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Abstract Scattering of anisotropic radiation by atoms, ions or molecules is sufficient to generate linear
polarization observable in stars’ and planets’ atmospheres, circumstellar environments, and in particular
in the Sun’s atmosphere. This kind of polarization is calledscattering polarization (SP) or second solar
spectrum (SSS) if it is formed near the limb of the solar photosphere. Generation of linear SP can typically
be reached more easily than circular SP. Interestingly, thelatter is often absent in observations and theories.
Intrigued by this, we propose to demonstrate how circular SPcan be created by anisotropic collisions if
a magnetic field is present. We also demonstrate how anisotropic collisions can result in the creation of
circular SP if the radiation field is anisotropic. We show that under certain conditions, linear SP creation is
accompanied by the emergence of circular SP which can be useful for diagnostics of solar and astrophysical
plasmas. We treat an example and calculate the density matrix elements of tensorial orderk = 1 which
are directly associated with the presence of circular SP. This work should encourage theoretical and
observational research to be increasingly oriented towards circular SP profiles in addition to linear SP in
order to improve our analysis tools of astrophysical and solar observations.
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1 STATEMENT OF THE PROBLEM

Symmetry-breaking processes, such as (de-)excitations by
anisotropic light or anisotropic collisions, could generate
the so-called scattering polarization (SP) of the emitted
light. An atom is said to be polarized by scattering if the
scattering processes result in an uneven population of its
Zeeman sublevels and thereby the appearance of coher-
ences between them. This is what is referred to as atomic
polarization (e.g.,Sahal-Brechot 1977; Trujillo Bueno
2001; sect. 3.6 ofLandi Degl’Innocenti & Landolfi 2004).
For an in-depth understanding of astrophysical/solar
plasma, the polarization properties of light emitted by
atoms/ions/molecules must be carefully studied from
observational and theoretical points of view. In this
context, newer theoretical techniques and modern instru-
ments allowing observation and interpretation of small
polarization signals are needed.

The effect of collisions on atomic states|αJ〉, and
therefore on the SP, can be described by the polarization
transfer and relaxation rates; hereJ denotes the total
angular momentum andα represents the other quantum
numbers associated with the atomic state. For the study

of polarization of spectral lines it is more convenient to
use the density matrix formalism expressed in the basis
of irreducible tensorial operators,T k

q . In this framework,
the density matrix elementsρkq(αJ) give the average state
of the polarized atom which emits the polarized light (see
e.g., sects. 3.6 and 3.7 ofLandi Degl’Innocenti & Landolfi
2004). Herek is the tensorial order andq is the coherence
between the Zeeman sublevels, where0 ≤ k ≤ 2J

and −k ≤ q ≤ k. The elementρk=0
q=0(αJ) is related

to the population of theJ-level whereas elements with
k ≥ 1 characterize the polarization state of the atom and
consequently of the emitted radiation. In particular, the
circular SP represents the observational signature of the
orientation of atomic levels and is quantified by the density
matrix elements with odd rank,ρk=1

q (αJ), ρk=3
q (αJ),

etc., while linear SP is associated with the atomic level
alignment which is characterized by even tensorial order
density matrix elements,ρk=2

q (αJ), ρk=4
q (αJ), etc.

In the solar context, observations with the THÉMIS
telescope (Spain) and with the Advanced Solar Polarimeter
(USA) by López Ariste et al.(2005) have revealed the
existence of unexpected circular SP (symmetricV -Stokes)
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of the Hα line which cannot be attributed to the Zeeman
effect. On the contrary, by using the ZIMPOL telescope,
Ramelli et al. (2005) observedV profiles showing an
antisymmetric shape typically due to the Zeeman effect.
Let us recall that symmetricV -Stokes profiles are related
to circular SP and hence to the orientation of the atomic
level (i.e.,ρkq (αJ) with oddk), while anti-symmetricV -
Stokes are known to be due to the Zeeman effect. In light of
these contradictory observations, theoretical interpretation
seems to be necessary.Roberto Casini & Manso Sainz
(2006) proposed that the observation of symmetricV -
Stokes could be due to the effect of an electric field.
Derouich (2007) proposed a scenario based on impact
circular polarization by anisotropic collisions. In addition,
linear-to-circular SP transfer processes have been high-
lighted theoretically byManabe et al.(1979) and measured
experimentally by the same authors in 1981 (Manabe et al.
1981). Similar processes have been reported also by
Petrashen’ et al.(1993), which also contains extensive
references.

