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Abstract We consider the problem of predicting the mid-term daily 10.7cm solar radio flux (F10.7),
a widely-used solar activity index. A novel approach is proposed for this task, in which BoxCox
transformation with a proper parameter is first applied to make the data satisfy the property of
homoscedasticity that is a basic assumption of regression models, and then a multi-output linear regression
model is used to predict future F10.7 values. The experimentshows that the BoxCox transformation
significantly improves the predictive performance and our new approach works substantially better than
the prediction from the US Airforce and other alternative methods like Auto-regressive Model, Multi-layer
Perceptron, and Support Vector Regression.
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1 INTRODUCTION

The 10.7 cm solar radio flux (F10.7) refers to the amount of
solar radio emission that has a wavelength of 10.7 cm (Lee
2007), which is a widely-used indicator of solar activity in-
tensity with a variety of applications ranging from satellite
systems, astronomy to communications (Tobiska 2003).
As a popular index representing the solar chromosphere,
transition region, and corona extreme ultraviolet radiation,
F10.7 is an important input parameter to the atmospheric
density model (Hedin 1991; Jacchia 1977), which in turn
plays a key role in determining satellite orbit. In the
common ionosphere models, F10.7 is of great importance
as well and a good prediction can improve the accuracy
of subsequent tasks like amending radar error caused
by ionosphere disturbance. In addition, F10.7 is also a
crucial influential factor of various space environment
event prediction models such as the solar wind model, the
geomagnetic storm early warning model, etc. Therefore,
prediction on F10.7 has been a hot topic in the field of
space environment over the past few decades.

There are various organizations that provide F10.7
prediction service for public, including the US National
Oceanic and Atmospheric Administration (NOAA), the
US Space Weather Prediction Center (SWPC), the US
Airforce, the British Geological Survey (BGS), the Space
Environment Prediction Center (SEPC), the National
Space Science Center (NSSC), the Chinese Academy
of Sciences (CAS), the Solar Activity Prediction Center

(SAPC), and the National Astronomical Observatories,
CAS (NAOC). Their products include short-term predic-
tion (usually 1–3 days), mid-term prediction (usually 27,
45, or 90 days), and long-term prediction (a couple of solar
cycles). In this paper, we mainly talk about the short and
middle term prediction, focusing on the 1–27 days ahead
daily forecast of the F10.7 index.

In the previous study, time series models and machine
learning methods are the mainstream, where the main
idea is to take the lagged observed values of a time
series as input of a model to predict the forthcoming
values. The BGS employs Auto-regressive Integrated
Moving Average Model (Box & Tiao 1975) to make their
prediction. Chatterjee(2001) uses an Artificial Neural
Network with two hidden layers to predict 1-day ahead
values of F10.7.Huang et al. (2009) applies Support
Vector Regression (SVR) to make a short-term prediction
(3 days ahead).Liu et al. (2010) uses a 54-order Auto-
regressive Model (AR) to do a 27 days ahead prediction,
where the mean absolute percentage error is around 15%
for highly-active years and 5% for low-active years. The
prediction of SEPC is based on the results of the AR
model.Du (2020) systematically analyzes the predictive
power of AR models with different orders for different
prediction lengths.Wang et al.(2014) proposes a model
that takes the second-order Fourier features to fit the
solar self-rotation periodic law, in which they use 135-day
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lagged values to train the model and make 54 days ahead
prediction.

Among the models mentioned above, a common issue
exists that may have a serious impact on the performance,
that is, the violation of homoscedasticity. Specifically
speaking, these models normally assume the data follow
a property of homoscedasticity, whereas the F10.7 values
show a much bigger variance during highly-active years
than those during law-active years. To solve this issue, we
propose to apply BoxCox transformation to the original
F10.7 data such that our data fed to the subsequent
regression model have similar variance regardless of the
activity level of the Sun. A nonparametric method follows
in order to choose a proper parameter of the BoxCox
transformation. A second problem we need to solve is to
transfer a univariate linear regression model to the multi-
output case. For this goal, we introduce three commonly-
used methods and choose the one that fits our problem best
through experiments.

The reminder of this paper is organized as follows.
Section 2 presents our method where we analyze the
problem of homoscedasticity violation in detail, propose
our solution to this issue, and introduce the multi-
output linear regression model. Section3 shows numerical
experiments, in which we compare the three methods
to enable multi-output regression, evaluate the effect of
BoxCox transformation, and compare our approach with
alternative methods. Section4 concludes this paper and
gives some discussion.

