channel
are not suitable for processing all types of interference signals. This paper proposes the use of a specific
kind of recurrent neural networks, called long short-term memory networks, to predict the value of the
radio frequency interference signals with high intensity of the burst event in the solar radio spectrum. The
predicted interference can then be removed in accordance with the principle that signals can be linearly
added. Therefore, predicted value is subtracted from the data containing the burst event signals and the
RFI signals (The radio frequency interference signals to be processed in this article refer to the signal of the
broadcast signal that can be received in the frequency range, the signal transmitted by the mobile phone, and
the signal transmitted by the sea vessel, and the like) to remove the interference. Then, in order to reduce
the error caused by the stepwise prediction in the network and further improve the prediction accuracy,
this paper analyzes the characteristics of the value of the radio interference and applies the digital mapping
method to convert the prediction problem into the classification problem in the time series. The experimental
results show that the proposed method can effectively remove the radio interference in the solar spectrum
and clearly show the burst events.
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1 INTRODUCTION

Solar activity is closely related to our daily lives, so
solar radio has become an important area in astrophysics
research. In particular, the study of the solar radio burst
process, carrying important information, not only helps
to explain the physical process of the relevant plasma
changes, but can also be used to find the law of energy
change and analyze important physical phenomena such
as material motion (Cheng 2018). In order to better study
the detailed structure of solar radio bursts, the project
team established a solar radio dynamic spectrometer with
high time resolution and high frequency resolution at the
Chashan Solar Observatory.

The Chashan Solar Observatory faces the sea and
is far away from the town, which avoids a complicated
communication environment and greatly reduces the radio
frequency interference (RFI). However, there are still some
RFI signals and other electromagnetic interference in the
meter band. These interference signals seriously affect the

observation and analysis of solar radio burst events. In
particular, when the interfering signals frequency is wide
(the radio interference with a bandwidth greater than or
equal to 2MHz), and the signal intensity is greater than
the intensity of the solar radiation flow, the interference
can directly cover the burst event, so it is necessary to take
anti-interference measures.

Common filtering countermeasures for solar radio
spectrograms are divided into hardware processing and
software processing methods. In hardware processing
methods, Xu et al. use the spatial selectivity of the antenna
to attenuate various interferences from the ground, use
shielding, grounding, and amplifiers whose interference
performance is good to suppress interference introduced
by cable power, and use filters to suppress out-of-band
signals, etc (Xu et al. 1995). Although the hardware
circuit filtering method can filter out the interference
signal, it cannot distinguish between a burst signal
and an interference signal, which causes the loss of
effective information. Therefore, the software processing
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methods are often used for image enhancement and
interference removal. Most of these methods are used to
process the gray-scale image of the spectrum. Common
image processing methods for removing radio frequency
interference is deleting the interference signal channels
or subtracting the mean of its channels. The FFT or
wavelet analysis can be used to remove the radio frequency
interference, but this method is used to process the gray-
scale image of the spectrum in most cases. Although they
can enhance the image information, these methods will
lose the details of a large number of burst events. In this
research, we make use of cutting-edge technical means and
a large number of solar radio data, thus a deep learning
method is selected to filter out the interference signals.

In recent years, deep learning methods such as
multi-modal networks, long short-term memory networks
(LSTM), deep-confidence networks, and convolutional
neural networks all have good performance in the
classification and archiving of solar radio spectrum and
identifying burst events (Chen et al. 2015; Yu et al.
2017; Chen et al. 2016, 2017). For example, in terms of
astronomical prediction, Huang et al. use convolutional
neural networks to predict solar flares (Huang et al. 2018);
Sun et al. use the LSTM model to predict the total electron
content of the ionosphere through the temporal relation-
ships within the data (Sun et al. 2017); Bikowski M et al.
propose a significance-offset convolutional neural network
(SOCNN) model for predicting multivariate asynchronous
time series in combination with autoregressive models and
cyclic neural networks (Binkowski et al. 2018). According
to the research results available in the literature, we find
that the interference signals to be removed in this paper is
similar to the voice signals, and they have certain regularity
in time (The time series characteristics mean that the signal
is in a certain frequency range, and it shows a certain
regular pattern in the process of random variation with
time. When this discipline is found, the signal at the
next moment can be predicted). Therefore, an algorithm
for predicting the RFI signals value in the solar radio
burst region that uses a recurrent neural network (RNN) is
proposed. Then, according to the numerical characteristic
(It means that the interference signals of each frequency
channel are regularly changed in a fixed number of values,
as exemplified in Sect. 3.3) of the radio interference, the
algorithm is improved and digital mapping processing is
added to improve the accuracy of the prediction.

