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Abstract In this work, we train three decision-tree based ensemble machine learning algorithms (Random
Forest Classifier, Adaptive Boosting and Gradient Boosting Decision Tree respectively) to study quasar
selection in the variable source catalog in SDSS Stripe 82. We build training and test samples (both
containing 1:1 of quasars and stars) using the spectroscopic confirmed sources in SDSS DR14 (including
8330 quasars and 3966 stars). We find that when trained with variation parameters alone, all three models
can select quasars with similarly and remarkably high precision and completeness (∼ 98.5% and 97.5%),
even better than trained with SDSS colors alone (∼ 97.2% and 96.5%), consistent with previous studies.
By applying the trained models on the variable sources without spectroscopic identifications, we estimate
the spectroscopically confirmed quasar sample in Stripe 82 variable source catalog is ∼ 93% complete
(95% for mi < 19.0). Using the Random Forest Classifier we derive the relative importance of the
observational features utilized for classifications. We further show that even using one- or two-year time
domain observations, variability-based quasar selection could still be highly efficient.
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1 INTRODUCTION

Quasars, as one of the most luminous celestial objects in
the universe, are powered by accreting supermassive black
holes (SMBHs) in galactic nuclei. Building quasar catalogs
is of great significance to research on SMBH accretion,
galaxy evolution and cosmic structure. Since spectroscopic
observations are always expensive in observing time, pre-
selecting quasar candidates from large area photometric
observations is an essential topic in this area. To date,
the largest samples of quasars have been selected based
on their optical/UV colors which are often different from
those of stars (e.g. Richards et al. 2002; Pâris et al.
2018; Yao et al. 2019). Infrared colors are also useful
to select active galaxies and quasars (e.g. Stern et al.
2005; Lacy et al. 2007; Donley et al. 2012). Meanwhile,
quasar candidates can be pre-selected based on multi-band
detections, e.g., in X-ray, or in radio band.

In the era of time domain astronomy, selecting quasar
candidates based on variation properties emerges as a new
frontier. Flux variation in multi-band is one of the most
prominent characteristics of quasars and active galaxies.

In optical, quasars are often more variable than stars
(Sesar et al. 2007), and studies have shown that quasars
can be efficiently selected based on their optical variation
properties (e.g. MacLeod et al. 2011; Choi et al. 2014).

Variation-based quasar selection from large area time
domain surveys could be uniquely helpful since it is free
from the known biases suffered by the traditional color
selection approach (e.g. Butler & Bloom 2011; Sánchez-
Sáez et al. 2019). For example, the traditional optical/UV
color selection is insensitive to quasars at the redshift range
of 2.2 to 3 in which their colors are similar to that of normal
quasars (e.g. Schneider et al. 2010).

While quasars can be selected using empirical cuts
in the space of variation parameters (e.g. MacLeod et al.
2011; Schmidt et al. 2010; Butler & Bloom 2011), machine
learning algorithms have been adopted by several studies to
improve the precision and completeness of the selection.
In these studies, various algorithms have been trained
using various datasets. Graham et al. (2014) used Slepian
wavelet variance (SWV), Damped Random Walk (DRW)
and Structure Function (SF) at the same time to extract
variability features from Catalina Real-time Transient
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Survey (CRTS) quasar samples, along with color features
to train different ensemble learning classifiers, including
Random Forest, Extremely randomized trees, AdaBoost
and Gradient tree boosting. They also used SDSS Stripe
82 data to test their sample selection criteria. Hernitschek
et al. (2016) utilized color and variability features and
trained a Random Forest Classifier (RFC) to identify
quasars on Pan-STARR1 3π survey, in which each quasar
was observed typically seven times in each of its five bands
within 3.5 years. Similarly, Sánchez-Sáez et al. (2019)
used RFC to classify AGNs in QUEST–La Silla AGN
variability survey. Takata et al. (2018) employed Support
Vector Machine (SVM) to classify variable quasars in
Sloan Digital Sky Survey Stripe 82, and Kim et al. (2011)
also adopted SVM to identify variable quasars in MAssive
Compact Halo Object (MACHO) database.