It is well known that isotropic collisions can only
result in the decrease of atomic polarization (e.g.,
Derouich et al. 2003). However, anisotropic collisions can
create or increase the polarization of|αJ〉 levels. The vari-
ation of the atomic polarization may be due to transitions
between Zeeman sublevels of the same electronic level
|αJ〉 and/or between two different electronic levels. This
can roughly be interpreted as the transfer of anisotropy
from the relative velocity distribution of the colliding
partners to the population of the Zeeman sublevels of
the electronic sublevels involved in the transitions (e.g.,
D’yakonov & Perel 1978).

Now consider an ensemble of atoms illuminated by
unpolarized light having cylindrical symmetry around an
axis zrad. The atoms also undergo anisotropic collisions
with beams of perturbers having axial symmetry around an
axis zpert. Furthermore, in a magnetized plasma like the
Sun, the Hanle effect of a magnetic field is an important
ingredient in modeling the polarization state (e.g.,Hanle
1924, sect. 10.3 ofLandi Degl’Innocenti & Landolfi 2004;
Derouich et al. 2007; del pino Alemán 2018). Let us
therefore consider a general case of a magnetic field
oriented along an axiszmag which is neither parallel to
zrad nor parallel tozpert. The geometrical configuration
of the different axes is depicted in Figure1. Our aim in
this work is to demonstrate that, under these conditions,
mixing between even and odd tensorial orders is allowed
and can be highlighted theoretically and observationally by
obtaining non-zero circular SP (i.e., symmetricV -Stokes
signals).

Fig. 1 Geometrical configuration of the different axes
drawn in the reference frameΣ. For a given binary
collision, the relative velocity of the colliding partners,
vrel, points in the direction of the emitter-perturber axis,
zrel.

2 THEORETICAL CONSIDERATIONS

In order to solve the statistical equilibrium equations
(SEE) for the atomic levels|αiJαi

〉 of the emitting atom
described by the elementsρkq (αiJαi

), we place ourselves
in a reference frame,Σ, centered on the atom and having its
z-axis in thezpert direction. The frameΣ is obtained by a
rotationRB ≡ R(-γB, -θB, -χB) of the magnetic reference
defined by thezmag-axis (see Fig.1)1. The collisional cross
sections are usually obtained in the collision frame having
its z-axis joining the perturber and the perturbed atom
(zrel in Fig. 1), and then rotated to the frameΣ where
the average over relative velocity distribution is performed.
In fact in the latter frame, the symmetry properties of
the collisional rates are manifest which simplifies the
solution of SEE. The radiative contributions to the SEE
are also rotated to the frameΣ. It can be proved that the
expressions for relaxation and transfer radiative rates are
formally invariant under rotation (see e.g., pages 330–331
of Landi Degl’Innocenti & Landolfi 2004).

In the basis of irreducible tensorial operators and
in the referenceΣ, the time variation of the elements
ρkq (αiJαi

) can be written as (see e.g., pages 284–285
of Landi Degl’Innocenti & Landolfi 2004; Manabe et al.
1979):

1 Since the magnetic kernelKk
qq′

(RB) is independent of the Euler
angleγB, it can be arbitrarily set to zero,γB = 0 (see e.g., page 548 of
Landi Degl’Innocenti & Landolfi 2004).
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d

dt
ρkq (αiJαi

) = −iωL,αiJαi
gαiJαi

∑

q′

Kk
qq′ (RB)ρ

k
q′ (αiJαi

)

−
∑

k′q′

[

rA(αiJαi
kqk′q′) + rE(αiJαi

kqk′q′)
]

ρk
′

q′ (αiJαi
)

+
∑

jk′q′

j<i

tA(αiJαi
kq, αjJαj

k′q′)ρk
′

q′ (αjJαj
)

+
∑

jk′q′

j>i

tE(αiJαi
kq,αjJαj

k′q′)ρk
′

q′ (αjJαj
)

+
∑

jk′q′

T kk′

qq′ (αiJαi
←αjJαj

)ρk
′

q′ (αjJαj
)

−
∑

jk′q′

Rkk′

qq′ (αiJαi
→αjJαj

)ρk
′

q′ (αiJαi
).