2 RELATED THEORETICAL KNOWLEDGE

2.1 The Principle of Recurrent Neural Networks

An RNN accumulates data on the time axis using recursion
to memorize information. Figure 1 is the structural diagram
of the RNN, where xt represents the input state at time t, A

represents the model processing part of the neural network
(it is a repeating module with only one tanh layer), ht is
the state of the hidden layer at time t, and yt represents
the output state at the corresponding time. The matrices
of weight coefficients between the layers are represented
by w1, w2 and w3. Unlike the traditional neural network,
the parameters w1, w2 and w3 for the same location of the
RNN at different times are shared, which greatly reduces
the number of parameters for the required training. This
reduction in parameters lowers the computational load and
improves the network training speed.

As can be seen from the above figure, the hidden layer
unit ht at the current moment receives the information
of the hidden layer ht−1 from the previous moment; the
input layer information xt at the current moment passes
data forward. Therefore, the output layer at each moment
contains features of the past. The propagation process of
the RNN can be expressed as:

ht = f(w1xt + w2ht−1 + b) (1)

yt = f(w3ht + b) (2)

where ht−1 is the state of the hidden layer at the previous
moment; b is the bias term; and f is the relationship of the
nonlinear mapping, generally referred to as the activation
function.

In theory, the RNN can process a sufficiently long time
series. However, the activation function in the RNN often
uses the tanh function and the sigmoid function, which
leads to the phenomenon that the gradient disappears
during the reverse transmission of the error (Yu et al.
2019; Zhang 2017). The disappearing gradient makes the
RNN only suitable for processing signals whose time
series are short (Lv et al. 2015). In order to fully discover
the time series characteristics and obtain more accurate
predictions, the signal needs to be fully processed with
a long time series (The time series signal for learning
and training is approximately 30 s and has at least 4600
frames of data, and the predicted time series signal is
approximately 1.5 s and has 150–200 frames of data. One
frame of data represents the value of the interference
signals for each channel at one point in time. For example,
Figure 3 is a solar radio frequency spectrum diagram
drawn by a two-dimensional array data. Each row in the
array represents data of a single frequency channel as a
function of time, and each column represents data of all
frequency channels at one point in time. Therefore, one
frame of data is equivalent to one column of data in a
two-dimensional array. Since the interference signals of
a single frequency channel is processed here, one frame
refers to the value of a single frequency channel at one
moment.). Comparing two special RNN models: both
LSTM and gated recurrent unit (GRU) effectively alleviate
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Fig. 1 The structural diagram of the recurrent neural network.
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Fig. 2 The structural diagram of the LSTM network.

the problem of gradient disappearance. GRU converges
quickly due to fewer parameters. However, in the case of a
large data set, LSTM expresses better performance (Chung
et al. 2014). Based on the current situation that the amount
of data in this paper is sufficient, the LSTM algorithm was
finally selected.

2.2 The Principle of the Long Short-Term Memory

Different from the traditional RNN model, the LSTM
model replaces the original hidden layer unit with the
LSTM cell structural unit. This unit is illustrated in
Figure 2 with grey, round-edge rectangles. The information
gate is generated by the sigmoid function and is added
to the repeatedly linked module. It consists of forgotten
gates, input gates, and output gates (Klaus et al. 2016). The
function property makes the information passing through
each gate carry a parameter that controls the amount of
information passed to the current neuron and the amount
of information assigned to the next neuron.

The figure above shows the network structure diagram
of LSTM. The data transfer process in the figure can be
expressed by the following formula (Graves et al. 2013):
Forgotten gates:

ft = σ(Wxfxt +Whfht−1 + bf ) (3)

Input gates:

it = σ(Wxixt +Whiht−1 + bi) (4)

Output gates:

ot = σ(Wxoxt +Whoht−1 + bo) (5)

Cell status of the LSTM:

ct = tanh(Wxcxt +Whcht−1 + bc) (6)

Ct = ft ∗ Ct−1 + it ∗ ct (7)

Output of the hidden layer:

ht = ot ∗ tanh(Ct) (8)
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Fig. 3 The intensity map of the 2017–9–9 solar radio burst event. The x-axis represents international time, y-axis are the
frequency points (150–500 MHz). In the intensity map, different colors represent different solar emission intensity (the
unit is dB) that change over time at different frequencies.