While these works have shown that the machine
learning selection of quasars by variability is a promising
approach, it would be useful to investigate how the
performance of the machine learning approach depends on
the availability of bands and the length of the light curves
from which the variability parameters are measured. In this
work, we present an extensive study of machine learning
selection of quasars by variability. We use the SDSS
Stripe 82 variable source catalog to train three decision-
tree based machine learning algorithms, including RFC,
Adaptive Boosting (AdaBoost, Freund & Schapire 1995)
and Gradient Boosting Decision Tree (GBDT, Friedman
2002; Mason et al. 1999). The ground-truth labels of
objects we use in this work come from SDSS Data Release
14 (DR14) spectroscopic database. In Section 2, we
introduce the dataset we used. In Section 3, we describe the
variability features and the training procedure, including
the optimal hyper-parameters of the ensemble machine
learning methods. In Section 4.1, we confirm that the
three machine learning classifiers could yield remarkably
high precision and completeness in classifying quasars. In
Section 4.2 we apply the trained algorithms to classify
variable sources without spectroscopic identifications, and
estimate the completeness of the quasar sample in SDSS
Stripe 82. We present and discuss the relative importance
of the observational features (variability, color, from
various bands) we utilize in Section 4.3. The effects of
imbalanced samples (the ratios of quasars and stars used in
training and test samples are not equal to 1) are discussed
in Section 4.4. We explore the dependence of quasar
classification on the length of light curves in Section 4.5.
Finally, our brief conclusions are given in Section 5.

2 SDSS STRIPE 82 VARIABLE SOURCES

SDSS Stripe 82 is a 290 deg2 equatorial field, which has
been repeatedly scanned ∼ 60 times in ugriz within ∼

10 years by the Sloan Digital Sky Survey (Ivezić et al.
2007). A catalog of 67 507 variable sources in SDSS
Stripe 82 was built by Ivezić et al. (2007). Thanks to
the long duration and the large number of visits for
each source, variation parameters could be measured
with considerably high accuracy. The catalog, together
with the SDSS spectroscopical identifications, is uniquely
useful to promote systematical study and understanding of
variation-based quasar classification. This study could be
essential to quasar selection from upcoming large area time
domain surveys (e.g. LSST).

This catalog was built following the criteria listed
below:

– unresolved in imaging data, with photometric error
below 0.05 mag in at least one band;

– processing flags BRIGHT, SATUR, BLENDED, or
EDGE are not set in any band;

– at least 10 photometric observations in the g and r

bands;
– the median g-band magnitude brighter than 20.5;
– root-mean-square scatter > 0.05 magnitude and χ2

per degree of freedom larger than three in both g

and r bands, which mean the variation is statistically
significant (see the discussions in Sesar et al. 2007 for
the details).

We match the catalog with a matching radius of 2′′

with SDSS Data Release 14 (DR14, Abolfathi et al. 2018)
for spectroscopical identifications. Among the variable
sources, 8330 are identified as quasars and 3966 as
stars. The rest 48 716 sources are left unlabeled. The
spectroscopically identified sources are utilized to train
and test our machine learning classifiers, which are also
utilized to classify those unlabeled sources.

3 OBSERVATIONAL FEATURES AND MACHINE
LEARNING MODELS

3.1 Observational Features

We use a DRW (also named as Ornstein-Uhlenbeck
process) process to fit the light curves. The DRW process is
a stochastic process defined by an exponential covariance
matrix between ti and tj :

SDRW(∆t) = σ2 exp(−|∆t

τ
|) (1)

where σ is the long-term deviation of variability, and τ

the characteristic time scale of DRW. It is essentially a
random walk with a self-correcting term that pushes any
deviations back toward the mean value of the random walk
itself. Various studies have shown that the DRW process
could well describe the observed UV/optical variations
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of active galaxies and quasars (e.g. Kelly et al. 2009;
Kozłowski et al. 2010; MacLeod et al. 2010) 1. Compared
with many other deterministic and stochastic models, the
DRW process is the best model for SDSS Stripe 82 quasar
light curves (Andrae et al. 2013). Meanwhile, the DRW
parameters had been found useful to distinguish quasars
from variable stars. For instance, MacLeod et al. (2011)
found that the distribution of τ (in the observed frame)
peaks around 500 days for quasars in Stripe 82, but ∼
1 day for other objects, showing selecting quasars out of
variable sources is highly promising even without color
information.

In this work, we use the DRW parameters as the
input observational features to train and test our machine
learning classifiers. We use the software JAVELIN (Zu
et al. 2011, 2013) to fit each SDSS Stripe 82 light curve
to measure τ and σ. A total of 10 DRW parameters (for
five SDSS bands) were obtained for each variable source.
The DRW fitting failed for two stars and 110 unlabelled
sources, which are excluded from further analyses. We also
note some stars with “peculiar” fitted DRW parameters,
which however do not affect the analyses in this work.
An example light curve of such sources is presented
in Appendix A, which results in an unreasonably large
σ. We presume that the DRW fitting may fail or yield
unreasonable results owing to the fact that the variability
of such sources is far from a DRW process.

