
RAA 2021 Vol. 21 No. 4, 80(8pp) doi: 10.1088/1674-4527/21/4/80
c© 2021 National Astronomical Observatories, CAS and IOP Publishing Ltd.

http://www.raa-journal.org http://iopscience.iop.org/raa

Research in
Astronomy and
Astrophysics

Fine-grained distributed averaging for large-scale radio interferometric
measurement sets

Shou-Lin Wei1, Kai-Da Luo1, Feng Wang1,2, Hui Deng2 and Ying Mei2

1 Faculty of Information Engineering and Automation, Computer Technology Application Key Lab of Yunnan Province,
Kunming University of Science and Technology, Kunming 650500, China

2 Center for Astrophysics, Guangzhou University, Guangzhou 510006, China; fengwang@gzhu.edu.cn

Received 2020 March 19; accepted 2020 September 22

Abstract The Square Kilometre Array (SKA) would be the world’s largest radio telescope with eventually
over a square kilometre of collecting area. However, there are enormous challenges in its data processing.
The use of modern distributed computing techniques to solve the problem of massive data processing in the
SKA is one of the most important challenges. In this study, basing on the Dask distribution computational
framework, and taking the visibility function integral processing as an example, we adopt a multi-level
parallelism method to implement distributed averaging over time and channel. Dask Array was used to
implement super large matrix or arrays with supported parallelism. To maximize the usage of memory,
we further exploit the data parallelism provided by Dask that intelligently distributes the computational
load across a network of computer agents and has a built-in fault tolerance mechanism. The validity of
the proposed pattern was also verified by using the Common Astronomy Software Application (CASA),
wherein we analyze the smearing effects on images reconstructed from different resolution visibilities.

Key words: techniques: interferometric — methods: data analysis — methods: numerical —
instrumentation: interferometers

1 INTRODUCTION

The primary reason for constructing the Square Kilometre
Array (SKA) (Dewdney et al. 2009) that comprises
many individual stations is to explore the universe with
the highest resolution, sensitivity and dynamic range.
However, the telescope brings new scientific and technical
challenges to the modern Information Technology. One of
the biggest challenges is managing the extremely large
data volumes generated by the SKA every day. The
narrow channel bandwidth and short correlator timestep do
minimize the decorrelation effects on the longest baselines
but increase the amount of visibility data. This substantial
increase in the bulk of data requires the development
of new and sophisticated distributed data processing
schemes and concurrent algorithms that can run on high-
performance computing hardware.

To prompt the development of Science Data and
Handling Processor (SDHP), the Radio Astronomy
Simulation, Calibration and Imaging Library (RASCIL)
(Cornwell et al. 2020), including radio interferometry
calibration and imaging algorithms in Python and NumPy,
has been developing for a few years. The interfaces

all operate with familiar data structures such as image,
visibility table, gain table, and so on. To achieve sufficient
performance, the latest version of the RASCIL takes a dual
pronged approach – using threaded libraries for shared
memory processing, and the Dask (Rocklin 2015) library
for distributed processing.

Dask is a flexible library for parallel computing in
Python that is composed of two parts, i.e., dynamic
task scheduling and big data collection. In the area of
interferometric data processing, dask-ms (Perkins et al.
2020) and cngi-prototype (Raba et al. 2019) exploited Dask
arrays to expose columns of tables in measurement sets
(MS) (van Diepen 2015) to support parallel operations
on MS. Current RASCIL software takes full advantage of
Dask’s dynamic scheduling capabilities. However, the big
data collection feature has never been tested in RASCIL
development. Obviously, distributed computing is the
unique choice for processing large-scale astronomical data.
The visibility has time and bandwidth separation, making
distributed computing a natural solution.