(1)

For simplicity, we have ignored stimulated
emissions since they are negligible in natural
plasma such as the solar atmosphere. The term
−iωL,αiJαi

gαiJαi

∑

q′Kk
qq′ (RB) ρ

k
q′ (αiJαi

) corresponds
to the Hanle effect of magnetic field in theΣ reference,
where ωL,αiJαi

= 2πνL,αiJαi
denotes the Larmor

angular frequency andgαiJαi
signifies the Landé

g-factor. The expression for the magnetic kernel
Kk

qq′ (RB) can be found, for example, on page 548
of Landi Degl’Innocenti & Landolfi (2004). rE and rA
respectively denote the relaxation rates due to spontaneous
emission and absorption, whiletE and tA respectively
signify the transfer rates due to spontaneous emission and
absorption. Expressions for these radiative rates can be
found in the literature (see e.g.,Bommier & Sahal-Brechot
1978, pages 287–288 ofLandi Degl’Innocenti & Landolfi
2004).

We note here that due to mixing under rotation, the
coherences in the radiation field tensor,Jkr

qr
responsible

for the radiative ratesrA and tA, are present in the
frame,Σ, despite being non-existent in the radiation frame.
T kk′

qq′ (αiJαi
← αjJαj

) andRkk′

qq′ (αiJαi
→ αjJαj

) denote
the collisional transfer and relaxation rates, respectively.
The quantityT kk′

q (αiJαi
← αjJαj

) represents the gain
due to collisional transitions from other levels (j 6= i)
and sublevels of the same level (j = i) in contrast to
Rkk′

q (αiJαi
→ αjJαj

) which represents the relaxation
(loss) due to collisional transitions to other levels (j 6=
i) and sublevels of the same level (j = i). In the
dyadic basis, for collisional transition taking place within
the same level (j = i), Rkk′

q is associated with the
term

∑

M ′ 6=M Relastic(αjjM → αjjM
′) × ρ(αjjM)

and T kk′

q contains the term
∑

M ′ 6=M Telastic(αJJM ←
αJJM

′) × ρ(αJJM
′) (see, e.g.,Derouich et al. 2003).

The ratesTelastic andRelastic are not equal since they

are related to two different transitions. Therefore, the
quantitiesT kk′

q (αiJαi
← αiJαi

) and Rkk′

qq′ (αiJαi
→

αiJαi
) are in general different in value. It can be noticed

that even if they are equal our solutions of the SEE
remain valid and, as can be verified in the next section,
the orientation emergence will be clearly possible. The
expression for the collisional rates in the case of axial
symmetry around the axiszpert can be found, for example,
in Derouich(2007) andManabe et al.(1979).

Axial symmetry of collisions combined with the
Hermiticity of the density matrix dictate that (e.g.,Omont
1977andManabe et al. 1979):

T kk′

qq′ = 0 for q 6= q′, i.e., T kk′

qq′ = δqq′T kk′

qq = T kk′

q ,

T kk′

-q = (-1)k+k′T kk′

q , (2)

and

T kk′

q =











Real for evenk + k′

Imaginary for oddk + k′ andq 6= 0 .

0 for odd k + k′ andq = 0

(3)

Rkk′

qq′ have similar properties asT kk′

qq′ .
For simplicity, let us consider a two-level system with

unpolarizable ground stateJαl
= 0. Since the ground

state is unpolarizable, we are interested only in atomic
polarization of the excited state. Thus, our intention is
to obtainρkq elements describing the state of the excited
level and characterizing its atomic polarization in the
referenceΣ (e.g.,Derouich et al. 2007). We focus on the
alignment (ρkq with evenk)-to-orientation (ρkq with odd
k) transfer within the polarizable upper level. Alignment-
to-orientation transfer by anisotropic collisions could
explain, for instance, solar observations of circular SP by
López Ariste et al.(2005). To demonstrate the possibility
of circular SP creation by collisions, one must determine
orientation elementsρk=odd

q to confirm that they are not
equal to zero. We solve the SEE, given by Equation (1),
in the reference frameΣ. The Euler angles of the rotation
R(-γB, -θB, -χB) are between the magnetic reference and
the frameΣ.

For the purpose of illustration, we take the total
angular momentum of the excited state,Jαu

, to be 1.
Further for simplicity, we takezmag to be in the{xz}pert-
plane, i.e., we set the azimuthal angleχB = 0. In what
follows, we replace the notationsJαl

andJαu
by 0 and

1, respectively. For exampleR11
1 (1, 0) correspond to the

relaxation ratesRkk′

q associated with the loss of electrons
from the levelJαu

= 1 to the levelJαl
= 0 where

k = k′ = 1 and q = 1. R11
1 (1) are the relaxation rates

due to elastic collisions within the same levelJαi
= 1.