For light curves with a small number of epochs,
the DRW fitting might yield parameters with huge
uncertainties. Therefore, we also measure the maximum
variation amplitudes of each source (in gri bands, which
have considerably better SDSS photometry comparing
with u and z), and include them as input to the classifiers.
The relative importance of these input features are
presented and discussed in Section 4.3.

It would be interesting to examine, for the variation
selected sources in this study, whether the variation
features alone can better classify quasars comparing with
colors, and whether combining variation and color features
can further improve the classification. The color features of
the variable sources (u− g, g− r, r− i and i− z) are thus
also considered, which were calculated using the median
photometry in each band.

1 Though deviations from DRW at extremely short and extremely
long timescales have been reported (e.g. Mushotzky et al. (2011), Zu et al.
(2013), Guo et al. (2017)). More sophisticated models include mixture
of Ornstein-Uhlenbech (OU) processes (Kelly et al. 2011), continuous
auto regression and moving average (CARMA) model (Kelly et al. 2014;
Simm et al. 2016; Kasliwal et al. 2017), and a broken powerlaw shaped
power density spectrum (e.g. Zhu & Xue 2016) have been introduced.

3.2 Machine Learning Models

We use RFC as our major classifier in this study. RFC is
one of the most popular and powerful supervised machine
learning methods. It belongs to a subclass called ensemble
learning method, which includes many weak classifiers,
and all of the weak classifiers collaboratively make a final
decision. In the case of random forest, it includes hundreds
(or even thousands) of decision trees, each of them is
trained by the training set. An example of decision tree
trained in this study is presented in Figure 1.

Each internal node stands for a selection rule on a
specific feature, which splits the node into two branches.
Each leaf node (nodes at the bottom of a tree) stands for
a class, in our case, a quasar or a star. In real training, a
branch of a decision tree will stop growing deeper once
the purity of the newest node reaches the preset value (not
necessary to be 100%) , and the node will become a leaf
node.

We also adopt two other decision-tree-based models,
namely: Adaptive Boosting (AdaBoost, Freund & Schapire
1995) and Gradient Boosting Decision Tree (GBDT,
Friedman 2002; Mason et al. 1999). Unlike random
forest, these models use boosting but not bagging strategy
(random forest is essentially a bagging ensemble learning
model). AdaBoost is adaptive because the misclassified
samples will be used specifically in the next iteration,
and the outputs of decision trees (“weak learners”) in
each epoch are combined into a weighted sum as a
final output. For GBDT, in each iteration the algorithm
will try to diminish the value of loss function. Both
AdaBoost and GBDT are consecutive ensemble models.
In contrast, random forest, by concept, is a parallel
ensemble model, and its purpose is to build numerous
independent weak classifier and average their results.
They all belong to ensemble learning methods, which
help improving machine learning results by combining
several base models to produce an optimal predictive
model. Generally ensemble learnings tend to have better
performances and are less likely to overfit.

The machine learning frame that we use is scikit-
learn (Pedregosa et al. (2011); formerly scikits.learn).
All models require hyperparameters setting which is
independent of the dataset. Hyperparameters optimization
is mostly implemented empirically. However, Grid Search
is a practical approach without much experience. In
Table 1 we present our best hyperparameters derived with
sklearn.model selection.GridSearchCV below for each
model (other parameters not mentioned are left as default).

Among the spectroscopically identified sources, we
randomly select 3000 quasars and 3000 stars to train
our models. A sample of 600 quasars and 600 stars (an
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Fig. 1 The tree-like structure of an example decision tree in this work (pruned for better visualization). Visualization is
done with python package dtreeviz.
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Table 1 Hyperparameters Setting for All Models
Model Hyperparameter Value

RFC n estimators 500
oob score True

AdaBoost

n estimators 500
learning rate 0.08

algorithm SAMME
max depth 6

min samples split 20
min samples leaf 5

GBDT
n estimators 500
learning rate 0.1

1:1 sample), mutually different from the training sample,
is then built to test the trained classifiers. Two indices,
namely precision and recall (see Eqs. (2)), are used to
evaluate the performance of a trained model.