Averaging in post-correlation is considered to reduce
the volume of astronomical data and computational cost

80–2 S. L. Wei et al.: Fine-grained Distributed Averaging for MS

(Offringa 2016). To further investigate the ability of Dask
on its big data processing, we take the visibility function
data averaging (integral) as the case and developed a fine-
grained distributed averaging algorithms including time
and channel averaging so as to test whether Dask big data
collection feature can be used in the subsequent version of
the RASCIL.

The rest of this paper is organized as follows: Section 2
introduces the theoretical analysis of averaging; Section 3
describes the algorithm implementation and validation
results; Section 4 analyzes the performance evaluation in
terms of granularity; and Section 5 presents the conclusion.
The code that replicates the results in this work is available
online1.

2 RADIO INTERFEROMETRIC AVERAGING

This section provides a brief overview of radio interfer-
ometry, reviews the theory of averaging, and discusses the
effects of averaging on interferometric data processing.

The response of interferometric arrays to the bright-
ness distribution of sources in the sky is measurements
called visibilities, which are complex values sampled from
the Fourier transform of the sky brightness distribution
(Thompson 1999). The relation between the synthesis
array, visibilities, and sky brightness is well established,
and it can be expressed by the radio interferometer
measurement equation (RIME) (Hamaker et al. 1996). The
RIME has provided a rigorous mathematical framework
to model the signal propagation effects and calculate the
visibilities. We assume that a baseline is composed of two
spatially separated stations p and q. The visibility matrix
V pq is calculated as an integral product over a time and
frequency intervals [t0, t1] × [ν0, ν1]. It can be expressed
as

〈V pq〉 = lim
∆t,∆ν→0

1

∆t∆ν∫ t1

t0

∫ ν1

ν0

Jp(t, ν) B JHq (t, ν) dν dt .

(1)

The angled brackets denote data averaging over one
baseline, frequency channel, and integration timestep. In
addition, H represents the conjugate transpose. Matrix B

describes the continuous brightness distribution, and J

describes the Jones chain modeling effects along the signal
propagation path (Smirnov 2011).

2.1 Channel Averaging

Modern radio telescopes typically make observations
across multiple channels, each of which is bound to a
specific frequency. Channel averaging is used to integrate

1 https://github.com/astroitlab/vis_averaging

the visibilities across several continuous or discrete
channels. To keep both sides of the equation’s form
consistent, the weighted average visibility across channels
can be expressed as

V avg
pq W avg

pq =

nch∑
i

V pqi W pqi . (2)

The weight of the broadened channel is the sum of the
weights of the integral channels. All channels have the
same weight at a specific time and baseline. Thus,

W avg
pq =

nch∑
i

W pqi = nch×W pqi , (3)

where i is the index of the frequency channel, nch is
the number of integral channels, and avg denotes the
channel averaging operation. In addition, V , W represent
the columns of DATA and WEIGHT columns in the MS,
respectively (as shown in Table 1). For brevity, the angle
brackets of V in Equation (2) are omitted. Substituting
Equation (3) into Equation (2) gives the integral visibilities
over the nch channels finally as the weighted average

V avg
pq =

∑nch
i V pqi W pqi

∆θ + nch×W avg
pq

. (4)

To avoid division by zero, we introduce a value closer
to zero ∆θ in Equation (4). The effects of ∆θ are discussed
in Section 3.3.

2.2 Time Averaging

Assume that t time points are sampled in an averaging
period. In terms of the averaging time, these t sampled
points will be integrated into one time point that includes
the visibilities of n(n−1)/2 baselines. In other words, the
number of visibilities is reduced from t × n × (n − 1)/2

to n(n − 1)/2. The averaged weights and visibilities are
given by

W avg
pq =

t∑
j

W pqj , (5)

V avg
pq =

∑t
j V pqj W pqj

∆θ + W avg
pq

. (6)