2 METHOD

In this section, we first analyze a common issue that current
prediction models are faced with, that is, the violation of
homoscedasticity. Then we present how to apply BoxCox
transformation to solve this issue. Lastly we introduce the
multi-output linear regression model by which we make
the F10.7 mid-term daily forecast.

2.1 Problem Analysis

Models for F10.7 prediction can be generally cast as a
regression problem, where past lagged observations of
the time series are the inputs while future values are the
outputs. This can be formulated as

yt = f(yt−1, yt−2, . . . , yt−p) + ǫt, with ǫt ∼ N (0, σ2) ,

(1)
whereyt is the observation at timet, p is the number of
past observations used as features for prediction, andσ2 is
the variance of residuals (usually assumed to be normally
distributed).

An important underlying assumption behind the model
shown in Equation (1) is homoscedasticity, in the sense

that the residual variance does not change over time, i.e.,
ǫt ∼ N (0, σ2), ∀ t. However, this property is obviously
violated for the F10.7 daily observations (solar flux units,
sfu =10−22Wm−2Hz−1). Figure1 shows the yearly mean
and variance of the F10.7 daily values1, in which each data
point is a summary statistic (mean or variance) over all
the days within a year. From Figure1, we can see that
the variance of F10.7 observations fluctuate dramatically,
ranging from a few to more than 1500 (sfu2). Therefore,
it is not a good idea to directly apply a regression model
to the F10.7 daily observations to make prediction, and
from our study we find that this significant violation of
homoscedasticity is indeed one of the bottlenecks for the
current models to achieve better performance.

2.2 BoxCox Transformation

From Figure 1, we also find that there is a strong
association between the mean and variance; they have
similar behavior over time. In order to get deeper insight of
this relation, we perform a more detailed analysis shown
in Figure 2, from which we see a significant positive
linear correlation (the coefficient reaches 0.92) between
the mean and variance. This property enables us to apply
data transformation techniques to solve the problem of
heteroscedasticity. The main idea is to impose a non-linear
monotonic transformation to the original data such that the
variance is approximately the same regardless of how big
the mean is in the transformed space. A way to achieve
this goal is the logarithm transformation. As illustrated in
Figure3, uniformly-distributed values within the interval
[x2, x3] have bigger variance than values within [x1, x2]
in the original space (since [x2, x3] is longer than [x1, x2]),
whereas the values within [y2, y3] have the same variance
as those within [y1, y2] after the logarithm transformation
(since [y2, y3] has the same length with [y1, y2]).

However, the logarithm transformation is not always
sufficient especially when the variance increases very
quickly with a growing mean. A more general technique
is the BoxCox transformation (Dey 2006), which is
parameterized byλ, shown as follows

ỹ(λ) =







yλ − 1

λ
, λ 6= 0,

ln(y), λ = 0,
(2)

where y and ỹ are original and transformed data
respectively. The parameterλ controls the shape of
transformation function, and which value to use depends
on the data.

1 The F10.7 data used in this paper is downloaded fromhttp://
www.swpc.noaa.gov/Data, where they provide purely observed
values and adjusted values subject to local effect. Here we take the
adjusted values.

http://www.swpc.noaa.gov/Data
http://www.swpc.noaa.gov/Data
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Fig. 1 Yearly mean (top panel) and variance (bottom panel) of the F10.7 observations from 1986 to 2019.

Fig. 2 Scatter plot of yearly mean and variance of the F10.7 observations from 1986 to 2019, in which the red straight
line is the result of linear regression analysis and the correlation coefficient (R) between the two variables is 0.92.