Fig. 4 The initial position map of the 360–380 MHz band burst.

where f , i, and o represent the information of the forgotten
gates, the input gates, and the output gates, respectively.
W refers to the weight coefficient matrix of the network,
b is the bias term, x represents the input of the network,
t represents the moment, h is the hidden layer state, c is
the state value when the network updates the cell (it is also
called the current candidate memory state value), and C is
the current memory cell state value of the LSTM network
(Li et al. 2018). The three information gates all use the
sigmoid function as the activation function, and the tanh
function is selected when the memory unit of the network
is updated (Miao et al. 2016). The output information of
the final hidden layer is related to the output value of
the output gates and the current memory cell state value.
In addition, compared with RNN, the backpropagation
algorithm of the LSTM network not only calculates the
error gradient corresponding to the hidden layer state ht,
but also calculates the error gradient of the cell state Ct

(Gers et al. 1999).

The application of three information gates in the
LSTM network makes the memory cell in the network
structure store historical information for a long time. From
Equation (7), it can be seen that the LSTM structural unit
is composed of two parts, so when the cumulative error is
calculated, the result of zero is not present, which alleviates
the problem of the gradient disappearance and realizing the
long-term memory function.

The GRU is the latest development of the LSTM unit,
both variants of the RNN. The GRU reduce the gating
signals to two from the LSTM model. They are called
an update gate and a reset gate (Dey & Salemt 2017).
Although the network structure of GRU is simpler than
LSTM, experimental results show that LSTM performance
is better than GRU in some cases of sequential prediction
(Ergen & Kozat 2017), so this paper still chooses LSTM
network structure.
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Fig. 5 The schematic diagram of establishing the data set.

3 METHOD AND APPLICATION

3.1 Data Selection

A large solar burst event was observed on 2017 September
9, and the background value of the event in the quiet
solar state is zero, so the data of that day are selected
for de-interference processing. The data come from the
high-frequency solar radio receiver of the Chashan Solar
Observatory, with a frequency range of 150–500 MHz, a
frequency resolution of 16 kHz, and a time resolution of
10 ms. Because the data received by the data acquisition
card are a left-handed circular polarization signal and a
right-handed circular polarization signal after the digital
polarization synthesis operation, the two signals exist in
two data channels. Their values are similar, so only one of
the signals, the left-handed circular polarization signal, is
selected in this paper for drawing and processing images.

Figure 3 is the intensity graph of the selected burst
event. What can be seen from the figure is that there are
radio interferences of different intensities in the channels
of some frequency points (32 channels correspond to
1 MHz), and the radio channels that affect the event
observation need to be filtered out using the method
in this paper. For example, the radio channels with a
signal strength greater than the intensity of the burst event
(215 MHz, 245 MHz, 262 MHz, 400 MHz, etc.) and the
frequency bands with a wide interference range (360–
380 MHz, about 640 channels).

The interference signals to be processed can be
selected by Equation (9).

Thresh ≤
¯(I(t)2)

Var(I(t))
(9)

where I(t) represents the signal strength value over time
in a single channel, ¯(I(t)2) and Var(I(t)) represent the
mean and standard deviation of all signal strength values
within the t period, respectively. The specific size of the

threshold for screening the RFI signals, Thresh, can be
selected according to the actual situation, and the value of
thresh in this article is 40.

In order to more accurately divide the training set in
the neural network, it is also necessary to locate the time
when the burst event starts. This paper takes the method
of averaging the intensity values of multiple channels of
the target RFI signals and transforming it into a one-
dimensional array that changes with time. Take the radio
interference in the 360 MHz-380 MHz band as an example.
As shown in Figure 4, when the Sun has not erupted, the
average value of each channel is the average value of the
RFI signal which experiences little change. However, when
the burst events occur, the average value is the average
value of the radio interference and the burst value, which
is significantly higher than the pure radio interference
average. The start time of the burst event handled in this
article is the position pointed out by the arrow in Figure 4.