Similarly, T 20
0 (1, 0) is the gain of electrons going from

the levelJαl
= 0 to the levelJαu

= 1 wherek = 2,
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k′ = 0 and q = 0 and T 20
0 (1) represents the gain due

to electrons transferring from sublevels within the same
level. Physically, the collisional relaxation corresponds to
the loss of atomicq-coherence/k-order of the level under
consideration. In contrast, the transfer rates correspondto
the gain of coherence or order coming from other levels
and sublevels of the same level. Collisional contribution
to the evolution of the density-matrix elements is due to
transfer and relaxation rates. The full set of SEE describing
the two-level system under consideration is provided in
AppendixA. Let us mention that we used the same way to
denote the density matrix elements as for collisional rates,
for instanceρ11(1) represents the density matrix element
wherek=1, q=1 andJαl

=1.

Solution of the SEE in the general case, where the
three sources of anisotropy discussed above are all present,
leads to very large expressions which we do not show
here. Instead, we consider some special cases in which
two sources of anistropy are present at a time. As we
affirm below, this is enough to illustrate our main point;
namely, the breaking of cylindrical symmetry could lead
to the emergence of circular SP. In addition, we give
only the ρ10(αu Jαu

) and ρ11(αu Jαu
) = Reρ11(αu Jαu

)

+ i Imρ11(αu Jαu
) to demonstrate that it is possible to

obtain orientation withk = 1 (circular polarization)
from alignment withk = 2 (linear polarization). Other
expressions ofρkq (αi Jαi

) can be obtained from the set of
SEE in AppendixA.

3 SOLUTIONS OF THE SEE AND DISCUSSION

As discussed above, in a spherically symmetric situation,
the atomic polarization, if at all present, can only decrease.
Reduction in the symmetry of the problem leads to the
formation or increase of SP. For example, linear SP
can be created in the presence of anisotropic radiation
(e.g., sect. 10.2 ofLandi Degl’Innocenti & Landolfi 2004)
or anisotropic collisions (e.g.,Sahal-Brechot et al. 1996;
Vogt et al. 2001). We now show that further reduction in
the symmetry of the problem can lead to the generation of
circular SP.

3.1 Anisotropic Collisions and Anisotropic Radiation
Field:

We first consider the case where axially symmetric
collisions and an axially symmetric unpolarized radiation
field, whose axes of symmetry are in general not parallel to
each other, are present. The SEE describing the situation
are obtained from those in AppendixA by settingωL=0.
These SEE can be easily solved to obtain the density
matrix. The elements of the density matrix withk=1 are

defined by:
ρ10(1) = 0 , (4)

ρ11(1) = Reρ11(1)+i Imρ11(1)

= CB01

(

ImJ21+i ReJ21
)

ρ00(0)

= i CB01

(

J21
)∗

ρ00(0) ,

(5)

whereC is expressed as

C ≡−
C12

1
(1, 0)

√
3
[(

C11

1
(1, 0)+A10

)(

C22

1
(1, 0)+A10

)

+C12

1
(1, 0)C21

1
(1, 0)

] .

(6)

HereA10 andB01 respectively denote the Einstein coef-
ficients for spontaneous emission and photon absorption
characterizing the probability of transitions between the
lower level withJαl

=0 and the upper level withJαu
=1.

We have also definedCkk′

q (Jαi
, Jαj

)≡Rkk′

q (Jαi
→Jαj

) +

Rkk′

q (Jαi
→Jαi

) − T kk′

q (Jαi
←Jαi

)≡Rkk′

q (Jαi
, Jαj

) +

Rkk′

q (Jαi
) − T kk′

q (Jαi
) [e.g., C121 (1, 0) = R12

1 (1, 0) +

R12
1 (1) − T 12

1 (1)]. As can be seen from Equations (5)
and (6), theρ11(1) is non-zero, signaling the emergence of
circular SP, provided thatC121 (1, 0) andρ00(0) are different
from zero. The rateC121 (1, 0) is necessarily non-zero given
the symmetry conditions explained in Section2 (see e.g.,
Manabe et al. 1979). Further, the density matrix element
of the lower level,ρ00(0), is expected to be different from
zero since lifetime of the lower level is usually large
compared to that of the upper level. This is the case even
if Rkk′

q (Jαi
) = T kk′

q (Jαi
) as can be verified from the

definition ofCkk′

q (Jαi
, Jαj

) above.
The generation of circular SP is clearly due to the

breaking of cylindrical symmetry of the problem. Had the
radiation field been isotropic or cylindrically symmetric
around an axis,zrad, which is parallel/anti-parallel to that
of collisions,zpert, there would be no coherences in the
radiation field (J2

q 6=0 = 0 in the frame,Σ) and hence no
emergence of circular SP. Similarly, if the collisions were
isotropic, collisional rates withk 6=k′ or with q 6=0 would
vanish. Consequently, there would be no circular SP as
can be seen from Equations (5) and (6). In the last two
cases, the cylindrical symmetry of the problem is restored
and thus there can only be linear SP. In other words, the
generation of circular SP is possible only if the whole
problem is neither isotropic nor has axial symmetry.