������������	

��
��

�

��
�
	�

��
��

�	 y= log(x)

�� �� ��

��

��

��

Fig. 3 Illustration of the logarithm transformation: in the original space the interval [x1, x2] is shorter than [x2, x3] while
in the transformed space [y1, y2] has the same length with [y2, y3], acting as if variation of values within [x2, x3] is larger
than those within [x1, x2] in the original space whereas values within [y1, y2] and values within[y2, y3] achieve the same
variation in the transformed space.
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What follows is how to choose a proper parameterλ2.
To this end, we define a loss function ofλ as

L
[

ỹ(λ)
]

= max

(

Var[ỹh(λ)]

Var[ỹl(λ)]
,
Var[ỹl(λ)]

Var[ỹh(λ)]

)

− 1, (3)

whereVar[ỹh(λ)] andVar[ỹl(λ)] denote the variance of
transformed data over highly-active years and low-active
years respectively. This loss function is a symmetric metric
that will go to zero if the homoscedasticity property
holds and will be a positive number otherwise. It can be
interpreted as the extent to violation of homoscedasticity.
Then, the optimalλ is learn by minimizing the loss
function, i.e.,

λ̂ = argmin
λ

L
[

ỹ(λ)
]

. (4)

One question that remained here is how to estimate
Var[ỹh(λ)] andVar[ỹl(λ)]. We take the data from 1986 to
2019 as an example to explain our procedure3: (1) compute
and sort (by descending order) the yearly mean of the
original data; (2) choose the first six as highly-active years
(group 1) and the last six as low-active years (group 2);
(3) compute the yearly variance of the transformed data
with a specificλ for the chosen twelve years; (4) take the
average variance over the first group as the estimate of
Var[ỹh(λ)] and that over the second group as the estimate
of Var[ỹl(λ)].

To make the learning processing ofλ clearer, we
summarize these steps in Algorithm1. When taking the
F10.7 observations from 1986 to 2019 as input data, we
get an optimalλ of −1.338 with Algorithm1.

Algorithm 1 Steps of the learning process ofλ

Input: F10.7 daily observations.
Output: The learned optimalλ.
Step 1: Estimate Var[ỹh(λ)] and Var[ỹl(λ)] with the
procedure introduced in the last paragraph;
Step 2:Put the learnedVar[ỹh(λ)] andVar[ỹl(λ)] into Eq. (3)
to get the loss function;
Step 3: Solve the optimization problem in Eq. (4) to get
the optimalλ (the solver used here is the function ‘fmin’
implemented in the ‘optimize’ module of Python Scipy
library.).

Figure4 displays the original F10.7 daily observations
from 1986–01–01 to 2019–12–31, the logarithm trans-
formed data (BoxCox withλ = 0), and the BoxCox
transformed data with the learned optimalλ. We see that

2 There are some off-the-shelf automatic procedures for learning
the parameter of BoxCox transformation like maximum likelihood
estimation (Sakia 1992), but over there the goal is to make the data follow
a normal distribution as approximately as possible, which is different
from our purpose. Therefore, those methods do not work here.

3 One could try a different procedure to estimateVar[ỹh(λ)] and
Var[ỹl(λ)], which may lead to a differentλ but it is indistinguishable
and does not change the general conclusion.

for the original data, fluctuation over highly-active yearsis
much larger than that over low-active years, as described
in Section 2.1. With the logarithm transformation, the
problem of heteroscedasticity is mitigated substantially,
but the fluctuation over highly-active years is still higher.
For the BoxCox transformation with optimalλ, we notice
that there is no obvious difference in terms of the variation
over years, showing a good property of homoscedasticity.
If we conduct similar analysis for the transformed data
with optimal λ as in Figure2, we will approximately
get a horizontal line, meaning that the variance is almost
independent of the mean. The losses (see Eq. (3)) for
the original data and two kinds of transformations are
{52.5, 6.7, 4.0× 10−7} respectively.

2.3 Multi-output Linear Regression

Usually, the target variable of a regression model is
univariate as shown in Equation (1), in the sense that we
can only predict a 1-day ahead forecast with such a model.
To enable multiple days ahead forecast, further steps
are needed. There are three commonly-used methods for
this purpose: Recursive Strategy, Multi-target Regression,
and Chain Regression. Next, we introduce these methods
respectively.

Recursive Strategy means that one time step ahead
prediction is conducted first and then the prior time step is
used as an input for making a prediction on the following
time step, shown as follows



















yt = w0 +w1yt−1 + w2yt−2 + . . .+wpyt−p + ǫ ,

yt+1 = w0 +w1yt + w2yt−1 + . . .+ wpyt−p+1 + ǫ ,

. . .

yt+h = w0 + w1yt+h−1 +w2yt+h−2 + . . .+wpyt+h−p + ǫ .

(5)

Note that all equalities in Equation (5) share the same
set of parameters, so the complexity of this method is quite
simple, totallyp+ 1 parameters.