Input layer

Fully connected layer 1

LSTM layer

Fully connected layer 2

Output layer

Fig. 6 Network structure diagram.
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3.2 Prediction of Radio Interference Signal Value
Based on the LSTM Model

3.2.1 Building a data set

The establishment of data sets and network training are
the two main parts of deep learning. The purpose of
data set standardization is to eliminate the dimensional
influence between data, transform data with different units
or magnitudes into non-dimensional values, and realize
analysis and comparison under the same magnitude.
Commonly used methods include normalization. After
data standardization, a data set must be established. In
order to reduce the amount of network training tasks
and improve the accuracy of prediction, the sequence is
segmented, and a mapping is considered to be established
to find the relationship between the time period and the
time period. The process of establishing the data set is
shown in Figure 5.

The picture is divided into three parts: input window,
output window, and sliding window. A sliding window
contains a complete input window and output window.
The three windows as a whole slide in the time series,
and the sliding unit is one. The input window and the
output window contain the same amount of data which is
named the time step; this is used as one of the network
hyperparameters. The length of the sliding window is
related to the time step. Once determined, the time step
is determined and also the length of sliding window is
determined. In addition, in order to preserve the connection
between adjacent sequences as much as possible and
improve the accuracy of prediction, the output window
and the input window have only one time series interval.
Therefore, the sequence values (t-time step + 2) to (t +
1) are predicted from the (t-time step + 1) to (t) sequence
information.

3.2.2 Establishment of LSTM network and prediction of
radio interference values

The LSTM network built in this paper is divided into five
layers (Fig. 6): input layer, fully connected layer 1, LSTM
layer, fully connected layer 2, and output layer. Firstly,
the data set is transformed into the required dimension of
the network after entering the first fully connected layer.
Then, the LSTM layer automatically extracts a series of
timing features through its internal loop operation. Then,
the output feature vector enters the second full connection
layer. Finally, the network outputs the predicted radio
interference value. As can be seen from Section 3.2.1, the
last frame of data output by the network is the radio value
for the next moment of prediction.

In order to improve the network performance and
enhance the learning ability of the model, it is generally

preferred to increase the number of network layers and
the number of nodes in the layers. However, increasing
the depth of the model not only increases the time of the
network training, but also causes over-fitting that reduces
the final prediction accuracy. Therefore, this section of the
experiment selects four LSTM layers to extract features,
and the number of nodes is 25 (the parameters are based
on the experimental results in Table 1). In addition, the
back propagation through time (BPTT, the principle of
BPTT algorithm is consistent with back propagation, BP.
The difference is that when calculating the error term,
BPTT is necessary to calculate the error in a time direction
to update the weight between hidden layers. The BP
algorithm consists of two processes: forward propagation
of the signal and back propagation of the error.) algorithm
and the gradient descent algorithm are selected to complete
the training of network weights. An MSE loss function and
a mini-batch based stochastic gradient descent optimizer
are added according to the training results.

After the model training is completed, it enters the
prediction stage. In order to test the performance of the
network, the test data (the value of the known pure radio
interference signal position) is used for prediction. The
network structure is adjusted by comparing the results
using the original data of the corresponding position. Since
the position of the radio interferences value to be predicted
is unknown, a step-by-step prediction method is required
for prediction, i.e., the predicted value is added to the next
input for a second prediction every time. Figure 7 shows
a comparison of the 100-frame radio interference signal
predicted by a single channel with the original data. The
blue line indicates the test set data and the red line indicates
the prediction result. It can be seen from the figure that
the discipline of the predicted value and the actual value
change with time is about the same, but the numerical
values are different. The reason is that the step-by-step
prediction method introduces errors and the prediction
ability of the model decreases over time.

3.3 Prediction of Radio Interference Value Based on
Improved LSTM Network

As can be seen from the previous section, the step-by-step
prediction method continuously introduces errors, which
affects the overall prediction results. By observing the
characteristics of the radio interference signal, we find that
the data of each channel have only a fixed number of
values. Therefore, adopting the method of adding a digital
mapping is proposed to reduce the error and improve
the accuracy of prediction. For example, Figure 8 shows
the original sequence diagram and the histogram of 6000
frames of data from four randomly selected channel.
Figure 8 shows that the values of these channels have
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Fig. 7 The prediction result of the test data (100-frame radio interference signal).

a different number of categories, ranging from 2 to 5.
Therefore, the values appearing in the sequence can be
treated as different classes, and the prediction problem
is converted into a classification problem. The predicted
value is the value with the highest predicted probability
in the classification. As long as the predicted trend is
correct, the accuracy of the predicted value at that moment
is 100%. This avoids the problems illustrated in Figure 7
(We processed the data entering the network based on the
Z-score normalization method. Therefore, the data shown
in Fig. 7 are different from those in Fig. 8).