3.2 Anisotropic Collisions and Oriented Magnetic
Field

Let us consider another case of broken axial symmetry
to further illustrate our point. In this setup we have
an ensemble of atoms undergoing axially symmetric
collisions in the presence of an oriented magnetic field and
isotropic radiation field. This case is described by the SEE
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given in AppendixA while settingJ2
q =0. Solution of the

SEE in this case holds:

ρ10(1)=

√
2g1ωL,1sθB Imρ11(1)

[C110 (1, 0) +A10]
, (7)

Reρ11(1) =

(

g1ωL,1sθBC121 (1, 0)

{

g21ω
2
L,1

[

− 4g21ω
2
L,1c

4
θB

(

C110 (1, 0) +A10

)

+ c2θB

[

2g21ω
2
L,1s

2
θB

(

C110 (1, 0)

+ 2C221 (1, 0) + 3A10

)

+
(

C110 (1, 0) +A10

)

{

3A2
10 +

[

4C111 (1, 0) + 4C221 (1, 0)− 2C222 (1, 0)
]

A10

− [C222 (1, 0)]2 + 4C121 (1, 0)C211 (1, 0) + 4C111 (1, 0)C221 (1, 0)
}]

+ s2θB
(

C222 (1, 0) +A10

)

×
{

[

C110 (1, 0) + C111 (1, 0) + C221 (1, 0) + C222 (1, 0)
]

A10 + 2A2
10 + g21ω

2
L,1s

2
θB

+ C110 (1, 0)C111 (1, 0)

+ C221 (1, 0)C222 (1, 0)
}

]

+
(

C110 (1, 0) +A10

)[

C121 (1, 0)C211 (1, 0) +
(

C111 (1, 0) +A10

)(

C221 (1, 0) +A10

)]

×
(

C222 (1, 0) +A10

)2

}

×
{

3C000 (0, 1)
(

C000 (1, 0) +A10

)

+B01J00
(

3C000 (1, 0)−
√
3T 00

0 (0, 1)
)

− 3
(

T 00
0 (0, 1) +

√
3A10

)

T 00
0 (1, 0)

})

ρ00(0)

/(

√
6

{

4g61ω
6
L,1c

6
θB

(

C110 (1, 0) +A10

)

+
{

g21ω
2
L,1s

2
θB

(

C111 (1, 0) +A10

)

+
[

C121 (1, 0)C211 (1, 0) +
(

C111 (1, 0) +A10

)(

C221 (1, 0) +A10

)]

×
(

C222 (1, 0) +A10

)

}

×
{

g41ω
4
L,1s

4
θB

+ g21ω
2
L,1s

2
θB

[

C110 (1, 0)C111 (1, 0) + C221 (1, 0)C222 (1, 0)

+
(

C110 (1, 0) + C111 (1, 0) + C221 (1, 0) + C222 (1, 0)
)

A10 + 2A2
10

]

+
(

C110 (1, 0) +A10

)

×
(

C110 (1, 0) +A10

)[

C121 (1, 0)C211 (1, 0) +
(

C111 (1, 0) +A10

)(

C221 (1, 0) +A10

)](

C222 (1, 0) +A10

)

}

+ c4θB

{

4g61s
2
θB
ω6

L,1

(

C111 (1, 0)− C110 (1, 0)
)

+ g41ω
4
L,1

(

C110 (1, 0) +A10

)

[

9A2
10 + 2

[

4
(

C111 (1, 0)

+ C221 (1, 0)
)

+ C222 (1, 0)
]

A10 + [C222 (1, 0)]2 + 4
(

[C111 (1, 0)]2 + [C221 (1, 0)]2 − 2C121 (1, 0)C211 (1, 0)
)

]}

+ g61c
2
θB

{

ω6
L,1s

4
θB

(

C110 (1, 0)− 4C111 (1, 0)− 3A10

)