Multi-target Regression means that each of the targets
is modeled with input features respectively, shown as
follows



















yt = w00 + w01yt−1 +w02yt−2 + . . .+ w0pyt−p + ǫ ,

yt+1 = w10 +w11yt−1 +w12yt−2 + . . .+ w1pyt−p + ǫ ,

. . .

yt+h = wh0 +wh1yt−1 +wh2yt−2 + . . .+ whpyt−p + ǫ .

(6)

Note that all equalities in Equation (6) employ
different parameters while they share the same set of input
features. This method is more complex than Recursive
Strategy, having a total of(h+ 1)× (p+ 1) parameters.
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Fig. 4 Top panel: the F10.7 daily observations from 1986–01–01 to 2019–12–31; Middle panel: the BoxCox
transformation withλ = 0 (reduces to the logarithm transformation) of the original F10.7 data;Bottom panel: the BoxCox
transformation with optimalλ(= −1.338) of the original F10.7 data.

Table 1 MAPE (%) of Chain Regression and Recursive
Strategy with their Difference for Several Selected Days

Ahead of days 1 5 10 15 20

Chain 2.34 6.01 7.68 7.90 7.95
Recursive 2.33 5.97 7.57 7.71 7.68
Difference 0.01 0.04 0.11 0.19 0.27

Table 2 MAPE (%) of LReg and BoxCox-LReg with their
difference for several selected days.

Ahead of days 1 5 10 15 20

LReg 2.4 6.4 8.3 8.6 8.6
BoxCox-LReg 2.3 6.0 7.5 7.7 7.7

Difference 0.1 0.4 0.8 0.9 0.9

Chain Regression means a multi-output model that
arranges regressions into a chain, in which each model
makes a prediction in the order specified by the chain using
all of the input features plus the predictions of models that
are earlier in the chain. This can be illustrated as






















































yt = w00 + w01yt−1 + w02yt−2 + . . .+ w0pyt−p

+ǫ ,

yt+1 = w10 + w11yt−1 + w12yt−2 + . . .+ w1pyt−p

+αyt + ǫ ,

. . .

yt+h = wh0 + wh1yt−1 + wh2yt−2 + . . .+ whpyt−p

+β0yt + . . .+ βh−1yt+h−1 + ǫ .

(7)
This method is the most complex one, which has a total of
(h+ 1)× (p+ 1) + h(h+ 1)/2 parameters.

In Section3.2, we will explore how the three methods
perform through experiments and choose the one that fits
our problem best.

To summarize Section2 and turn the procedures
aforementioned into a working algorithm, we profile
our BoxCox multi-output linear regression approach in
Algorithm 2.

Algorithm 2 Profile of the BoxCox multi-output linear
regression approach

Step 1:BoxCox transformation of original data;
Step 2:Convert time series data into supervised learning form;

Step 3:Train a multi-output linear regression model;
Step 4:Make prediction with the trained model;
Step 5: Inverse BoxCox transformation of predicted values.

3 EXPERIMENTS

3.1 Dataset and Performance Metric

In this paper, we conduct our experiments with the F10.7
daily values from 1986–01–01 to 2019–12–31 covering
around three solar cycles, in which data before 2009–01–
01 are used as a training set (around two cycles) with the
rest as a testing set (around one cycle). The number of input
features and predicted time steps are chosen to be 54 and
27 respectively.

To evaluate the prediction performance, we use the
mean absolute percentage error (MAPE)4 between true
values and predictions, defined as

MAPE =
1

n

n
∑

i=1

|ŷi − yi|

yi
× 100% , (8)

where ŷi and yi denote predicted and true values
respectively.

4 In the literature, it is also called mean relative error (MRE).
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Fig. 5 MAPE of multi-output linear regression with Recursive Strategy, Multi-target Regression, and Chain Regression
for 1–27 days prediction, showing the mean over all testing days.
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Fig. 6 MAPE of linear regression with original data (LReg), linearregression with logarithm transformed data (Log-
LReg), and linear regression with optimal BoxCox transformed data (BoxCox-LReg) for 1–27 days prediction, showing
the mean over all testing days with error bars representing one standard error.