Here, j is the index of sampled time point. As shown in
Equation (5) and Equation (6), the averaged weights and
visibilities for time averaging have a similar structure to
those for channel averaging. The difference is that time
averaging integrates data with the same baseline along
the time axis. As time averaging combines different time
points into one, the time-dependent data also needs to be

https://github.com/astroitlab/vis_averaging

S. L. Wei et al.: Fine-grained Distributed Averaging for MS 80–3

Table 1 MS Sectional Layout Referenced in This Work

Columns Types | Dimensional transformation Comments

UVW double | (Nr , 3)→ (Nt, Nb, 3) uvw coordinates units in meters
DATA DESC ID int | (Nr ,) Data description identifier (≥ 0)
FIELD ID int | (Nr ,) Field identifier (≥ 0)
WEIGHT float | (Nr , Nc)→(Nt, Nb, Nc) Weight for whole data matrix
DATA complex | (Nr , Nf , Nc)→(Nt, Nb, Nf , Nc) Complex visibilities matrix

Nr = number of rows in MS table, Nf = number of frequency channels, Nc = number of correlators Nt =
number of timesteps, andNb = number of baselines. Dimension refers to the shape of the entire specified column
rather than that of a single cell.

recalculated. The time-dependent data including U, V,W
and the new weighted Time are given by

(
U =

∑t
j UjW j∑t
jW j

,V =

∑t
j VjW j∑t
jW j

,W =

∑t
jWjW j∑t
jW j

)
,

(7)

Time =

∑t
j TjW j∑t
jW j

. (8)

Here, W j represents the mean weight across all of the
baselines at one time point.

2.3 Averaging Effects

The measurements at each baseline inevitably contain
uncorrelated Gaussian noise that creates uncertainty in
the real and imaginary parts of the visibilities. This
uncertainty is mainly represented by signal fluctuation.
Equation (4) and Equation (6) are essentially weighted
averages, where the smoothing effect can suppress the
fluctuation of visibilities. Moreover, multiple consecutive
channels or timesteps are integrated into a broader channel
or period that can significantly reduce the volume of
visibilities. However, this form of data compression
unavoidably results in a net loss of amplitude, known
as smearing (or time/bandwidth decorrelation in the uv-
plane), which mainly manifests a decrease in the amplitude
toward off-center sources. The amplitude reduction in
source flux increases with baseline length and distance
from phase center (Wijnholds et al. 2018). Smearing
also has detrimental effects on sensitivity, as the noise
amplitude does not decrease. If we consider the entire
uv-plane, smearing distorts the point spread function
(PSF) and produces relatively high sidelobes (second
column in Fig. 3), as the weighted average results
in coarser time/frequency bins or lower resolution re-
samples. Furthermore, the wide field effects of smearing
are of particular concern in the context of modern radio
interferometers, and in this case, some bright sources far
from the FOV that are modulated by PSF sidelobes can
contribute global background noise and artifacts to the
image (Smirnov et al. 2012).

3 IMPLEMENTATION

This section describes the architecture of the proposed
method and illustrates the principles of different granu-
larity distributions. The accuracy of the proposed method
is explained in comparison to those using the common
astronomy software application (CASA) (McMullin et al.
2007) software.

3.1 Architecture

The key goal of this study is to allow averaging to run in
a parallel and distributed manner. Dask was selected for
this task owing to its flexibility and limited invasion into
the existing codes. In addition, Dask provides much of the
NumPy application programming interface that users are
familiar with, which means simple NumPy-style iterative
optimization algorithms can be written that will leverage
the built-in parallel data model. An averaging computation
across 20 MSs is visualized, as shown in Figure 1, and
generated using Dask’s built-in visualization features.

To provide clarity with respect to the various levels
of parallelism, Figure 1 was abstracted into Figure 2. In
accordance with the requirements of computing resources,
various logical parts of the program are arranged across
different executing spaces, as shown in Figure 2.