+ g41s
2
θB
ω4

L,1

[

3A3
10 −

(

2C110 (1, 0) + 3C111 (1, 0)

− 10C221 (1, 0)− 4C222 (1, 0)
)

A2
10 +

{

4[C221 (1, 0)]2 + 2
(

C110 (1, 0) + 4C111 (1, 0)
)

C221 (1, 0)

+ [C222 (1, 0)]2 − 4
(

2C110 (1, 0) + C111 (1, 0)
)

C111 (1, 0) + 8C121 (1, 0)C211 (1, 0) + 2
(

C110 (1, 0) + C111 (1, 0)

+ C221 (1, 0)
)

C222 (1, 0)
}

A10 + C111 (1, 0)[C222 (1, 0)]2 + 4C221 (1, 0)
(

C121 (1, 0)C211 (1, 0) + C111 (1, 0)C221 (1, 0)
)

+ C110 (1, 0)
{

− 4[C111 (1, 0)]2 + 4C121 (1, 0)C211 (1, 0) + 2C221 (1, 0)C222 (1, 0)
}

]

+ g21ω
2
L,1

(

C110 (1, 0) +A10

)

×
[

6A4
10 + 2

{

5
(

C111 (1, 0) + C221 (1, 0)
)

+ 2C222 (1, 0)
}

A3
10 +

{

5[C111 (1, 0)]2 + 16C221 (1, 0)C111 (1, 0)

+ 5[C221 (1, 0)]2 + 2[C222 (1, 0)]2 + 6C121 (1, 0)C211 (1, 0) + 4
(

C111 (1, 0) + C221 (1, 0)
)

C222 (1, 0)
}

A2
10

+ 2
{(

C111 (1, 0) + C221 (1, 0)
)

[C222 (1, 0)]2+
(

[C111 (1, 0)]2+[C221 (1, 0)]2−2C121 (1, 0)C211 (1, 0)
)

C222 (1, 0)

+ 4
(

C111 (1, 0)+C221 (1, 0)
)

×
(

C121 (1, 0)C211 (1, 0) + C111 (1, 0)C221 (1, 0)
)}

A10 +
(

[C111 (1, 0)2 + [C221 (1, 0)]2

− 2C121 (1, 0)C211 (1, 0)
)

[C222 (1, 0)]2 + 4
(

C121 (1, 0)C211 (1, 0)+C111 (1, 0)C221 (1, 0)
)2
]}

}

×
{

C020 (1, 0)T 00
0 (0, 1)+

(
√
3C020 (1, 0)−T 02

0 (0, 1)
)

A10−C000 (1, 0)T 02
0 (0, 1)

})

,

(8)
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Imρ11(1) = −
(

√

2

3
g21ω

2
L,1sθBcθBC121 (1, 0)

[

g21ω
2
L,1

{

4c2θB
(

C111 (1, 0) + C221 (1, 0) + 2A10

)

+ s2θB
(

− 2C111 (1, 0) + C222 (1, 0)−A10

)}

+
(

C111 (1, 0) + C221 (1, 0) + 2A10

)(

C222 (1, 0) +A10

)2
]

[

− 3C000 (0, 1)
(

C000 (1, 0) +A10

)

+B01J00
(
√
3T 00

0 (0, 1)− 3C000 (1, 0)
)

+ 3
(

T 00
0 (0, 1) +

√
3A10

)

T 00
0 (1, 0)

]

)

× ρ00(0)

/({

[

− g21ω
2
L,1c

2
θB

(

2C221 (1, 0) + C222 (1, 0) + 3A10

)

+ C121 (1, 0)C211 (1, 0)
(

C222 (1, 0) +A10

)

+
{

g21ω
2
L,1s

2
θB

+ big(C110 (1, 0) +A10

)(

C111 (1, 0) +A10

)}{

g21ω
2
L,1

(

1− 3c2θB
)

+
(

C221 (1, 0) +A10

)(

C222 (1, 0) +A10

)}/{

C110 (1, 0) +A10

}

]

×
[

g21ω
2
L,1

{

4c2θB
(

C111 (1, 0) + C221 (1, 0) + 2A10

)

+ s2θB
(

− 2C111 (1, 0) + C222 (1, 0)−A10

)}

+
(

C111 (1, 0) + C221 (1, 0) + 2A10

)

×
(

C222 (1, 0) +A10

)2
]

+
[

g21ω
2
L,1

(

3c2θB − 1
)

− 2C121 (1, 0)C211 (1, 0)− 2C111 (1, 0)C221 (1, 0)−
{

3
(

C111 (1, 0) + C221 (1, 0)
)