3.2 Influence of Multi-output Strategies

In this section, we compare the three methods introduced
in Section2.3 that produce multi-output regression from
a univariate model. Figure5 shows the average MAPE
over all testing days of Recursive Strategy, Multi-target
Regression and Chain Regression for 1-27 days prediction.
Table1 shows the quantitative MAPE of Chain Regression
and Recursive Strategy with their difference for several
selected days. We see that for short-term prediction all
methods are almost indistinguishable. This is because the
shorter the prediction length is, the more similar they are,
and they reduce to the same thing in the extreme case of

1-day ahead prediction. As the prediction length grows,
the three methods begin to show different performance:
Recursive Strategy performs substantially better than
Chain, which in turn slightly outperforms Multi-target
Regression. This tends to be more prominent for a longer
time ahead prediction. This result arises possibly for two
reasons: (1) Multi-target and Chain Regression are so
complex that they overfit the data; and (2) Multi-target
does not well employ the recent observations for longer-
step predicting. Maybe there are some other reasons,
but anyway we can conclude that Recursive Strategy is
the method that fits our problem best. Therefore, in the
subsequent part of this paper, when we mention multi-
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Fig. 7 MAPE of LReg , Log-LReg, and BoxCox-LReg for 1–27 days prediction grouped by years from 2009 to 2019,
showing the mean over testing days within the correspondingyear.

output regression it refers to the one with Recursive
Strategy.

3.3 Influence of BoxCox Transformation

In this section, we evaluate the influence of BoxCox
transformation on F10.7 prediction performance with
the testing set. Three methods are considered: multi-
output linear regression model with original data (LReg),
multi-output linear regression with logarithm transformed
data (Log-LReg), and multi-output linear regression with
optimal BoxCox transformed data (BoxCox-LReg).

Figure6 shows the MAPE of LReg, Log-LReg, and
BoxCox-LReg for 1–27 days5 prediction, providing the
mean over all testing days with error bars representing
one standard error. We see that BoxCox-LReg performs
better than Log-LReg, which in turn outperforms LReg
significantly. This is because the original data suffer
from a serious issue of heteroscedasticity, the logarithm

5 In the figure, x-tick ranges from 0 to 26 since the day when we make
forecast is taken as the first day to predict as shown in Equation (5).

transformation mitigates this issue to some extent but it
is insufficient, whereas the BoxCox transformation with
optimal parameters makes the data approximately follow
the property of homoscedasticity, resulting in the best
performance. A detailed quantitative comparison between
LReg and BoxCox-LReg is shown in Table2, providing
their respective MAPE and difference for several selected
days. We see that BoxCox-LReg is substantially better
than LReg, which becomes more prominent for longer
prediction length.

In order to get deeper insights, we conduct our
experiments year by year. The results are shown in
Figure 7, providing MAPE of LReg, Log-LReg, and
BoxCox-LReg for 1-27 days prediction from 2009 to 2019.
From Figure7, BoxCox-LReg shows a clear advantage
over LReg for most years including 2009, 2015, 2016,
2017, 2018, and 2019; BoxCox-LReg performs slightly
better than LReg for 2012 and 2015; the three methods
give similar performance in 2010, 2011, and 2013. Overall,
BoxCox-LReg is the best performer.
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Fig. 8 MAPE of 54-order auto-regressive model (AR), BoxCox-LReg,multi-layer perceptron (MLP), support vector
regression (SVR), and the US Airforce for 1-27 days prediction, showing the mean over all testing days with error bars
representing one standard error.
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Fig. 10 Yearly MAPE of AR, BoxCox-LReg, MLP, and the US Airforce from2009 to 2019, showing the mean over all
testing days (365 or 366 days) and prediction lengths (27 days) within the corresponding year.

To conclude, the violation of homoscedasticity is
indeed a serious issue that hampers a predictive model in
the F10.7 prediction, and our proposal of using the BoxCox
transformation can solve this issue very well to further
improve the F10.7 forecast accuracy.

3.4 Comparison with Alternatives

In this section, we compare our method (BoxCox-LReg)
with several alternative approaches, including the 54-order
Auto-regressive Model (AR) (Liu et al. 2010), traditional
feedforward neural network (a.k.a Multi-layer Perceptron,
MLP), Support Vector Regression (SVR) (Huang et al.
2009), and the prediction from the US Airforce6. With
MLP, the model structure consists of an input layer with
54 neurons, a hidden layer with 10 neurons, and an
output layer with 27 neurons. The activation takes the
hyperbolic tangent function, i.e., ‘tanh’, and the solver is
set to the Adam (Kingma & Ba 2014) optimizer.7 With
SVR, sinceHuang et al.(2009) only makes prediction for
1–3 days, we extend it to work for 1-27 days through
the recursive strategy, that is, one time step prediction is
conducted first and then the prior time step is used as an
input for making a prediction on the following time step.
Following Huang et al.(2009), we use the RBF kernel as
the kernel function in SVR.