Precisionstar =
# of predicted true star

# of predicted star

Recallstar =
# of predicted true star

# of confirmed star

Precisionquasar =
# of predicted true quasar

# of predicted quasar

Recallquasar =
# of predicted true quasar

# of confirmed quasar

(2)

where precision stands for the fraction of that a certain
type of classifications is true, and recall the completeness
of correct classification for a given class of objects.
We repeat above random selections of training and test
samples 100 times, and present the averaged performance
in Section 4.1. Note we adopt a ratio of 1:1 of stars versus
quasars for both the training and test datasets. While this
is a common approach in machine learning studies, we
discuss in Section 4.4 the effects of imbalanced datasets.

4 RESULTS AND DISCUSSION

4.1 The high performance of the machine learning
algorithms

In Table 2, we present the performance of the three
classifiers evaluated with the test samples. The values
in the table are obtained through averaging 100 trials
(hereafter the same), and the errors of the mean values
are also presented. We find similarly high performances
obtained with all three machines, showing each of them is
competent enough for such a study. In Figure 2, we present
the receiver operating characteristic (ROC) curve yielded
by the RFC classifier, created by plotting the true positive
rate (TPR) against the false positive rate (FPR) at various
thresholds. The ROC curve appears ideal for a machine
learning task, indicating the distributions of the two types
of objects are well separated.

Fig. 2 ROC curve of quasar (i.e., “true sample” here means
quasar) given by the RFC classifier. The red cross in the
plot is the best threshold 0.42, the nearest point to (0.0,1.0).

We also find that using the variability features alone
can yield better performances comparing with using only
color features. This clearly demonstrates the high efficien-
cy of selecting quasars with time domain observations.
Putting variability and color features together would
further enhance the selection accuracy, with ∼ 99.0%
precision and recall achieved for all three machines.

Next, we briefly compare our results with previous
representative works on quasar selection out of SDSS
stripe 82 variable sources.

MacLeod et al. (2011) selected 10 024 SDSS Stripe
82 variable sources with i < 19.0. Among them 1490
(∼ 15%) are spectroscopically confirmed quasars, and
the rest were considered as non-quasars. They found that
simple cuts in DRW parameters (such as τ > 100 days),
aided with the color selection, could achieved a precision
of 93.8% (named as efficiency in the paper) and recall
of 98.0% (named as completeness) in selecting quasars
2. After corrected for the imbalance (see Sect.4.4), their
precision and recall are 99.3% and 93% respectively. It
can be seen that the analytical approach of MacLeod et al.
(2011) utilized rather strict thresholds which could achieve
high precision, but suffer considerable incompleteness.

Takata et al. (2018) used SDSS Stripe 82 variable
sources catalog to train a supportive vector machine
(SVM). They constructed a dataset which consists of
7714 confirmed quasars and 2141 stars. They used various
sets of variability features to train the SVM. Their test
dataset contains 1000 quasars and 1000 stars, and the
rest of the sources were used to train the machine. Using
DRW parameters measured with JAVELIN, they obtained
averaged precision and recall of 93.8% and 98.6% 3. While
their recall is similar to our results, their precision is

2 Note the performance was estimated with the same dataset that they
used to define the thresholds, thus it could have been over-estimated.

3 Private communications with the authors show that there are
mistakes with their definitions of precision and recall in their original
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Table 2 The performance of three machine learning algorithms. The mean values (of precision and recall) and the
corresponding errors of the mean values are derived through averaging results from 100 trials. In the “all features” model
both color and variability features (see Sect. 3.1) are utilized.

feature mode RFC AdaBoost GBDT

all features

Pquasar 99.00%± 0.04% 99.05%± 0.04% 98.90%± 0.04%
Rquasar 98.84%± 0.04% 99.02%± 0.04% 98.85%± 0.04%
Pstar 98.84%± 0.04% 99.02%± 0.04% 98.85%± 0.04%
Rstar 99.00%± 0.04% 99.05%± 0.04% 98.90%± 0.04%

color features

Pquasar 97.16%± 0.06% 97.20%± 0.06% 97.23%± 0.06%
Rquasar 96.64%± 0.07% 96.56%± 0.07% 96.43%± 0.07%
Pstar 96.66%± 0.06% 96.59%± 0.06% 96.46%± 0.07%
Rstar 97.18%± 0.06% 97.22%± 0.07% 97.24%± 0.06%

variability features

Pquasar 98.56%± 0.04% 98.43%± 0.04% 98.31%± 0.05%
Rquasar 97.50%± 0.06% 97.81%± 0.05% 97.59%± 0.06%
Pstar 97.53%± 0.06% 97.82%± 0.05% 97.61%± 0.06%
Rstar 98.57%± 0.04% 98.44%± 0.04% 98.32%± 0.05%

considerably lower. This could be partly due to the fact
that they used smaller sample of 1141 stars to train the
classifier. Also, SVM is a weak classifier, like a single
decision tree in the random forest model. For comparison,
the precision and recall of quasar given by a single decision
tree are∼ 98.0% and∼ 97.0%. Meanwhile, their precision
is considerably lower than their recall, mainly because of
the imbalanced test sets.