+ 2C222 (1, 0)
}

A10 −
(

C111 (1, 0) + C221 (1, 0)
)

C222 (1, 0)− 4A2
10

][

g21ω
2
L,1c

2
θB

{

[2g21ω
2
L,1

(

1− 3c2θB
)

−
(

C222 (1, 0) +A10

)2}
+ C121 (1, 0)C211 (1, 0)×

{

4g21ω
2
L,1c

2
θB

+
(

C222 (1, 0) +A10

)2}

+
{

g21ω
2
L,1s

2
θB

+
(

C110 (1, 0) +A10

)(

C111 (1, 0) +A10

)}{

g21ω
2
L,1

[

4c2θB
(

C221 (1, 0) +A10

)

+ s2θB(C
22
2 (1, 0) +A10)

]

+
(

C221 (1, 0) +A10

)(

C222 (1, 0) +A10

)2}/{C110 (1, 0) +A10

}

]

}

×
{

C020 (1, 0)T 00
0 (0, 1) +A10

(
√
3C020 (1, 0)− T 02

0 (0, 1)
)

− C000 (1, 0)T 02
0 (0, 1)

})

,

(9)
where we have definedsθB≡sin θB andcθB≡cos θB. In the case at hand, circular SP is generated which is again attributed
to the breaking of axial symmetry of the problem. This can be verified from Equations (7), (8) and (9) by settingsθB =0

or π, i.e., by makingzpert andzmag respectively parallel or anti-parallel, which yields

ρ10(1)=Reρ11(1)= Imρ11(1)=0 .

In other words, restoring the cylindrical symmetry of
the problem results in a vanishing circular SP. It can be
verified from Equations (7), (8) and (9) that circular SP
would be present ifθB is neither zero norπ. In particular,
we have verified that, for the special case ofθB = π/2,
ρ10(1)= Imρ11(1)=0 but Reρ11(1) 6=0.

3.3 Anisotropic Radiation and Oriented Magnetic
Field

For completeness, let us also consider the case in which an
ensemble of atoms is illuminated by anisotropic radiation
in the presence of an oriented magnetic field. We could
also allow the atoms to undergo isotropic collisions. The
SEE describing this situation are obtained from those in
AppendixA by setting all collisional rates withk 6= k′ or
with q 6=0 to zero. Solving for the density matrix elements,

one can verify that

ρ10(1)=Reρ11= Imρ11=0 .

Clearly, the generation of circular SP is not possible in
this case despite the breaking of axial symmetry in the
problem. This is due to the fact that a weak magnetic
field cannot cause the mixing of density matrix elements
with different order,k, besides the restriction imposed
by selection rules on the possible optical transitions
which prevents the mixing between odd- and even-order
density matrix elements (see e.g., sects. 7.11 and 10.8
Landi Degl’Innocenti & Landolfi 2004). The later obstacle
is not present in the case of anisotropic collisions. That
is the reason, in the case of anisotropic collisions, the
breaking of cylindrical symmetry leads to the generation
of circular SP whereas there is no creation of circular SP if
the anisotropy in collisions is replaced by a deterministic
weak magnetic field.
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4 CONCLUSIONS

We formulated the circularly polarizing effect of anisotrop-
ic collisions in the presence of an anisotropic radiation
field and/or deterministic magnetic field. In particular, we
confirm the possibility of creating atomic circular SP if the
density of perturbers is sufficient for anisotropic collisions
to be effective. This physical situation can occur in a
plasma where charged particles (e.g., protons or electrons)
move in a direction different from that photons most
frequently are moving in and/or different from that of the
magnetic field, in a way that cylindrical symmetry of the
problem is broken.

In order to contribute to interpretations of
chromospheric Hα line observations of hydrogen
(López Ariste et al. 2005; Ramelli et al. 2005), it is
important to calculate the relaxation and transfer rates
due to anisotropic collisions of hydrogen atoms with
electrons. Then, it is necessary to introduce them in a code
of resolution of the SEE in order to determine the circular
polarization. In addition, in the low corona, it is now

well-established that the velocity distributions of the solar
wind’s electrons, protons and heavy ions are non-thermal,
meaning that they are anisotropic and cannot be described
by a Maxwellian distribution (e.g.,Pilipp et al. 1987and
Pierrard & Lamy 2001). Different models are proposed
to represent those distributions, like bi-Maxwellian or
kappa distributions (e.g.,Maksimovic et al. 1997). Solar
wind diagnostics are traditionally based on spectroscopic
analysis, which only relies on the Stokes-I measurements.
Our results can be used to gain a better understanding
of the solar wind physics since the polarization is very
sensitive to the anisotropic part of velocity distributions.
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Appendix A: SEE