Visibilities and related configurations are commonly
stored as an MS in a folder. The process starts with the
MS loading from a shared file system mounted to the
same path in each node. Multiple MS files are loaded in
parallel cross nodes. In a single node, an MS is loaded
and split by FIELD ID and DATA DESC ID in parallel
within one process, where each dask worker gets its own
interpreter and memory space for computation. Python
global interpreter lock (GIL) only allows one thread to
control the Python interpreter at a time, which can be a
bottleneck that prevents full multi-core usage. Therefore,
the multi-process can bypass the GIL to allow multiple
cores to execute in parallel.

Throughout its architecture, this algorithm adopts the
map/reduce strategy for data analysis. In the map phase,
each MS is secondary split by source. In particular, UVW
(Table 1) is not converted from meters to wavelengths,
otherwise the UVW volume would increase. Multi-

80–4 S. L. Wei et al.: Fine-grained Distributed Averaging for MS

0

foldby-a

foldby-a

0

1

foldby-a

1

2

foldby-a

2

3

foldby-a

3

4

foldby-a

4

5

foldby-a

5

6

foldby-a

6

7

foldby-a

7

8

foldby-a

foldby-a

8

9

foldby-a

9

10

foldby-a

10

11

foldby-a

11

12

foldby-a

12

13

foldby-a

13

14

foldby-a

14

15

foldby-a

15

16

foldby-a

foldby-a

16

17

foldby-a

17

18

foldby-a

18

19

foldby-a

19

0

foldby-b

1 2

0

flatten

0

flatten

1

flatten

2

flatten

3

flatten

4

flatten

5

flatten

6

flatten

7

flatten

8

flatten

9

flatten

10

flatten

11

flatten

12

flatten

13

flatten

14

flatten

15

flatten

16

flatten

17

flatten

18

flatten

19

channel_average

0

channel_average

1

channel_average

2

channel_average

3

channel_average

4

channel_average

5

channel_average

6

channel_average

7

channel_average

8

channel_average

9

channel_average

10

channel_average

11

channel_average

12

channel_average

13

channel_average

14

channel_average

15

channel_average

16

channel_average

17

channel_average

18

channel_average

19

time_average

0

time_average

1

time_average

2

time_average

3

time_average

4

time_average

5

time_average

6

time_average

7

time_average

8

time_average

9

time_average

10

time_average

11

time_average

12

time_average

13

time_average

14

time_average

15

time_average

16

time_average

17

time_average

18

time_average

19

load_msdata

0

load_msdata

1

load_msdata

2

load_msdata

3

load_msdata

4

load_msdata

5

load_msdata

6

load_msdata

7

load_msdata

8

load_msdata

9

load_msdata

10

load_msdata

11

load_msdata

12

load_msdata

13

load_msdata

14

load_msdata

15

load_msdata

16

load_msdata

17

load_msdata

18

load_msdata

19

Fig. 1 Dask task graph for averaging computation across 20 measurement sets.

level parallelism and parallel multi-dimensional arrays
(discussed in Sect. 3.2) can achieve fine granularity of
parallel averaging on visibilities. In the reduction process,
all averaged visibilities are merged based on the source
attribute. However, combination inevitably introduces a
time penalty due to the huge amount of data between
workers. This study adopted the high-order function
Bag.foldby, providing efficient parallel aggregation with
minimal communication.

3.2 Data Structure Definition

The MS format is widely used by modern telescopes
because it is designed to avoid data redundancy and
provides optional sub-tables/columns for universality. We
utilize the python-casacore (van Diepen 2015), a python
interface binding to the casacore library compiled by
C++ in radio astronomy, to read and modify the MS. In
this study, dask.bag to wrap the list of MS paths. When
mapping on dask.bag, the dask scheduler dispatch splits
of dask.bag between various workers. Averaging includes
complex array computations across the DATA, WEIGHT,
and UVW columns that contain most of the MS data.
Here, dask.array was used to load these three columns as
it allows the arrays to be split into chunks and processed
in parallel. In addition, the averaging calculation refers
to other configurations such as the antennas, polarization,
and baseline positions. XArray was used to manage
multiple arrays and relate the configurations as a consistent
dataset. Table 2 lists the XArray dataset definitions for the
experimental data 2.