3.3.1 Building a data set

The establishment of the dataset in this section is basically
the same as that in Section 2.2. Data preprocessing and
a sliding window are required to extract the data. The
difference is that the size and position of the output
window in the sliding window has changed, and the data
in the window is labeled. The schematic diagram of the
changed data set is shown in Figure 9. The output window
contains only one frame of data and is located next to the
end of the input window. Therefore, the sequence values of
(t + 1) are predicted from (t-time step + 1) to (t) sequence
information, while the sliding window still slides only one
frame at a time. After obtaining the value by segmentation
sliding, the mapping of the time segment (input window)
to the time point (output window) is generated. Then,
the classification corresponding to the time point data is
converted into the label of the corresponding time segment.

The data in the sliding window are labeled by one-hot
encoding, which converts the number of categories into
binary numbers. The N-type values are encoded with an
N-bit register to ensure that only one valid position per
class is activated and marked as one; the other locations
are marked as zero. For example, the values of the radio

interference signal in Figure 8(b) have four categories, so
N = 4.

3.3.2 Prediction of the radio interference value based on
the digital mapping method

The network structure used in this section is similar to
Section 3.2. However, for better classification the dropout
function is added to the model to avoid over-fitting in the
network, and the loss function is changed to the softmax
cross-entropy function (Hu et al. 2018; Spurek et al.
2017), which is more suitable for classification operations.
The learning and updating of weights utilizes the Adam
algorithm (Chang et al. 2019) for the adaptive learning rate
optimization.

Considering that this paper needs to process 768
channels of RFI signals, it means we should call 768
network models for prediction. The hyperparameters
involved in this paper have time step length “time step”,
the number of hidden layer node “unit”, the number of
trainings entering the network each time “batch size”,
network depth “num layer”, and learning rate “lr”, etc.
The workload is heavy when each channel adjusts the
hyperparameters to obtain the optimal model, since the
training process for a single channel takes approximately
30 minutes, this means that each modification of the
hyperparameter must be retrained for 30 minutes, while
the five hyperparameters of the 768 channels require at
least 5 * 768 * 0.5 = 1920 h. Therefore, a large number
of experiments are first used to screen out a set of optimal
hyperparameters for the learning, training, and prediction
of the 768 models.

The sample set for screening the optimal hyperparam-
eters consists of 10 channels of data that are randomly
selected from the 768 RFI signal channels. In order to
determine the appropriate training set, experiments with
samples of 3000, 6000 and 9000 frames were carried out,
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(a) Scatter plot of channel 1 (b) Scatter plot of channel 2

(c) Scatter plot of channel 3 (d) Scatter plot of channel 4

Fig. 8 The original sequence diagram of four random channels.

Table 1 Experimental Results of Parameter Adjustments -
3000 Frames

num layer unit accuracy the accuracy after adding dropout

2 20 0.731 0.735
2 30 0.728 0.731
3 20 0.736 0.74
3 30 0.72 0.735
4 20 0.746 0.75
4 30 0.740 0.734
5 20 0.738 0.744
5 30 0.73 0.747

and the data was divided into a test set (5%) and a training
set (95%). The idea of dichotomy is used here. First try
to use the smaller number of frames 3000 and the larger
number of frames 9000, because the data of the observation
system is about 10 000 frames per unit stored in the disk
array. Through experiments, it is found that too small an
amount of data and too much data are not conducive to
network training. The experimental results are as Table 1
and Table 2.

Table 2 Experimental Results of Parameter Adjustments -
9000 Frames

num layer unit accuracy the accuracy after adding dropout

2 20 0.706 0.71
2 30 0.710 0.7
3 20 0.704 0.72
3 30 0.714 0.725
4 20 0.726 0.733
4 30 0.730 0.72
5 20 0.733 0.735
5 30 0.738 0.732

From the data recorded in the table, it is found that the
accuracy of 9000 frames of data is lower than that of 3000
frames of data. It can be estimated that the appropriate
number of frames must be between 3000 and 9000, so it
is better to determine 6000 as the appropriate number.