Graham et al. (2014) used SWV, DRW and SF
at the same time to describe the variability features.
Using variability alone, they obtained 96.5% recall (named
as completeness in the literature) and 95.0% precision
(named as purity in the literature) for their RFC. With
the aid of color features, they obtained 99.3% recall
and 99.0% precision. Using DRW parameters alone, we
achieve similar recall and precision, confirming the results
of Graham et al. (2014).

4.2 The completeness of the spectroscopically
confirmed quasar sample in Stripe 82

We then apply our trained models to select potential
quasars out of the unlabeled sources in the Stripe 82
Variable Source Catalog. With RFC, we classify 1105
of them as predicted quasars, and 47 501 as stars (As
mentioned in Sect. 3.1, the DRW fitting failed for
110 unlabelled sources, which are most likely to be
stars, thus having no influence on further discussion
on completeness). Similar numbers are obtained using
AdaBoost and GBDT. We plot the i-band magnitude
distributions of the RFC predicted quasars and stars in
Figure 3, together with those of the confirmed ones.
While confirmed quasars and stars have significantly
different magnitude distributions, it is interesting to note
that the i-band magnitude distributions of predicted and

published paper, and an erratum is to be submitted. The values that we
quoted here are corrected ones given by the authors.

spectroscopically confirmed quasars are similar, and so do
those of stars.

Recalls, i.e., # of true predicted ∗
# of real ∗ (*: quasar / star),

do not change with the absolute values of the numbers
of quasar and star in the samples, whereas precisions,
i.e., # of true predicted ∗

# of predicted ∗ , may be affected greatly due to
the imbalance, as mentioned in Section 4.4. Assuming
recalls of the unlabeled sources are the same as those
in Table 2, we can estimate the numbers of real sources
with Equations (3), which are derived from the definitions
of recalls in Equations (2). After correcting the incom-
pleteness and contaminations due to misclassifications, we
finally expect there are ∼ 633 real quasars among the
48 716 unlabeled sources, ∼ 633 × (1 − 0.9984) ∼ 7

of them could have been misclassified as stars, and the
sample of the 1105 predicted quasars has an precision of∼
633−7
1105 ×100% ∼ 57%. This suggests the spectroscopically

confirmed sample of quasars among the variable sources
has a completeness of ∼ 8330

8330+633 × 100% ∼ 93.0%,
similar to the estimated completeness of SDSS quasars
from small spectroscopically complete samples (>90%,
Richards et al. 2002; Ivezić et al. 2002; Vanden Berk et al.
2005; Peters et al. 2015).

(1−Recallstar)×# of real star =

# of predicted quasar −Recallquasar ×# of real quasar

(1−Recallquasar)×# of real quasar =

# of predicted star −Recallstar ×# of real star
(3)

We see from Figure 3 that, among the variables
sources, stars significantly outnumber quasars at brighter
magnitudes; and at the faint end, quasars are the dominant
population. We thus expect that at brighter magnitudes, the
predicted quasar sample suffers stronger contaminations
from misclassified stars. This effect could be corrected
through repeating the calculations described in the above
paragraph, but at different limiting magnitudes.

In Figure 4 we plot the recalls of quasars and stars we
measured with test samples, as a function of limiting i band
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Fig. 3 SDSS i-band magnitude distributions of spec-
troscopically confirmed and RFC predicted quasars and
stars. Predicted sources are those without spectroscopical
identifications, but classified by our random forest model.

Fig. 4 The RFC performance (accumulative recall,
averaged through 100 testing runs), and the numbers of
predicted quasars/stars (out of the unlabeled sources), as
a function of limiting magnitude mi.

magnitude. Utilizing the measured recall, and the number
of predicted quasars and stars, we calculate the corrected
completeness (as a function of limiting magnitude, i.e.
< mi) in Figure 5. This indicates that SDSS quasar sample
is highly complete (∼ 95%) at i < 19, which is also
consistent with the estimated completeness based on small
spectroscopically complete samples (Vanden Berk et al.
2005, 94.9% for i < 19.1; and Peters et al. 2015, 94.7%

for i < 19.1).