2 The data can be downloaded from http://casa.nrao.edu/
Data/EVLA/IRC10216/day2_TDEM0003_10s_norx.tar.gz
(the data size is 1.1 GB, the extracted data are about 2.0 GB).

3.3 Accuracy

Due to instrumental failure, partial baselines may be
missing (Nb < n(n − 1)/2) from raw measurement data.
Therefore, matrices may be a different shape when they
are loaded into the memory. For convenience, the matrices
are filled with zeros to compensate for inconsistencies in
the data dimensions. Additionally, in Equation (4) and
Equation (6), a minimal value (∆θ) was introduced into
the denominators to avoid the problem of dividing by zero.
However, ∆θ also introduces accuracy loss. The lower
value of ∆θ equates to better accuracy. The fact that if two
matrices (A and B) are numerically close, the mean and
variance of loss error (A-B) between them will approach
zero was used to examine the accuracy of our proposed
method compared to the CASA software. As shown in
Table 3, the mean and variance of accuracy loss are close
to zero, proving that the two visibility matrices are almost
identical.

3.4 Compression Ratios and Imaging Artifacts

Theoretically, data can be averaged over several timesteps
and channels with the arguments t (default:2) and nch

(default:4). The compression ratio (CR) is the size of the
unaveraged visibilities to the averaged one (and thus CR
= t × nch in this study). Cotton (2009) has qualitatively
analyzed the CR for time averaging and the level of
artifacts in the context of the VLA. He observes that
time averaging cannot be of an arbitrary length; otherwise,
excessive amplitude attenuation would reduce the dynamic
range (= ratio of the peak flux to off-center source) in the
vicinity of bright sources and produce artifacts that degrade
the quality of the image (for detailed image artifacts
caused by time smearing, see fig. 4 in Cotton (2009)).
Moreover, if the phase variation as a function of channel
is large, it may be necessary to restrict the averaging

 http://casa.nrao.edu/Data/EVLA/IRC10216/day2_TDEM0003_10s_norx.tar.gz
 http://casa.nrao.edu/Data/EVLA/IRC10216/day2_TDEM0003_10s_norx.tar.gz

S. L. Wei et al.: Fine-grained Distributed Averaging for MS 80–5

Thread space

@delayed

Load MS

source 1

pick_source ... pick_source

source m...

avg_vis 1

time_avg ... time_avg

avg_vis m...

avg_vis 1

chan_avg ... chan_avg

avg_vis m...

Thread space

Thread space

@delayed

@delayed

Load MS and
Split by Source

Flatten

Foldby-a

...

...

...

Channel Average

Time AverageTime Average

Process	Space

M
ap

C
alculations

R
educe

Node	Space

......

Averaged	MS

MS MS

Receive MS list
on dask-worker

Receive MS list
on dask-worker

Load MS and
Split by Source

......

Channel Average

Flatten

Foldby-a

Foldby-b

MS

......

Time Average(seq_vis,t)

Channel Average(seq_vis, nch)

Fig. 2 Multi-level parallelism architecture starts with the MS list loading in the node space. When a node receives a partial
list, it begins to load the MS and splits it by source and subsequent operations. This is shown by the solid blue boxes that
link to the corresponding dashed blue boxes to elaborate the internal execution.

to a few channels to prevent the introduction of delay-
based closure errors, which can be caused by averaging
over non-bandpass corrected channels with large phase
variations. To explain frequency smearing, the channel-
averaged data were rewritten back to the original MS,
and the source images and PSFs were produced (Fig. 3)
by the tclean task in CASA. The experimental data were
obtained by observing two spectral lines produced by
the asymptotic giant branch star IRC+10216, where the
dense inner envelope (for more information about the
circumstellar envelope, see Leão et al. 2006) produced
the SiS line as a centralized emission, and the external

envelope produced the HC3N line as a ring of emission.
The HC3N can re-radiate energy absorbed from the SiS
radiation.