The experimental results of some parameter adjust-
ments are presented in Table 3. The effects of network
depth, the number of hidden layer nodes, and dropout
function on network prediction are studied under the
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Fig. 9 The schematic diagram of data set establishment based on digital mapping.

Table 3 Experimental Results of Parameter Adjustments -
6000 Frames

num layer unit accuracy the accuracy after adding dropout

2 20 0.796 0.800
2 25 0.768 0.804
2 30 0.800 0.801
2 35 0.776 0.808
3 20 0.784 0.808
3 25 0.704 0.800
3 30 0.764 0.778
3 35 0.796 0.796
4 20 0.776 0.796
4 25 0.800 0.812
4 30 0.780 0.800
4 35 0.800 0.800
5 20 0.448 0.784
5 25 0.752 0.760
5 30 0.748 0.796
5 35 0.764 0.808

condition of a fixed learning rate (lr=0.001) and time step
(time step=35). The numerical values of the learning rate
and time step are one of the results randomly selected
from the exhaustive way of traversing all the parameter
combinations.

As can be seen from the table, it is not the deeper
the better for the network. When the number of nodes is
20 and the network has five layers, the accuracy of the
prediction is only 44.8%. This is because the network
structure has been over-fitting with the deepening of the
network. The prediction accuracy is improved to 78.4%
after adding the dropout function. The prediction accuracy
after adding the dropout function is consistently higher
than that without adding the function, which demonstrates
the value of adding the dropout function. From the table,
a set of hyperparameters with the highest prediction
accuracy rate is selected; these are the four-layer network
with 25 nodes. These values are used to continue the
experiment for the learning rate and time step. According
to the results of Table 4, finally, the learning rate in the

Table 4 Experimental Results of Parameter Adjustments:
Learning Rate and time step (Four Layers and 25 Nodes)

the learning rate (lr) time step accuracy

0.1 15 0.804
0.1 20 0.802
0.1 25 0.804
0.1 30 0.800
0.1 35 0.804

0.01 15 0.804
0.01 20 0.808
0.01 25 0.796
0.01 30 0.792
0.01 35 0.792
0.001 15 0.804
0.001 20 0.812
0.001 25 0.804
0.001 30 0.708
0.001 35 0.776

optimal hyperparameter is determined to be 0.001, and the
time step is 20.

4 THE RESULTS AND ANALYSIS OF THE
INTERFERENCE SIGNAL SUPPRESSION

4.1 Prediction of Radio Interference Value Based on
Improved LSTM Network

The actual value of the radio interference signal to be
processed in this paper is unknown in the burst position. In
order to verify the effect of using the method in this paper
and the performance of the digital mapping method in the
filtering process, we establish the event simulation. The
two methods mentioned in Section 2 are used to process
and analyze the event simulation.

According to the principle that signals can be linearly
added, the simulation data are superimposed with the
pure burst data and the pure RFI data. The pure burst
data are composed of the data from 6:52:23.461.7–
6:52:27.131.7 (international time) and 225 – 240 MHz
on 2019 September 9, which has 471 channels and 351
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Fig. 10 The intensity map of the simulation event.

frames. The pure radio data consists of the data on 2017
September 9 at 6:49:48.262–6:51:12.808.6 and 248.85
– 249 MHz, which has six channels and 8064 frames.
Keeping the frequency band of the burst event unchanged
and the time of the radio interference unaltered, the pure
RFI signal value is superimposed to 227.5 MHz, and then
it is doubled to the position of 231 MHz. Consequently,
we obtain a simulation burst event with a frequency range
of 224 – 247 MHz and a time range of 6:49:48.262–
6:51:12.808.6. This is shown in Figure 10.

Firstly, the LSTM network is used to train the six
selected channels of radio interference data and predict the
RFI signal value of the burst position. Then, the predicted
burst position data is subtracted to obtain the processing
result graph shown in Figure 11. What can be seen from the
processed intensity map is that some visible interference
signals remain in the burst event, and the results are not
very satisfactory.