The “original completeness”, calculated simply using
the numbers of predicted quasars from our RFC classifier,
is also plotted in Figure 5 for comparison. Note that this
completeness is significantly contaminated by stars which
have been misclassified as quasars, and such contamination
is stronger at brighter magnitudes as there are relatively
more bright stars than quasars in the variable source
catalog (see Fig. 3). This effect could explain the even
smaller “original completeness” at brighter magnitudes in
Figure 5.
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Fig. 5 The estimated completeness of spectroscopically
confirmed quasars in the SDSS Stripe 82 variable source
catalog, as a function of limiting magnitude mi. The
“original completeness” is calculated simply using the
numbers of predicted quasars from our RFC classifier, i.e.,
(spectroscopically confirmed)/(confirmed + predicted).

4.3 Feature Importance

Not all of the input features to the classifiers are equally
useful in distinguishing quasars from stars. It is helpful
to examine the relative importance of various features,
particularly considering that the available features are
practically often limited by observational resources.

A decision tree or random forest can generate features
rankings by calculating so called “gini importance” or
“mean decrease impurity” (Breiman et al. 1984), which
calculates each feature importance as the sum over the
number of splits (across all tress in a random forest)
that include the feature, proportionally to the number of
samples it splits. In other words, features that can separate
a larger set of samples into two pure enough subsets have
larger feature importances. We run 100 trials to get average
scores of every features. We present the results in Figure 6,
where significant diversity in the feature scores is seen.

We then add feature one at a time into the feature set
in the order of their importance scores, to train and test the
RFC model. The output precision and recall are plotted
in Figure 7, where we clearly see that the performance of
the classifier is dominantly driven by the first few features.

In Figure 8 we also plot the measured precisions and
recalls by using variation features in one band only. We
see that g and r bands have similarly good performance,
likely because SDSS quasars have the best photometry in g
and r. Meanwhile, the performance in z band is the worst,
which could be attributed to its much worse photometry
and the fact that quasar variations are much weaker at
longer wavelength. Note that the performance using only
g or r band variation features alone is already comparable
to that using all SDSS colors.
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Fig. 6 Ranking of feature importance (gini importance)
given by RFC. Red (green) bars represent DRW parameter
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importance score (from left to right). Only τg is used in the
first point, and all features are included in the last point.
We notice a sharp rise in the first three points, for they
represent the top three most importance features.

4.4 Effects of Imbalanced Samples

We previously present and discuss the efficiencies of
the machine learning models using training and test
samples with 1:1 ratio of quasars and stars. However
actual datasets are often heavily imbalanced. For instance,
among the SDSS Stripe 82 variable sources we used
in this work, there are 8330 spectroscopically confirmed
quasars, but only 3966 stars. More significantly, among the
48 716 unlabeled sources, we only expect ∼ 630 quasars
(see Sect. 4.2). Below we discuss the effects of sample
imbalance in both the test sample and the training sample.

The effect of imbalance in the test sample (or the to-
be-classified sample) is straightforward. Comparing with
an 1:1 sample, an imbalanced test sample would in
principle yield identical recall but different precision for
each type of the objects. This is because, for instance,
whether a quasar in the test sample could be correctly
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i

u

z
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Fig. 8 The achieved performance of RFC of using
variation features from one band only, e.g., a block marked
by g represents performances that only variation features
of g-band are used, which are τg , gAmp and σg.

classified (recall) depends on the observed features of the
quasar and how the classifier was trained, but has nothing
to do with other sources in the test sample. In contrast, the
precision of the quasar classifications does depend on the
number of stars which have been mis-classified as quasars,
thus the number of stars in the sample.

Let η be the ratio of stars to quasars in the test sample.
The expected precisions of quasars and stars from an
imbalanced test sample can be expressed as:

Precisionquasar =
Recallquasar

Recallquasar + η × (1−Recallstar)

Precisionstar =
Recallstar

Recallstar + 1/η × (1−Recallquasar)
(4)

We can clearly see from the above equation that, a test
sample with stars more than quasars (η > 1) would
yield lower quasar precision (and higher star precision)
comparing with the 1:1 sample (see also Sect. 4.2).