Time and channel averaging on visibilities can be
treated as a form of pseudo-convolution by some ensemble
boxcar-like window functions (Atemkeng et al. 2016), and
the sizes of boxcar are proportional to the uv-extent of
the time and frequency bins (related to the arguments t
and nch). The Fourier transform of a boxcar-like is a
sinc-type taper, and the scale of the tapering response is
inversely proportional to the scale of the window function.
Larger arguments result in wider boxcars corresponding

80–6 S. L. Wei et al.: Fine-grained Distributed Averaging for MS

(a) (b)

(c) (d)

Fig. 3 Images corresponding to PSFs produced under the same processing flows with different integral channels, nch = 2
(panel (a), (b)) and nch = 32 (panel (c), (d)). Excessive averaging over channels may cause the image to become blurry.

to narrower tapers with higher sidelobes that are therefore
more likely to smearing. As shown in Figure 3, frequency
smearing causes a radial broadening distortion of the PSF.
Thus, the amplitude of the SiS, modulated by the high
sidelobes, translates into an unwanted background in the
domain of the HC3N.

4 PERFORMANCE EVALUATION

This section explores the performance characteristics of
the algorithm. All of the experiments were performed on
ten Ubuntu 18.04 server workstations, two of which are
equipped with 56 processors (Intel Xeon CPU E5-2660
v4), hyperthreading, 3.4-GHz maximum frequency, and

512 GB of RAM (i.e., each 32 GB on 16 sockets) and
the rest of which equipped with 32 processors (Intel Xeon
CPU E5-2630 v3), hyperthreading, 2.4-GHz maximum
frequency, and 132 GB of RAM. While each sub-MS
contained identical data, larger datasets 3 were also tested
in our program.

As shown in Figure 4, the coarse-grained multi-
processing scheduler is able to bypass the GIL issues
to stimulate the potential parallelism of multi-cores.
Combined with fine-grained delayed function, deferred

3 The original data can be download from https://casa.nrao.
edu/Data/EVLA/Pband/P_band_3C129.tgz, but we extract a
13GB portion of this dataset to work on.

https://casa.nrao.edu/Data/EVLA/Pband/P_band_3C129.tgz
https://casa.nrao.edu/Data/EVLA/Pband/P_band_3C129.tgz

S. L. Wei et al.: Fine-grained Distributed Averaging for MS 80–7

2 4 8 12 16 20
process quantity

0

100

200

300

400
tim

e
(s

)
Process Saturation
Map
Calculations

Fig. 4 Coarse-grained process execution with identical arguments t = 2 and nch = 4 across 20 MSs on 10 nodes (each
machine is assigned two dask workers). Process saturation is the number of dask workers, not less than that of MS files,
and the execution times indicated by the dashed line do not include the reduce phase.

Table 2 XArray Dataset Definitions for the Experimental Data

Dimensions: (nant: 19, nbaseline: 171, nchan: 64, nfpos: 3, npol: 4, nspos: 3, ntime: 17)

Coordinates:
* ntime (ntime) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
* nbaseline (nbaseline) <U5 ‘0-1’ ‘0-2’ ‘0-3’ ... ‘16-18’ ‘17-18’
* nchan (nchan) int64 0 1 2 3 4 5 6 7 ... 56 57 58 59 60 61 62 63
* npol (npol) <U2 ‘p0’ ‘p1’ ‘p2’ ‘p3’
* nfpos (nfpos) <U1 ‘u’ ‘v’ ‘w’
* nant (nant) int64 0 1 2 3 4 5 6 7 ... 11 12 13 14 15 16 17 18
* nspos (nspos) <U1 ‘x’ ‘y’ ‘z’