The RFI signal is processed using the LSTM network
based on the digital mapping method. Table 5 shows the
accuracy of the prediction results of the six channels
after classification and labeling. Although some channels’
accuracy is as low as 0.5 (The reason for the low accuracy
is that the more the number of label classifications, the
more complicated the signal variation law, so we need to
train with more data to get higher accuracy.), the average
accuracy of the overall data can reach 74.33%. The final
intensity map is shown in Figure 12. The RFI signals in
the burst area are mostly removed, and the observation
of the event is not obscured. Comparing the result with
original image without RFI (Fig. 11(c)) and Figure 11(b),
the filtering effect of the LSTM network (Fig. 12) based on
the digital mapping method is significantly better than that
of the general LSTM network.

(a) Image of removing RFI based on the LSTM network

(b) Image of zoom into the residuals for Fig. 11(a)

(c) Original image without RFI

Fig. 11 Image of removing RFI based on the LSTM
network and Original image without RFI.

Fig. 12 The intensity map of removing RFI based on the
improved LSTM network.
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(a) Original image of the 244 MHz
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(b) Original image of the 253 MHz
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(c) Processed image of the 244 MHz
Time (UT)

F
re

qu
en

cy
 [M

H
z]

CSO 2017−09−09 image after subtracting the predicted value

 

 

6:51:55. 97.7 6:52: 5.656.9 6:52:16.216.1 6:52:29.459.6 6:52:40. 18.7
253

253.5

254

254.5

255

−3

−2

−1

0

1

2

3

4

5

6

7

(d) Processed image of the 253 MHz

Fig. 13 Images in 244 MHz and 253 MHz.
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(a) Compensated image in 244 MHz
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(b) Compensated image in 253 MHz

Fig. 14 Compensated images in 244 MHz and 253 MHz.

Table 5 The Predictive Accuracy Using the Improved
LSTM Network

RFI signal channel 1 2 3 4 5 6
number of labels 3 4 4 3 3 2

accuracy 0.78 0.50 0.60 0.74 0.87 0.97

4.2 Analysis of Actual Event Processing Results

4.2.1 Compensation for actual event processing

The simulation event superimposes the pure RFI signal
value and the intensity value of the pure burst event,

which conforms to the principle that signals can be linearly
added. However, we found that the processing result is
excessively suppressed. The actual RFI signal value of the
burst position is smaller than the predicted value, and a
part of the burst information is removed when the radio
predicted value is subtracted from the original value of
the burst position. Figure 13 is the result of the radio
interference processing of a small burst event that occurs
two minutes before the event in Figure 3. It can be seen
that when the improved LSTM network is used to predict
the radio interference value near 244 MHz and 253 MHz
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and process the event, there is a gap between the actual
effect and the theoretical result. This result is due to a
sharp increase in the signal strength when the solar radio
bursts. Once the signal is amplified, the amplifier may
work in a nonlinear region, resulting in the attenuation
of the collected data. In addition, the process of the solar
burst also affects the radio interference signal to some
extent. Therefore, the two signals no longer satisfy the
linear additivity of the signal, and the processing needs to
be compensated in some way.

The system used to collect data is a high-frequency
resolution system with an average of 32 frequency
channels corresponding to 1 MHz. The solar burst events
usually occupy a large bandwidth in the frequency domain
and are distributed in hundreds of frequency channels
of the system. The high frequency resolution makes
the values in adjacent frequency channels similar, which
makes it possible to compensate for the processing results
using burst data from adjacent radio interference signal
channels. The compensation calculation formula is as
follows:

F (a, k) =
f(a) + k ∗ g(b)

2
(10)

where F (a, k) is the compensated value, f(a) is the
value of the area where the interference signal is over-
attenuated, g(b) is the value of the adjacent channel of
the interference signal, k is the coefficient, and a and b

represent different frequency channels. The coefficient k
is selected according to the actual situation. Figure 14(a),
(b) are the compensated images of Figure 13(c), (d),
respectively. The compensated images better preserve the
effective information of the burst event while removing the
radio interference.