The effect of imbalanced training sample is more
complicated and there is no simple analytical equation.
In principle, if there are more stars than quasars in the
training set, then the machine learning model will likely
learn more information about the stars. In this way, a star
will be less likely misclassified as a quasar. But apparently,
the shortage of this approach is that a quasar will be
more likely misclassified as a star. This compromise shows
the well-known trade between precision and recall. This
imbalance is a common issue in the machine learning
field, and many algorithms and methods have been brought
forward to deal with it (e.g. He & Garcia 2009; Chawla
et al. 2004). Generally, utilizing special sampling methods
(e.g. resampling, over-sampling, under sampling) and
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Table 3 The performance (precision and recall, similar to Table 2) of three trained RFC models using one-year, two-year
and ten-year long light curves.

feature mode one-year two-year ten-year

all features

Pquasar 98.18% ± 0.05 % 98.29% ± 0.05 % 98.91% ± 0.04 %
Rquasar 98.09% ± 0.05 % 98.41% ± 0.05 % 98.89% ± 0.04 %
Pstar 98.10% ± 0.05 % 98.41% ± 0.05 % 98.89% ± 0.04 %
Rstar 98.18% ± 0.05 % 98.29% ± 0.05 % 98.90% ± 0.04 %

variability features

Pquasar 95.73% ± 0.07% 97.13% ± 0.07 % 98.54% ± 0.04 %
Rquasar 94.87% ± 0.09% 96.16% ± 0.08 % 97.74% ± 0.05 %
Pstar 94.92% ± 0.08% 96.20% ± 0.08 % 97.76% ± 0.05 %
Rstar 95.73% ± 0.08% 97.15% ± 0.07 % 98.55% ± 0.04 %

color features

Pquasar — — 97.08% ± 0.06%
Rquasar — — 96.68% ± 0.08%
Pstar — — 96.70% ± 0.07%
Rstar — — 97.09% ± 0.06%
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Fig. 9 From top to bottom: full ten-year, two-year (2005–
2006), and one-year (2005) SDSS g band light curves of
an example quasar, and the corresponding best-fitted DRW
models.

adjusting loss function (e.g. cost-sensitive) are the most
common ways to deal with the problem.

4.5 Dependence on the length of light curves

In future surveys, pre-selection of quasar candidates could
be required when only one or two semesters of time
domain observations are available. Below we explore
whether the performance of the variability-based quasar
selection is sensitive to the length of the light curves
utilized to derived the variability parameters. This is
realized through feeding one-year and two-year data
extracted from the Stripe 82 light curves to the classifiers.
The one-year data are specified as data collected in 2005,
and two-year as data collected in 2005 and 2006. The
typical number of epochs in one-year and two-year data

are 15 and 30 respectively. Example quasar light curves
are given in Figure 9.

Following the procedures described in Section 3.2, we
train three RFC models using ten-year, two-year and one-
year datasets respectively. For all models we use samples
consisted of randomly selected 2800 quasars plus 2800
stars4 to train, and 600 quasars plus 600 stars to test. With
100 trials we present the derived confusion matrixes with
mean precision and recall in Table 3.

We find that when using shorter light curves, the
derived test scores are lower, but only slightly. The lower
scores are mainly because shorter light curves yielded
smaller τ for quasars (see Fig. 10), making them harder to
be distinguished from stars. Nevertheless, the performance
of quasar selection by variability alone using two-year
light curves is similar to that using color features alone.
The one-year datasets yield only slightly worse scores,
demonstrating that selecting quasars by variability is
still efficient even when only one semester time domain
observations are available (with ∼ 13 epochs for stars and
∼ 18 epochs for quasars).

Finally, we investigate the dependence of the per-
formance on the number of epochs obtained within one
observing semester. We select sources that have at least 15
epochs in 2005. 6836 quasars and 1624 stars are selected.
We then randomly select 5, 9, 15 epochs in 2005 from each
source to fit with a DRW. Using variability features alone,
we use 1300 quasars and stars to train and 300 to test.
The results averaged after 100 trials are listed in Table 4.
The results of “all epochs” are comparable to those of
“one-year variability features” in Table 3, but with higher
Rquasar, Pstar and lower Pquasar, Rstar. This is because
though the new subsamples (with at least 15 epochs from
each source) are smaller than the “one-year” samples used
in 3 that we can use only 1300 quasars plus 1300 stars to
train (instead of 2800:2800), the new subsamples have on

4 Here we use 2800:2800 sources (instead of 3000:3000) to train the
classifiers as for some stellar sources the DRW fitting fails for one-year
or two-year datasets.
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Table 4 The performance of RFC using data with different length (variability features alone). From left to right are: 5
epochs, 9 epochs, 15 epochs (all random selected) and all epochs in 2005.