Data variables:
vis (ntime, nbaseline, nchan, npol) complex64

dask.array<chunksize=(17, 171, 64, 4), meta=np.ndarray>
weight (ntime, nbaseline, npol) float64 dask.array<chunksize=(17, 171, 4), meta=np.ndarray>
uvw (ntime, nbaseline, nfpos) float64 dask.array<chunksize=(17, 171, 3), meta=np.ndarray>
frequency (nchan) float64 3.639e+10 3.639e+10 ... 3.64e+10
channel bandwidth (nchan) float64 1.25e+05 1.25e+05 ... 1.25e+05 1.25e+05
xyz (nant, nspos) float64 –1.602e+06 –5.042e+06 ... 3.555e+06
mount (nant) <U6 ‘ALT-AZ’ ‘ALT-AZ’ ... ‘ALT-AZ’ ‘ALT-AZ’
names (nant) <U4 ‘ea01’ ‘ea02’ ‘ea03’ ... ‘ea25’ ‘ea27’ ‘ea28’
diameter (nant) float64 25.0 25.0 25.0 25.0 ... 25.0 25.0 25.0

Attributes:
tag: 0 7
phasecentre: <SkyCoord (ICRS): (ra, dec) in deg (202.78453327, 30...
polarisation: [[5 6 7 8],[5 6 7 8]]

execution can mimic the sequential iteration of the for-
loop and wrap custom code in sub-operations (see the
right in Fig. 2). Along with the gradual increase in
dask workers (or it is equivalent to appending more
nodes), the map and calculations execution time decreases
significantly, and the minimum value occurs at process
saturation. The Dask distribution performs well during

the loading (≈560 MB s−1) and averaging phases (≈350
MB s−1) (marked by the dashed line in Fig. 4) where
time consumption does not increase linearly with the
number of the MS. This slow growth is due to the extra
coordination required to manage resource competition
caused by the large amount of memory accesses and
intensive computation. Although distributed environments

80–8 S. L. Wei et al.: Fine-grained Distributed Averaging for MS

Table 3 Accuracy Loss of the DATA Column with Time Intervals t of 2 and Various Channels nch

Averaged
parameters

Mean of Variance of

real part imaginary part real part imaginary part

t = 2, nch = 2 –2.21427233e-13 –6.91339540e-13 4.25529084e-20 4.12462738e-20
t = 2, nch = 4 –3.44819459e-13 –1.11037129e-12 4.29342260e-20 4.11034429e-20
t = 2, nch = 8 –9.18691002e-13 3.06048242e-14 5.25735201e-20 5.13628739e-20
t = 2, nch = 16 –6.10984707e-13 –2.06883846e-13 8.46708015e-20 7.86904922e-20
t = 2, nch = 32 6.62003601e-13 1.14721947e-12 1.42577666e-19 1.30641657e-19
t = 2, nch = 64 –5.08093825e-12 –7.35946702e-12 2.92768210e-19 2.52621540e-19

The experimental MS was averaged from the original 1-s correlator visibility integration time to 10-s averages; thus, t = 2
represented 20-s time averaging. The averaged visibilities were calculated using ∆θ = 1e-16 in our programs and the
split task in CASA with parameters timebin=20 s and width=nch, respectively.

can increase computing and storage capacity, transferring
large amounts of data between processes and separate
workstations can introduce more performance penalties. In
general, multiprocessing schedulers are an excellent choice
when the workflow is relatively linear.

5 CONCLUSIONS

With the advent of interconnected, fault-tolerant, and
resource-sharing clusters, distributed computing is be-
coming a mainstream method of meeting astronomical
computing performance requirements. This paper presents
a fine-grained distributed method via distributed in-
memory chunking provided by Dask and a labeled data
array provided by XArray. Averaging is considered an
important approach for reducing the volume of synthetic
visibilities. Furthermore, it is advisable to apply the
maximum possible calibration prior to averaging, as a
high CR requires accurate phase calibration. We take
averaging as the case and implement a fine-grained
distributed averaging over time and channel. The accuracy
and efficiency of the proposed method is demonstrated
through a series of experiments. Radio interferometric data
processing comprises a variety of algorithms that are more
sophisticated than averaging, such as calibration, gridding,
and imaging, and the parallelization is a consistent
theme throughout them. The practicality of fine-grained
distributed averaging may also lead to other aspects of
interferometric data distributed processing in a future
study.