4.2.2 The processing result of actual event

The actual burst event whose time range is 6:54:4.617.8–
6:54:46.854.4 is Figure 3 in Section 2.1, and the prediction
time starts at 6:54:30.507.2. In order to further prove the
superiority of the proposed method, the ordinary image
processing method is firstly adopted for the burst event
to remove the radio interference signals. We choose the
method of subtracting the mean of the single channel radio
interference signals. To avoid the influence of the burst
value on the channel mean, we select the 500 frames of
data around the event 6:54:15 to calculate the channel
mean, then the time and frequency resolution are reduced
by six times and 16 times, respectively. The results are
shown in Figure 15. It can be seen from the figure that the
burst continuity of the wide red frame portion covered by
the radio interference signals is destroyed, and the effective
information is removed. Therefore, this section uses the
improved LSTM network to process the radio interference
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Fig. 15 The intensity map of the ordinary image
processing results.
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Fig. 16 The intensity map of the combination processing
results (improved LSTM and compensation).

signals in the outburst location; the interference signals
that are not related to the burst event and the weaker
interference signals are processed by subtracting the mean
of the corresponding channel’s value.

Figure 16 is the processed result of using the
method that combines the improved LSTM network and
compensation, where k is taken as 20. In comparison with
the original image and Figure 15, we can see that not only
small-scale burst events between 250 MHz and 300 MHz
can be clearly displayed in the spectrum, but also the burst
event that is originally covered in the red frame can be
clearly observed. Furthermore, the continuity of the burst
events in frequency is also preserved.

In order to more intuitively compare the two pro-
cessing methods and further demonstrate the superiority
of using the methods herein to remove solar radio
interference, some details of Figures 15 and 16 are shown
simultaneously in Figures 17, 18, and 19. Part of the
spectrogram allows for a clear view of the processing of
each radio interference (multiple channels). Figures 17(a),
18(a) and 19(a) are the result of processing using the
improved LSTM method, Figures 17(b), 18(b) and 19(b)
are the result of the processing of the ordinary image
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(a) Improved LSTM processing method
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(b) Ordinary image processing method

Fig. 17 365–385 MHz interference radio processing
results.

processing method. The information in Figures 17(a),
18(a) and 19(a) is more reserved than that in Figures 17(b),
18(b) and 19(b) about the burst signal.

In summary, the intensity of the interference signal
at the burst is unknown and the accuracy of the network
prediction cannot be determined. However, according to
the experimental results, it can be found that regardless of
the frequency band occupied by the interference signal,
the proposed method can be used to process the radio
interference signal. Then, the Binkowski et al. (2018)
Autoregressiveprocessed part is compensated by using the
degree burst information. In this paper, the interference
signal is finally removed while the burst information is
retained as much as possible.

5 CONCLUSIONS

In this paper, a novel method of predicting the radio
interference signals in the solar radio spectrum based
on the LSTM network is proposed. According to the
characteristics of the RFI signals, the long time series
signals are mapped to a certain time step to find the
relationship between time periods. The predicted radio
trend is similar to the original data, but the predictions are
not accurate enough. In view of this situation, we propose
an improved LSTM network based on the digital mapping
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(a) Improved LSTM processing method
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(b) Ordinary image processing method

Fig. 18 215 MHz interference radio processing results.
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(a) Improved LSTM processing method
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(b) Ordinary image processing method

Fig. 19 244 MHz interference radio processing results.
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method. Before entering into the network, the single
frequency channel radio data should be classified. First,
we establish the mapping from time periods to time points.
Then, the corresponding time period label is established,
which is conducted according to the classification of
the output time point. The improved LSTM network
greatly improves the accuracy of the prediction results
and provides a possibility of lossless filtering of the solar
spectrum.

However, to remove the radio interference to achieve
better results and to ensure a higher prediction accuracy,
the use of this method has certain limitations, because
the data in this paper are received by the high-resolution
spectrum analyzer. There are fewer data classifications in
each frequency channel, and the data of adjacent frequency
channels do not change significantly. If the prediction
of low-resolution data is performed, the accuracy of
prediction will be reduced because the data classification
is increased.

The method mentioned in this paper still has room
for optimization: it takes substantial time to train the 768
networks in this event. A GPU can be used to train and
predict multiple networks at the same time to improve
work efficiency. In addition, although the errors caused
by stepwise prediction are effectively suppressed by the
methods in this paper, the error itself cannot be avoided.
Finally, more periodic data can be added to support the
analysis and extraction of additional valid features, and the
use of step-by-step predictions can be avoided.
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