Assuming steady state and utilizing conjugation properties of the density matrix,
[

ρkq (αiJαi
)
]∗
=(-1)qρk-q(αiJαi

), and the

radiation field tensor,
[

Jkr

qr
(ναiJαi

,jJαj
)
]∗

= (-1)qrJkr

-qr(ναiJαi
,jJαj

), and the symmetry properties of the collision rates,

given by Equations (3) and (2), the set of coupled SEE can be written as (whereJαi
= 0 andJαj

= 1)2:

(

C000 (0, 1) +B01J
0
0

)

ρ00(0)−
(

T 00
0 (0, 1) +

√
3A10

)

ρ00(1)− T 02
0 (0, 1)ρ20(1) = 0 , (A.1)

(

T 00
0 (1, 0) +

1√
3
B01J

0
0

)

ρ00(0)−
(

C000 (1, 0) +A10

)

ρ00(1)− C020 (1, 0)ρ20(1) = 0 , (A.2)

√
2g1ωL,1sθB Imρ11(1)−

(

C110 (1, 0) +A10

)

ρ10(1) = 0 , (A.3)

g1ωL,1cθB Imρ11(1)−
(

C111 (1, 0) +A10

)

Reρ11(1) + C121 (1, 0)Imρ21(1) = 0 , (A.4)

g1ωL,1

(

sθB Imρ21(1) + 2cθB Imρ22(1)
)

−
(

C222 (1, 0) + A10

)

Reρ22(1) +
1√
3
B01ReJ

2
2ρ

0
0(0) = 0 , (A.5)

g1ωL,1

(

cθB Imρ21(1) + sθB Imρ22(1)
)

+ C211 (1, 0)Imρ11(1)−
(

C221 (1, 0) +A10

)

Reρ21(1)

+
1√
3
B01ReJ

2
1ρ

0
0(0) = 0 ,

(A.6)

√
6g1ωL,1sθB Imρ21(1) +

(

T 20
0 (1, 0) +

1√
3
B01J

2
0

)

ρ00(0)− C200 (1, 0)ρ00(1)−
(

C220 (1, 0) +A10

)

ρ20(1) = 0 , (A.7)

1

2
g1ωL,1

(
√
2sθBρ

1
0(1) + 2cθBReρ11(1)

)

+
(

C111 (1, 0) +A10

)

Imρ11(1) + C121 (1, 0)Reρ21(1) = 0 , (A.8)

g1ωL,1

(

sθBReρ21(1) + 2cθBReρ22(1)
)

+
(

C222 (1, 0) +A10

)

Imρ22(1) +
1√
3
B01ImJ22ρ

0
0(0) = 0 , (A.9)

1

2
g1ωL,1

[

sθB
(
√
6ρ20(1) + 2Reρ22(1)

)

+ 2cθBReρ21(1)
]

+ C211 (1, 0)Reρ11(1) +
(

C221 (1, 0) +A10

)

Imρ21(1)

+
1√
3
B01ImJ21ρ

0
0(0) = 0 ,

(A.10)
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where we have definedCkk′

q (Jαi
, Jαj

) ≡ Rkk′

q (Jαi
→Jαj

)+Rkk′

q (Jαi
→Jαi

)−T kk′

q (Jαi
←Jαi

) ≡ Rkk′

q (Jαi
, Jαj

)+

Rkk′

q (Jαi
)−T kk′

q (Jαi
) [e.g.C121 (1, 0) = R12

1 (1, 0)+R12
1 (1)−T 12

1 (1)], sθB ≡ sinθB andcθB ≡ cosθB. The system of
equations above, having a zero determinant, is not closed; consequently, one cannot solve for all density matrix elements.
To overcome this issue, the usual practice is to add the traceequation, i.e

∑

i

√

2Jαi
+1ρ00(Jαi

) =N with N being the
population number, to the system of equations in order to enable the solution for all density matrix elements. However,
in the case at hand we are interested only in the orientation terms,ρk=1

q . Therefore, we solve the SEE to obtainρk=1
q in

terms of the population of the lower level,ρ00(0), which is expected to be non-zero since the lifetime of the lower level is
large compared to the upper level. For this purpose, we rely on the algebraic program Mathematica.
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