Figure 8 shows comparative results of all the five
methods for 1-27 days prediction, providing the mean
over all testing days with error bars representing one
standard error. It is encouraging that our BoxCox-LReg
is dominating over its competitors especially when the
predicted length becomes large. SVR displays a good

6 swpc.noaa.gov/products
7 Here, the network structure and hyper-parameters are chosen

empirically. One could explore different combinations.

performance for the first couple of days as reported
by Huang et al.(2009), but it deteriorates quite fast and
does not scale with a growing prediction length. Another
interesting finding is that linear models (AR and BoxCox-
LReg) perform better than complex models like MLP. Our
conjecture is that the underlying relation between lagged
and current values of the F10.7 data is approximately linear
such that a linear model is a good choice for practical
usage. By contrast, a complex model, although it could
perform at least equally well to a linear model in theory,
might slightly suffer from the problem of overfitting or
could not reach its limit somehow, which makes it not work
that well in practice.

To look into more details, further experiments were
done. Figure9 shows MAPE for 1–27 days prediction
year by year from 2009 to 2019, where we leave out
SVR since it performs obviously worse than other methods
according to the results in Figure8. Figure10shows yearly
MAPE of AR, BoxCox-LReg, MLP, and the US Airforce,
in which each data point is computed over all testing
days (365 or 366 days) and prediction lengths (27 days)
within the corresponding year (a data point is the mean
over 365*27 or 366*27 original results). We see that the
BoxCox-LReg method consistently outperforms the US
Airforce across all years, which becomes more prominent
for highly-active years. The reduced MAPE of BoxCox-
LReg over the US Airforce ranges from 0.37% in 2019
to 2.39% in 2014. AR seems to show indistinguishable
performance with our method in ascending years (from
2009 to 2013): the average reduced MAPE over these years
is 0.27%, but BoxCox-LReg has a clear advantage over
AR in descending years (from 2014 to 2019): the average
reduced MAPE over these years increases to 0.9%. In a
nutshell, BoxCox-LReg wins against its competitors in
most cases.

swpc.noaa.gov/products
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4 CONCLUSIONS AND DISCUSSION

In this paper, we focused on the problem of forecasting 1-
27 days F10.7 daily values. A new approach is proposed
for this task, in which a BoxCox transformation is first
applied to solve the issue of heteroscedasticity and then
a multi-output linear regression model is used to make
predictions. In the experiments, our BoxCox multi-output
linear regression approach substantially outperformed the
US-Airforce prediction and other alternative methods:
the Auto-regressive Model, Multi-layer Perceptron, and
Support Vector Regression. This is mainly because the
BoxCox transformation with a proper parameter provides
a good way to make the data satisfy homoscedasticity,
which makes the subsequent regression model able to
efficiently capture the relationship between features and
targets. Another advantage of our approach is that it is
very fast because of the linearity. Although our training
set covers 22 years of data, the train time in our experience
(python Scikit-learn implementation in a PC) is just 0.03s.
The prediction time on a day is ignorable.

Our proposal of using the BoxCox transformation is
a generic method to solve the issue of heteroscedasticity,
which can be straightforwardly used in other problems
than F10.7 daily prediction. The proposed learning
procedure of optimalλ is not unique, e.g., one could define
one’s favorite loss function or try a different estimation
method forVar[ỹh(λ)] and Var[ỹl(λ)] according to the
specific problem.

The number of features used in this paper, 54, is
empirically chosen as twice the days of solar self-rotation.
Additional experiments show that these features

are already sufficient to obtain a good forecast result, in
the sense that inclusion of more features hardly improves
the performance (we claim this is only correct for the
current task under our experimental conditions). While we
focused on 1–27 days prediction, it is quite straightforward
to extend our approach to 90 days forecast (a scenario that
is needed in a lot of applications) but perhaps requires more
input features.
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