5 epochs 9 epochs 15 epochs all epochs
Pquasar 90.55% ± 0.15 % 92.54% ± 0.14 % 93.74% ± 0.12 % 94.51% ± 0.13 %
Rquasar 92.10% ± 0.17 % 93.71% ± 0.14 % 94.91% ± 0.13 % 95.54% ± 0.13 %
Pstar 91.98% ± 0.16 % 93.65% ± 0.14 % 94.86% ± 0.13 % 95.51% ± 0.13 %
Rstar 90.36% ± 0.22 % 92.43% ± 0.15 % 93.65% ± 0.13 % 94.43% ± 0.13 %
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Fig. 10 τ vs σ for different datasets. Left to right: DRW parameters derived from ten-year, two-year and one-year g band
light curves, respectively. A similar version of the left panel could be seen in MacLeod et al. (2011).

average more epochs from each source from those “one-
year” samples used in Table 3. Clearly from Table 4 we
can see that the performance decreases with decreasing
number of epochs. Note using even “five epochs” within
one semester could still reach considerably high precision
and recall (∼ 90%), further demonstrating the efficiency of
variation-based quasar selection.

5 CONCLUSIONS

In this work, we extensively study variability-based quasar
selection through training and testing three data-driven
classifiers (random forest, AdaBoost, GBDT) with the 10-
year long multi-epoch optical photometric data in SDSS
Stripe 82. We fit the SDSS Stripe 82 light curves of
spectroscopically confirmed quasars and stars with the
DRW process using JAVELIN. The main results of this
work include:

1. Trained with the variability features alone, all three
models can select quasars with similarly and remarkably
high precision and completeness (∼ 98.5% and 97.5%,
trained and tested with 1:1 samples of quasars and stars),
even better than using SDSS colors alone (∼ 97.2% and
96.5%).

2. Combining both variability and color features,
we achieve precision and completeness both ∼ 99.0%,
consistent with previous similar studies.

3. Using the trained models, we classify the unlabelled
variable sources in Stripe 82, and estimate the complete-
ness of the spectroscopically identified quasar sample in
Stripe 82 variable source catalog to be ∼ 95% (for mi <

19.0).

4. We present the relative importance of the observa-
tional features utilized to classify quasars. The top three
most important features are τg , τr, and u− g.

5. We show that variability-based quasar selection
could still be highly efficient even when only one- or two-
year time domain observations are available.

We also discuss the effects of imbalanced samples
used to train and test the classifiers.
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Appendix A: PECULIAR FITTED DRW
PARAMETERS

In Figure A.1, we show an example stellar source whose
fitted σ is extremely large. From the light curves, we
presume that these kind of sources could be cataclysmic
variable stars, dwarf novae, etc. Due to the strong variation
at very short time scales, the fitted DRW parameters could
be abnormal, and because of the same reason, they are easy
to distinguish.

References

Abolfathi, B., Aguado, D. S., Aguilar, G., et al. 2018, ApJS, 235,
42

Andrae, R., Kim, D. W., & Bailer-Jones, C. A. L. 2013, A&A,
554, A137



D.-M. Yang, Z.-L. Xie & J.-X. Wang: Selecting Quasars by Machine Learning 99–11

53500 53600 53700 53800 53900 54000 54100 54200
time

16

17

18

19
m

ag
ni

tu
de

53500 53600 53700 53800 53900 54000 54100 54200
time

0

100

m
ag

ni
tu

de

Fig. A.1 Top: An example SDSS g band light curve of a star with extremely large fitted σ. Bottom: best-fitted DRW
model from JAVELIN. Only observations between 53500-54200 are shown in both panels.

Breiman, L., Friedman, J., Stone, C., & Olshen, R. 1984,
Classification and Regression Trees, The Wadsworth and
Brooks-Cole statistics-probability series (Taylor & Francis)

Butler, N. R., & Bloom, J. S. 2011, AJ, 141, 93
Chawla, N. V., Japkowicz, N., & Kotcz, A. 2004, ACM SIGKDD

Explorations Newsletter, 6, 1
Choi, Y., Gibson, R. R., Becker, A. C., et al. 2014, ApJ, 782, 37
Donley, J. L., Koekemoer, A. M., Brusa, M., et al. 2012, ApJ,

748, 142
Freund, Y., & Schapire, R. E. 1995, A Desicion-theoretic

Generalization of On-line Learning and an Application to
Boosting, in Computational Learning Theory, ed. P. Vitányi
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