Acknowledgements This work is supported by the
National Key Research and Development Program of
China (2020SKA0110300), the Joint Research Fund in
Astronomy (U1831204 and U1931141) under coopera-
tive agreement between the National Natural Science
Foundation of China (NSFC) and the Chinese Academy
of Sciences (CAS), the NSFC (No. 11903009). the Funds
for International Cooperation and Exchange of the NSFC
(11961141001), Yunnan Key Research and Development
Program (2018IA054). The authors wish to thank the

reviewers for suggestions that improved the paper.

References

Atemkeng, M., Smirnov, O., Tasse, C., Foster, G., & Jonas, J.

2016, MNRAS, 462, 2542
Cornwell, T., Wortmann, P., Nikolic, B., Wang, F., &

Stolyarov, V. 2020, Radio Astronomy Simulation,

Calibration and Imaging Library, https://github.

com/SKA-ScienceDataProcessor/rascil

Cotton, W. 2009, Effects of baseline dependent time averaging

of UV data
Dewdney, P. E., Hall, P. J., Schilizzi, R. T., & Lazio, T. J. L. 2009,

Proceedings of the IEEE, 97, 1482
Hamaker, J., Bregman, J., & Sault, R. 1996, Astronomy and

Astrophysics Supplement Series, 117, 137
Leão, I., De Laverny, P., Mékarnia, D., De Medeiros, J., &

Vandame, B. 2006, A&A, 455, 187
McMullin, J., Waters, B., Schiebel, D., Young, W., & Golap, K.

2007, RA Shaw, F. Hill, & DJ Bell, 127
Offringa, A. 2016, Astronomy & Astrophysics, 595, A99
Perkins, S., Molenaar, G., Smirnov, O., & Andati,

L. 2020, Xarray Datasets from CASA Tables,

https://dask-ms.readthedocs.io/en/latest/

concepts/pyarrays.html

Raba, R., Thomas, A., & Steeb, J.-W. 2019, CASA Next

Generation Infrastructure, https://cngi-prototype.

readthedocs.io/en/0.0.54/visibilities.

html

Rocklin, M. 2015, in Proceedings of the 14th python in science

conference No. 130-136, Citeseer
Smirnov, O., Frank, B., Theron, I., & Wood, I. H. 2012, in 2012

International Conference on Electromagnetics in Advanced

Applications, IEEE, 586
Smirnov, O. M. 2011, A&A, 527, A106
Thompson, A. R. 1999, in Synthesis Imaging in Radio

Astronomy II, 180, 11
van Diepen, G. 2015, Astronomy and Computing, 12, 174
Wijnholds, S., Willis, A., & Salvini, S. 2018, MNRAS, 476, 2029

https://github.com/SKA-ScienceDataProcessor/rascil
https://github.com/SKA-ScienceDataProcessor/rascil
https://dask-ms.readthedocs.io/en/latest/concepts/pyarrays.html
https://dask-ms.readthedocs.io/en/latest/concepts/pyarrays.html
https://cngi-prototype.readthedocs.io/en/0.0.54/visibilities.html
https://cngi-prototype.readthedocs.io/en/0.0.54/visibilities.html
https://cngi-prototype.readthedocs.io/en/0.0.54/visibilities.html

	Introduction
	Radio Interferometric Averaging
	Channel Averaging
	Time Averaging
	Averaging Effects

	Implementation
	Architecture
	Data Structure Definition
	Accuracy
	Compression Ratios and Imaging Artifacts

	Performance Evaluation
	Conclusions

